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Abstract—When energy prices fluctuate, small scale
storage, such as provided by electric vehicles or unin-
terruptible power supplies, allows users to reduce their
overall costs by buying in price troughs. However, if future
prices are rising, a user may be inclined to store energy
long-term. By analysing the structural properties of the
charging schedule for energy storage systems,this paper
demonstrates that long-term storage is optimal only if
prices are rising extremely rapidly. The tools and methods
described in this report is part of a broader investigation
into the application of data networking concepts in energy
networks.

I. I NTRODUCTION

The smart grid harnesses information technology to
improve the efficiency with which the electricity grid
operates. Central to this is the ability to balance supply
and demand using small scale storage. This energy
storage affects two groups of stakeholders: end users
and utilities who operate generation, transmission and
distribution facilities. Utilities benefit from the use of
distributed storage to reduce the need for expensive
peaking generators or upgrades to the peak capacity of
the transmission and distribution system. If retail prices
vary, either with time or with demand, the users benefit
from the use of storage to shift their demand from times
of high price to low price. In this paper, we investigate
energy storage decisions made by end users, and the
impact that these decisions have on the utilities.

With peak-oil upon us, and increasing measures to
charge for the pollution caused by coal use, the price of
electricity is set to rise in real terms. In this context, a
user might choose to buy energy early and save it for a
long time to use when prices are high. This long-term use
of storage conflicts with the use of storage for smoothing
short term peaks of demand. We find that the faster the
growth of prices is, the less benefit utilities obtain from
storage that is controlled by the user.

In the literature the energy storage problem has been
studied extensively for both the end-users (demand-side)

[1], [2], [3], [4], [5] and utilities (supply-side) [6], [7].
Generally, an optimization problem is formed to inves-

tigate various aspects of the electricity scheduling and/or
designing storage/battery (component sizing) using dif-
ferent objectives for both sides of the energy system. The
problem can be then solved using a dynamic program-
ming method over either finite or infinite time horizon. In
defining the optimization problem, the existing literature
can be further classified into work that either deal with
deterministic or time-varying deterministic quantities in
energy demand and generation (i.e. price), or stochastic
quantities.

In particular, Daryanian et al. [1] and Chandy et
al. [2] studied the policies for storage charging that
balance the demand and supply assuming deterministic
energy price and full knowledge of the demand schedule.
In the former, the price is a linear function of the
generation production, while in the latter it is a time-
varying quadratic function. It is also interesting to note
that some interesting properties of the optimal policy
had been observed in Chandy et al. [2] as a result of the
introduction of the battery cost as a function of its energy
level. Faghih et al. [4] studied a similar problem but the
price is set to be a stochastic Markov process driven by
random variable with a known time-varying distribution.
An additional constraint on a discharging rate of the
battery is also included. In this setting Faghih et al.
found that the price elasticity of demand is increases as
the storage increases. All of the above results are based
on the optimal policy solving over a finite time horizon
that can be implemented in finite steps. It is much more
challenging though when solving the problem over a
infinite time-horizon which is often required for longer
planning and policy developing of the future smart grid.

Examples of using an infinite time horizon to solve
this optimization problem are Harsha et al. [3], Van
de Ven et al. [5] and Koutsopoulos et al. [8] where a
discount factor is used to calculate the future cost.In
particular [8] discusses the performance of the opti-
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mal policy for increasing storage capacity, and gives
examples to shows that as the capacity increases the
battery never discharges and that the average demand
equals the total instantaneous load in the grid.However,
as the energy price would rise in real terms, techniques
based on infinite time-horizon with amortized cost are
not applicable. It motivates us to look at the problem
over infinite time horizon with a discount factor greater
than one.

The contributions of this paper are follows. In Sec-
tion II , we formulate a simple infinite-horizon optimiza-
tion problem to study the user-optimal energy storage.
Since the total cost of this problem is infinite, we
define a limiting solution concept, and show that it is
a meaningful measure. More importantly, we show that
a discharging policy will often have “renewal points”,
such that the optimal policy before the renewal point is
independent of increases in energy beyond that point.
This gives the important insight that our infinite horizon
optimization problem can often be solved using predic-
tions for a finite time into the future. In SectionIII ,
we numerically investigate the effect of rising prices on
optimal policies, and show that moderate price increases
do not reduce the effectiveness of batteries at peak
shaving.

II. M ODEL

Consider a user with a time-varying demandd(t) ≥ 0
for electricity, and a battery of capacityB > 0. At each
time t, the demand is met by generating an amount of
electricity g(t) and obtaining the rest from the battery.
Generatingg units of electricity at timet has a cost
C(g; t), for some time-varying cost functionC that
is increasing and strictly convex in its first argument.
The convexity of the cost reflects the fact that higher
levels of demand often require the utility to use more
expensive peaking generators, and place greater strain
on the transmission and distribution network.

Our objective is to find the generating schedule to
minimize the user’s long term cost in the presence of
rising electricity prices (that is,C has an increasing trend
in its second argument). This is naturally formulated as
the discrete time, infinite horizon problem

min
g

∞
∑

t=1

C(g(t); t) (1)

subject to, for allt,

b(t)− b(t− 1) + d(t)− g(t) = 0 (2)

g(t) ≥ 0 (3)

b(t) ≥ 0 (4)

B − b(t) ≥ 0 (5)

However, the infinite sum (1) is typically infinite
since the electricity price is rising, and so an alternative
formulation is required. If the rate of increase is simply
geometric, then it could be treated as being subject to
a “discount” factor that is greater than 1 [9]; in such
cases, the objective (1) can be replaced by a suitable
weighted limit. However, we are interested in arbitrary
rates of increase, where such a technique does not apply.
Instead, we consider the limit of a sequence of finite
horizon problems of the form

min
g

T
∑

t=1

C(g(t); t) (6)

subject to

b(t)− b(t− 1) + d(t)− g(t) = 0 (7)

g(t) ≥ 0 (8)

b(t) ≥ 0, t < T (9)

B − b(t) ≥ 0, t < T (10)

with b(0) = 0. Let bTx be a solution to (1)–(10) subject
to the additional constraint

b(T )− x = 0. (11)

If limT→∞ bTx (t) exists and is independent ofx, then
we can define the optimal battery occupancy to be

b∗(t) = lim
T→∞

bTx (t). (12)

Sinceb(·) uniquely definesg(·), this also characterizes
the optimal charging schedule. The remainder of this
section establishes sufficient conditions under which this
limit is well defined.

A. Existence and uniqueness of an optimal solution.

To establish thatb∗(t) is well defined, we introduce
the following monotonicity lemmas.

Lemma 1. For any x, y ∈ [0, B], if bTx (τ) = bTy (τ) for
someτ ∈ [0, T ], thenbTx (t) = bTy (t) for all t ∈ [0, τ ].

Proof: Let A = bTx (t) = bTy (t). Since the costs and
constraints are only coupled by (8), for all t ∈ [0, τ ],
both bTx (t) and bTy (t) are equal to the solutionbτA(t) to
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the problem withT replaced byτ and (11) replaced by
b(τ)= A.

The next lemma is proved in the appendix.

Lemma 2. For any x, y ∈ [0, B] with x < y and any
τ ∈ [0, T ], if there is no sucht ∈ [τ, T ], that bTx (t) =
bTy (t), thenbTx (t) < bTy (t) for all t ∈ [τ, T ].

We can now state our main monotonicity result.

Theorem 3. For any x, y ∈ [0, B] with x < y, we have
that bTx (t) ≤ bTy (t) for all t ∈ [0, T ].

Proof: Since x < y, (11) gives bTx (T ) < bTy (T ).
Let τ ∈ [0, T ] be the last time thatbTx (τ) = bTy (tτ).
Such a time exists sincebTx (0) = bTy (0) = 0. It follows
from lemma1that bTx (t) = bTy (t) for all t ∈ [0, τ ]. By
definition there is not ∈ (τ, T ] such thatbTx (t) = bTy (t),
and so lemma2 states thatbTx (t) < bTy (t) for all t ∈
(τ, T ].

Since the prefix on[0, τ ]of an optimal solution is
itself optimal (i.e.,bTx (t) = bτy(t) where y = bTx (τ)),
theorem3 implies that, for a givent, bT0 (t) is monotonic
increasing inT andbTB(t) is monotonic decreasing. This
in turn implies thatlimT→∞ bT0 (t) and limT→∞ bTB(t)
both exist, since both sequences are bounded. If these
limits are equal, thenb∗ in (12) is well defined. The
following results, culminating in Theorem (6), give suf-
ficient conditions for this.

Lemma 4. If bTB saturates below at some timet (i.e.,
bTB(t) = 0), then the optimal solution to any problem
bTj , where j ∈ [0, B), also saturates below at timet,
and bTB(t

′) = bTj (t
′) for all time t′ ≤ t.

Proof: If at some timet ∈ [0, T ] we havebTB(t) =
0, then at timet, bTj (t) = 0 by Theorem3 (i.e., due
to monotonicity). Then lemma1 implies thatbTB(t

′) =
bTj (t

′) for all t′ ≤ t.

Lemma 5. If bT0 saturates above at some timet (i.e.,
bT0 (t) = B), then the optimal solution to any problem
bTj , where j ∈ (0, B], also saturates above at timet,
and bT0 (t

′) = bTj (t
′) for all time t′ ≤ t.

Proof: If at some timet ∈ [0, T ] we havebT0 (t) =
B, then at that timebTi (t) = B by Theorem3. Then
lemma1 implies thatbT0 (t) = bTi (t) for all t′ ≤ t.

Theorem 6. If bTB(t) = 0 or bT0 (t) = B, for somet ∈
[0, T ], then for all T ′ ≥ T , either bT

′

B (t′) = bT
′

k (t′) or
bT

′

0 (t′) = bT
′

k (t′) for all t′ ≤ t

Proof: First let us consider a time a horizon length

T where the optimal solution for two problems arebTB
and, wherebTB(T ) > bTk (T ), andk ∈ [0, B), given that
bTB saturates below at timet. Then from lemma (4), we
know thatbTB(t

′) = bTk (t
′), for all t′ ≤ t.

Next if we extend the horizon to some timeτ = T ′,
where T ′ ≥ T , then the optimal solution for the two
problems are given bybT

′

B andbT
′

k with end battery levels
B, k respectively, andbT

′

B (T ′) > bT
′

k (T ′).

Then at timeT , we know that the battery levels
bT

′

B (T ), bT
′

k (T ) ∈ [0, B], and from lemma (4) we know
that for any battery capacity ifbTB saturates below at
some timet, then the optimal solution to any problem
bTj , wherej ∈ [0, B), also saturates below at timet, and
bTB(t

′) = bTj (t
′) for all time t′ ≤ t.

Similarly if we consider a time horizon of lengthT ,
and the optimal solution for two problemsbT0 and bTk ,
where bT0 (T ) < bTk (T ), and k ∈ (0, B], given thatbT0
saturates above at timet, and we extended this problem
also to a timeT ′ as above. Then the optimal solutions
to the problems are in the formbT

′

0 and bT
′

k , where
bT

′

0 (T ′) < bT
′

k (T ′) and at timeT, bT
′

0 (T ), bT
′

k (T ) ∈
[0, B].

Then from lemma (5) we know that for any battery
level at timeT of bT

′

k it is optimal to saturate above at
time t. This givesbT

′

0 (t) = bT
′

k (t), resulting inbT
′

0 (t′) =
bT

′

k (t′), for all t′ ≤ t by applying lemma1.

We should also note that at some timet̄ where,T ≤
t̄ < T ′. If bT

′

B saturates below orbT
′

0 saturates above
at time t̄, then by lemma1, bT

′

B (t̄) = bT
′

k (t̄) in the case
it saturates below andbT

′

B (t′) = bT
′

k (t′), for all t′ ≤ t̄,
or bT

′

0 (t̄) = bT
′

k (t̄) in the case it saturates above and
bT

′

0 (t′) = bT
′

k (t′), for all t′ ≤ t̄ and hence theorem (6)
holds for anyt′ ≤ t.

B. Structure of optimal solutions

To investigate the structure of the optimization (1)–
(5), it is useful to study the Karush-Kuhn-Tucker (KKT)
conditions of the truncated version, (6)–(11).

The following derivation uses the notation of [2].
Define dual variables̃b(t) for constraint (7), λ̂(t) for
constraint (8), b(t) for constraint (9), b̄(t) for constraint
(10) and ê for constraint (11). For consistency with the
notationbTx (t) introduced earlier, the optimal values of
these will be denoted by a superscriptT ; the subscript
x denoting thatb(T ) = x will be omitted where no
confusion can arise.

The Lagrangian of the above optimisation problemL
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is then

L =

T
∑

t=1

C(g(t)) +

T
∑

t=1

b̃(t) [b(t)− b(t− 1) + d(t)− g(t)]

−
T
∑

t=1

λ̂(t)g(t)−
T−1
∑

t=1

b(t)b(t)

−
T−1
∑

t=1

b̄(t)(B − b(t)) + ê(b(T )− x) (13)

The stationarity conditionsdL/dg = 0 anddL/db = 0
are

C ′(gT (t))− b̃T (t)− λ̂T (t) = 0
(14)

b̃T (t) + (−b̃T (t+ 1)b̄T (t)− bT (t))1t<T + êT = 0
(15)

whereC ′ is the derivative ofC with respect to its first
argument.

Making b̃T (t) the subject of equation and solving (15)
gives,

b̃T (t) =

T−1
∑

τ=t

[

bT (τ)− b̄T (τ)
]

+ êT (16)

By substituting (16) in (14) and applying the primal
feasibility conditiongT (t) ≥ 0, we get the optimised
solution

C ′(gT (t); t) =

[

T−1
∑

τ=t

(bT (τ)− b̄T (τ)) + êT

]+

(17)

The complementary slackness conditions for the opti-
mal solution are,

(B − bT (t))b̄T (t) = 0 (18)

bT (t)bT (t) = 0 (19)

and

λ̂T (t)gT (t) = 0 (20)

A natural consequence of these conditions is the
following

Lemma 7. Consider an any interval[t1, t2] in which the
battery is partially filled (b∗(t) ∈ (0, B)), and satisfying
the technical condition that there existt† > t2 and t‡ >
t2 such thatb∗(t†) = 0 and b∗(t‡) = B.

Then the incremental generation costC ′(g(t); t) is
constant on[t1, t2]. Moreover,C ′(g(t); t) decreases only
if the battery is fullb∗(t) = B, and increases only if the
battery is emptyb∗(t) = 0.
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Figure 1. Daily Demand for Australian Electricity Market.

Proof: ChooseT = max{t†, t‡} The existence of
t† and t‡ means that the hypotheses of Theorem6 hold
with t = min(t†, t‡). Thusb∗(t) = bTx (t) on [t1, t2] and
the optimal generationg is equal in the finite and infinite
horizon problems.

In the finite optimization (6)–(11), the Lagrange multi-
pliersbT andb̄T are zero unlessbTx ∈ {0, B} by (18) and
(19). Hence the first claim holds by (17). The remaining
claim hold by the complementary slackness conditions
and the fact thatbT and b̄ are non-negative.

Note that this is in contrast to the structure observed
in [2] for finite horizon problems. That is because the
model of [2] imposed a penalty for the battery being
less than completely full. This penalty accumulates over
slots, and so there is a greater incentive early in time
to charge the battery, and less incentive nearer to the
horizon.

III. N UMERICAL RESULTS

We now demonstrate the foregoing results numer-
ically. The theoretical results hold for arbitrary time
variations of price,C(·; ·). We numerically investigate
the behaviour of the optimal solution when the cost
of energy grows exponentially in real terms. We use
a quadratic function of the generation following [2];
although we do not claim this to be an accurate model,
we expect that the qualitative conclusions will hold for
other strictly convex costs. Specifically, we study the cost
function C(t) = g(t)2γt/Ty , whereTy is the number of
time steps in a year, andγ ≥ 1 is the annual rate of
price increase. We useγ = 1, 1.2 and 2, corresponding
to 0%, 20% and 100% growth in prices per year.

Figure 1 shows the demand in New South Wales, as
reported by the Australian Energy Market Operator[10].
The data is aggregated over 30 minute intervals for 10
days in March 2012.

We model this daily variation in demand by a sinu-
soidal function,d(t) = 1 + sin(2πt/Td)/k, whereTd is
the number of slots per day. Large value ofk correspond
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Figure 2. Renewal points for a 6MWh battery with 20% per year
price increase for a 10 day horizon

to nearly constant load, while a value ofk = 1 is
highly variable, with the peak twice the mean and some
periods of zero demand. The measured data corresponds
to k ≈ 3.

The results depend substantially on the battery capac-
ity, B. Three battery capacities used: 0.5MWh,6MWh
and 48MWh which are able to store 15 minutes, 3 hours
and 1 days worth of energy.

A. Renewal intervals and finite Lookahead

A central qualitative prediction is Theorem6. It states
that any interval[t1, t2] such that either(bT0 (t1), b

T
B(t2)

is either(0, B) or (B, 0) decouples the solution at times
t < t1 from those at timest > t2, much like a renewal
point does in a renewal process [11]. In particular, if
the control is to be performed on-line, then the optimal
strategy up to timet1 can be calculated based on
predictions of load and price only up until timet2.

Note that it this “renewal” does not occur for every
point such thatbTx (t) = 0 or bTx (t) = B for x that is
neither 0 norB. For example, if the price atT + 1
is very high, then it is possible thatbT+1

x (t) > 0 even
thoughbTx (t) = 0. For this reason, we refer to[t1, t2] as
a “renewal interval” instead of a renewal point.

Figure2 shows the existence of a renewal interval for
a batteryb0(.) saturating above orbB(.) saturating below.
For b0, the last renewal interval is about from time step
430 to 450, whereas forbB, the last renewal interval
occurs later, from about time step 460 to 470. As stated
in Theorem6, b0(t) = bB(t) for any t before the start
of each of those renewal intervals.

Unfortunately, it is not always the case that the optimal
solution b∗ can be determined by looking a finite time
into the future. Figure3 shows a case where there is no
interval, either forbT0 or bTB, such that the battery is fully
charged at one end and fully discharged at the other. This
figure usesT = 10Td, representing 10 days. This does
not mean thatb∗ in (12) is not well defined in this case;
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Figure 3. Charging schedule of a 48MWh battery with no increase
in price per year and a 10 day time horizon
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Figure 4. Charging schedule of a 48MWh battery with no increase
in price per year and a 50 day time horizon

even if bT0 and bTB do not converge for a finite horizon
T , they may converge asT grows. Figure4 shows the
same system for a larger finite horizonT = 50Td, or 50
days. It can be seen that for a givent, such ast = 400,
the curvesb50Td

0
(t) and b50Td

B (t) are much closer than
b10Td

0
(t) andb10Td

B (t) are.

B. Battery size, demand and price increases

Now that we have seen that renewal intervals makeb∗

a meaningful solution concept, let us consider how that
solution varies with the battery sizes, demand fluctuation
and rate of increase of prices.

TablesI to III list the fraction of time that a battery is
completely full or completely empty for increasing prices
and capacities. A value of “—” means that no renewal
intervals exist and so convergence does not occur for
finite horizons.

Unsurprisingly, these show that a reduction in fluc-
tuation of demand causes a reduction in fluctuation of
battery occupancy, and that larger batteries spend less
time either totally full or totally empty.

The interesting result is that, for large 48kWh batter-
ies, when the fluctuations in demand are small, the rate
of increase makes a substantial difference in the fraction
of time spent saturated.

Figure 5 shows the battery occupancy for a case in
which the battery never empties. For even larger values
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time full (b∗ = B) time empty (b∗ = 0)
k \ γ − 1 0% 20% 100% 0% 20% 100%

1 0.38 0.38 0.38 0.38 0.38 0.38
3 0.29 0.29 0.29 0.29 0.29 0.29
20 0.08 0.08 0.08 0.08 0.08 0.08

Table I
FRACTIONS OF TIMEb∗(t) = B AND b∗(t) = 0 FOR

B = 0.5MWH.

time full (b∗ = B) time empty (b∗ = 0)
k \ γ − 1 0% 20% 100% 0% 20% 100%

1 0.17 0.17 0.17 0.17 0.17 0.17
3 - 0.04 0.04 - 0 0
20 - 0.04 0.08 - 0 0

Table II
FRACTIONS OF TIMEb∗(t) = B AND b∗(t) = 0 FORB = 6 KWH.

of γ, the battery can remain fully charged for the entire
time. We can calculate how largeγ must be for this
to happen by noting that if the battery is always fully
charged, theng(t) = d(t). Charge will never be released
if the price of servingd(t) is monotonic increasing. That
is, if

0 <
dC(d(t); t)

dt
=

(d(t))2γt/Ty

dt
= 2d(t)d′(t)γt + (d(t))2 log(γ)γt/Ty

or equivalently if

log(γ)

2Ty
≥ min

t

d′(t)

d(t)

For d(t) = 1 + sin(2πt/Td)/k,

min
t

d′(t)

d(t)
=

2π

Td
min
θ

− cos θ

k + sin θ

This occurs whenk sin θ = −1, and gives a sufficient
condition of

log(γ)

2Ty
≥ 1√

k2 − 1
. (21)

time full (b∗ = B) time empty (b∗ = 0)
k \ γ − 1 0% 20% 100% 0% 20% 100%

1 - 0.02 0.03 - 0 0
3 - 0.05 0.06 - 0 0
20 - 0.62 0.76 - 0 0

Table III
FRACTIONS OF TIMEb∗(t) = B AND b∗(t) = 0 FORB = 48 KWH.
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Figure 5. The charging schedule for a 6MWh battery with price
increasing by a factor of 5.76 per year

To understand the implications of this, note that when
the battery is always full, its only role is to hedge against
rising prices, and its role of peak shaving disappears.
This shows that, as demand fluctuations become small
(largek), the battery will cease peak shaving for moder-
ately small rates of price growth,γ. Conversely, as the
minimum demand tends to 0 (k tends to 1), peak shaving
will remain useful even for arbitrarily large rates of price
growth. This latter phenomenon is a consequence of the
fact that the incremental price is zero wheng(t) = 0; if
the incremental cost remains non-zero then even if the
demand drops to zero then extremely high price growth
will inhibit peak shaving.

The degree to which peak shaving is inhibited can
be measured in terms of the maximum generation rate.
With perfect peak shaving, the maximum generation
will equal the mean demand, which is is 1 kWh per 30
minute slot, whereas with no peak shaving the maximum
generation will equal the peak demand. This is shown
in Figure6. A price increase of10−5 per half hour
corresponds to a growth in price of 20% per year, which
is a plausible value as energy becomes scarcer. The
figure shows that the battery will remain effective at
peak shaving for such price rises. However, if the rate
of price increase is extreme, as at the right of the graph,
then infrastructure must be dimensioned to carry the peak
demand, regardless of the size of users’ batteries. These
prices rises, of many percentage points per month, are
not likely to be sustained, but may easily be induced
by market volatility. Even if such rises occur seldom,
the grid may need to be dimensioned to accommodate
them. This will have a substantial impact on the amount
to which user-controlled storage, such as vehicle-to-grid
systems, can be relied on for load smoothing.

These results suggest that, when demand fluctuation is
significant, a moderate rate of price increase has minimal
impact. Actually, there is one marked qualitative effect
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Figure 6. Peak generation during convergence vs Rate of increase for
a 0.5MWh,6MWh and 48 MWh battery and a 50 days time horizon

of the long-term trend in price in the current model.
The traditional approach to infinite horizon problems,
namely discounting future costs, assumes the long-term
trend is that prices decrease in real terms. In this case, it
is optimal for a large battery to maintain a low charge,
only sufficient to cover peak shaving. In contrast, when
prices are rising — however slowly — it is optimal
for the battery to maintain a high charge. However, this
conclusion depends on two important simplifications in
the model in SectionII , as follows.

The first is that batteries do not leak energy. In
practice, it may not be feasible to store energy for
prolonged periods, which reduces the incentive to use
small-scale storage to combat increasing prices. Partic-
ularly, flywheels are only able to store energy for times
on the order of a day. Chemical batteries leak energy
over periods of years, while dams leak energy through
evaporation. Although this leakage may be slow, it must
be compared against the slow rate of price increase.

The other simplification is that there is no intrinsic
cost associated with the battery’s state of charge. In
reality, wear-and-tear costs on batteries depend on their
state of charge; for example, lead-acid batteries wear
out rapidly if stored at low charge, while lithium-ion
batteries wear out faster if stored at high charge. Again,
these considerations may dominate a slow rate of price
increase, and should be incorporated into future models.

IV. CONCLUSION

When the price of fuel is set to rise, motorists often
“panic buy” and stockpile fuel. We have investigated the

question of whether such panic buying is likely to be use-
ful in electric vehicles, and the possible impact it would
have on vehicle-to-grid peak shaving systems. We show
that long-term price rises in the range expected to result
from the natural increase in scarcity of energy should not
be sufficient to cause small batteries to be used for long-
term storage. However, short term fluctuations in which
prices rise by several percentage points per month may
have such an impact. This limits the amount to which
user-controlled peak-shaving can be relied on by utility
companies.
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APPENDIX

Lemma 8. If x < y and there is not ∈ [τ, T ] such that
bTx (t) = bTy (t), thenbTx (t) < bTy (t) for all t ∈ [τ, T ].

Proof: Since there is not such thatbTx (t) = bTy (t),
then the only way for Lemma2 to be false is if there is
a t for which bTx (t) < bTy (t) andbTx (t− 1) > bTy (t− 1).
We will now show that this leads to a contradiction.

Let Bx(t− 1), andBy(t− 1) be the optimal cost for
bTx andbTy respectively from time[τ, t−1]. Note that the
costs from[t − 1, t] for bTx and bTy areC(gTx (t); t) and
C(gTy (t); t) respectively. Let

gTx (t) = Θ = bTx (t)− bTx (t− 1) + d(t) (22)

gTy (t) = Φ = bTy (t)− bTy (t− 1) + d(t) (23)

θ = bTy (t)− bTx (t− 1) + d(t) (24)

φ = bTx (t)− bTy (t− 1) + d(t). (25)

Note thatbTx (t−1) > bTy (t−1) andbTx (t) < bTy (t) would
imply Θ < min(θ, φ) and Φ > max(θ, φ). Moreover
Θ + Φ = θ + φ. Hence there is aδ ∈ (0, 1) such that

θ = (1−δ)Θ+δΦ andφ = δΘ+(1−δ)Φ. The convexity
of C then implies

C(θ; t) + C(φ; t) < C(Θ; t) + C(φ; t). (26)

Then by adding the costsBx(t − 1) + By(t − 1) to
equation (26) we get,

By(t− 1) + C(φ; t) + Bx(t− 1) + C(θ; t) <

Bx(t− 1) + C(Θ; t) + By(t− 1) + C(Φ; t) (27)

Equation (27) shows that, either

Bx(t− 1) + C(Θ; t) > Bx(t− 1) + C(θ; t) (28)

which means that it is strictly better forbTx to follow the
path of bTy after timet − 1 contradicting the optimality
of bTx , or

By(t− 1) + C(Φ; t) > By(t− 1) + C(φ; t) (29)

which means that it is strictly better forbTy to follow the
path of bTx after timet − 1 contradicting the optimality
of bTy .

Hence it is not possible for bothbTx (t) < bTy (t) and
bTx (t− 1) > bTy (t− 1), which establishes the result.
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