
Real Time Traffic Classification and Prioritisation
on a Home Router using DIFFUSE

Nigel Williams, Sebastian Zander
Centre for Advanced Internet Architectures, Technical Report 120412A

Swinburne University of Technology
Melbourne, Australia

njwilliams@swin.edu.au, szander@swin.edu.au

Abstract—Quality of Service (QoS) is important in
multi-user residential networks that share a common
bandwidth-constrained Internet connection. A limited up-
stream bandwidth can become a bottleneck and the per-
formance of delay-sensitive applications – such as VoIP
and online games – can degrade significantly when latency
is introduced by other traffic flows. Current residential
router QoS support must be manually configured and set
up is difficult for the average home user. The DIFFUSE
(DIstributed Firewall and Flow-shaper Using Statistical
Evidence) architecture has been developed to provide
automated IP traffic classification and treatment based on
statistical flow properties. This paper provides some pre-
liminary performance results of DIFFUSE on a TP-Link
TL-WR1043ND home Internet router running OpenWRT
Linux. We find that DIFFUSE can be successfully built-
for and run on the TL-WR1043ND. The router is able
to perform flow classification for at least 5,000 concurrent
flows. With prioritisation enabled an upstream throughput
of 24.5 Mbps is achieved. The router is able to identify and
prioritise flows in a realistic home-network scenario.

I. INTRODUCTION

Quality of Service (QoS) is important in multi-user
residential networks that contain mixed traffic types
and share a common bandwidth-constrained Internet
connection (e.g. ADSL1 or ADSL2+ services with up-
link speeds limited to 256 kbps–1.5 Mbps). A limited
upstream bandwidth can become a bottleneck when
multiple upstream flows are active, causing additional
latency. The performance of delay-sensitive applications
– such as VoIP and online games – can degrade signifi-
cantly as latency is introduced [1]. The identification and
separation of delay-sensitive and delay-tolerant traffic at
the upstream link is highly desirable in order to preserve
the performance of these delay-sensitive applications.

QoS support is available in current home routers, but
configuration must be performed manually. This requires
some networking knowledge, such as which TCP or

UDP ports represent application traffic that requires
prioritisation. Thus the average home-user may be unable
to configure QoS support.

The DIFFUSE (DIstributed Firewall and Flow-shaper
Using Statistical Evidence) architecture has been de-
veloped to provide automated IP traffic classification
and treatment based on statistical flow properties and
Machine Learning (ML). The use of statistical evidence
for classification distinguishes DIFFUSE from existing
classification schemes, which commonly employ packet-
payload inspection or port number matching. DIFFUSE
can provide transparent QoS for residential broadband
users without requiring the end-user to know specific
details such as application port numbers. Using a pre-
built classification model, the system is able to identify
priority flows and reconfigure Internet access hardware
without user intervention.

DIFFUSE features the de-coupling of classification
and flow prioritisation. For example a flow might be
classified within the network core on a high-performance
Classifier Node (CN) classifying tens of thousands of
concurrent flows, providing prioritisation updates to mul-
tiple low-performance Action Nodes (AN) at the network
edge. The ANs act on the updates provided by the CN.
The CN and AN could also be on the same device – a
bridge or router may classify forwarded traffic and re-
configure prioritisation rules (CN+AN). The architecture
is described in [2].

DIFFUSE has thus far been tested only on PC work-
stations running FreeBSD and Linux. This paper pro-
vides some preliminary performance results of DIFFUSE
on a TP-Link TL-WR1043ND home Internet router
running OpenWRT1 Linux. We examine the through-
put, CPU load and memory consumption of the TL-
WR1043ND under different network conditions with and

1A Linux distribution for embedded devices: www.openwrt.org

CAIA Technical Report 120412A March 2012 page 1 of 13

mailto:njwilliams@swin.edu.au
mailto:szander@swin.edu.au

without DIFFUSE. We aim to determine whether it is
practical to run DIFFUSE on the router.

We find that DIFFUSE can be successfully built-for
and run on the TL-WR1043ND router. With DIFFUSE
enabled the router is able to identify and prioritise flows
in a realistic scenario. When running as a CN+AN the
router is able to sustain in excess of 5,000 concur-
rent flows. Throughput measured when configured as a
CN+AN was 24.5 Mbps with 8̃0% CPU utilisation. As
an AN the router is able to sustain more than 16,000 con-
current flows. A throughput of 32.8 Mbps was achieved
when tracking 20 priority flows with a maximum of
80% CPU utilisation. We identify several optimisations
for improving the CPU and memory performance of
DIFFUSE.

The report is organised as follows. We first provide
background details on the DIFFUSE architecture, Open-
WRT and the TP-Link TL-WR1043ND in Section II. In
Section III we describe the equipment and experimental
method. The results are presented and discussed in Sec-
tion IV. Section V outlines future work and Section VI
concludes.

II. BACKGROUND

A. DIFFUSE

DIFFUSE makes IP flow classification decisions based
on statistical flow properties (features in ML terminol-
ogy) and a classification model that has been trained
on example traffic to recognise these features [2]. By
calculating features of an IP traffic flow (such as packet
length distributions or packet inter-arrival times) and
comparing these with a classification model, DIFFUSE is
able to provide a prediction as to the nature of the traffic
flow (such as whether it is delay-sensitive or delay-
tolerant2).

This approach is distinct from current popular forms
of IP flow classification, which include transport-layer
header inspection (e.g. TCP/UDP port numbers) and
packet payload inspection. Port number identification can
be ineffective in the presence of NATs or other mid-
dleboxes that can alter packet headers, while port-agile
applications may use different ports for different flows.
The use of packet payload inspection can be limited
by performance or legal issues. A shared difficulty with
both techniques is the requirement of application-specific
knowledge (such as port number, or payload signatures)
in order to identify traffic.

2Delay sensitive traffic includes Online Games and Telephony.
Delay-tolerant traffic includes Web Browsing, email, FTP.

A key feature of DIFFUSE is that it is able to produce
a generalised classification model for traffic types, rather
than for single applications only (though this is also pos-
sible). The process of training a classification model is
automated. As delay-sensitive applications often exhibit
similar traffic characteristics [1], a classification model
can be built that will identify multiple applications of the
same type (different online games of the same genre),
potentially including applications that were not known
at the time of model creation.

The classification model used in the experiments di-
vides traffic into two categories: First Person Shooter
(FPS) and Other. The FPS class was trained using data
representative of a number of FPS games, while the
Other class contains a mix of Web, file-sharing, email
and other delay-tolerant traffic. The model uses two
features to make decisions: packet length and packet
count.

Feature calculations are performed on windows of n
packets. There are two window configuration options
for this, sliding and jumping. A sliding window will
calculate features as each new packet arrives. A jumping
window will wait for an entire new window of n packets
to arrive before performing feature calculation (features
are calculated once for every n packets).

We use the DIFFUSE 0.4 distribution for Linux [3].
This version of DIFFUSE is integrated with IPFW and
uses Dummynet for prioritisation.3 It is planned that
future releases of DIFFUSE will allow the use of other
packet filters/firewalls for prioritisation.

B. OpenWRT

OpenWRT is a Linux distribution for embedded
devices. It is commonly used to replace the factory
firmware found on residential Internet routers. By re-
placing the factory firmware, users gain access to addi-
tional configuration options and are able to extend the
functionality of the router.

There are a variety of hardware configurations
amongst residential routers and a customised firmware
image must be created for specific devices. Pre-built
firmware images are available and there is currently
support for a wide range of hardware from a number
of manufacturers [5].

OpenWRT uses a package management system called
opkg to install binary packages [6]. OpenWRT Buildroot
[7] is also available to fetch and cross-compile software

3IPFW (ipfirewall) [4] is the FreeBSD IP packet filter, which
has been ported to Linux. Dummynet provides queuing, bandwidth
shaping to IPFW.

CAIA Technical Report 120412A March 2012 page 2 of 13

for different platforms. The SDK framework [8] allows
for the creation of new binary packages and firmware
images for different target devices. Packages can be pre-
compiled into the customised firmware images.

The OpenWRT SDK was used to build DIFFUSE
binary packages and the DIFFUSE-OpenWRT firmware.
The firmware image is based on the trunk (December
2011, ‘Attitude Adjustment’4) version of OpenWRT. We
also used the SDK to build profiling tools used in our
experiments. These files and instructions for building and
installing DIFFUSE packages and firmware can be found
on the DIFFUSE website [3].

C. TPLink TL-WR1043ND

The TL-WR1043ND (see Figure 1) is a Gigabit Eth-
ernet residential router with one WAN port, four LAN
ports and support for 802.11b/g/n wireless. It is based
on the Qualcomm Atheros AR9132 SoC running at
400Mhz. There is 8MB of flash storage for firmware
and 32MB of system RAM. The OpenWRT page for this
router can be found at [9]. The hardware specifications of
the TL-WR1043ND are typical of the mid-level routers
supported by OpenWRT.

A serial port header was added to the router in order
to gain access to the default firmware and as an alternate
method of installing new firmware. A serial port is not
required to install OpenWRT, as new firmware can be
loaded from the routers web interface. It can however
be useful for development or experimental work (for
instance router images can be loaded directly over serial
via tftp).

For information on how to add a serial port to the
router and gain root access to the default firmware, see
Section VIII-A.

III. EQUIPMENT AND TEST METHODOLOGY

Several test-bed configurations were used to test the
throughput, CPU and memory performance of the router.
A common set of hardware was used across these testing
scenarios, listed in Table I. The hosts used as traffic gen-
erators/sinks were both standard desktop workstations.
We use the Ninjabox 5005 for throughput testing and
generating traffic to place the router under load. It is
a commercial-grade high performance network capture
and playback device that is able to generate flows at
Gigabit speeds with precise inter-frame timing. The

4Attitude Adjustment OpenWRT 2.6.39.4 Dec 2011, bleeding edge
r29537

5Built by Endace Measurement Systems [10]

Fig. 1. TP-Link TL-WR1043ND

network topology was reconfigured for each of the tests,
as described in the following sections.

A. Real-time Classification on 1 Mbps and 15 Mbps
Links

To determine whether the router was able to run as a
CN+AN and perform traffic prioritisation, we devised
a test simulating a simple ‘home network’ scenario.
In this scenario one user is playing an online game
while another user is performing a bulk TCP upload (e.g
P2P file-sharing). The online game traffic represents a
real-time interactive application, while the TCP transfer
represents a non-interactive flow. TCP is commonly used
for delay-tolerant applications such as P2P file sharing
(e.g. BitTorrent [11]). We measured the one-way-delay
(OWD) and packet loss of the game traffic flow (client
to server) with and without DIFFUSE to determine the
effect of the upload. We also measured the overall packet
loss. The topology is shown in Figure 2.

To simulate an ADSL home broadband connection,
an upstream 1 Mbps bandwidth limit was placed on the
WAN interface using Dummynet. A two-class weighted
priority queuing system was configured in IPFW using
the commands in Appendix VIII-C. With this configura-
tion any packet labelled as ‘priority’ was placed in the
high priority queue, with all other packets being placed
in the low priority queue.

With the construction of the National Broadband
Network (NBN) in Australia, some Internet providers
are now able to offer asymmetric connections of up
to 100/40 Mbps [12]. Thus we repeated the test with a
15 Mbps upstream link, representing a mid-level NBN
access speed.

CAIA Technical Report 120412A March 2012 page 3 of 13

TABLE I
EQUIPMENT SPECIFICATION

Hardware Specification

Ninjabox 500: Traffic generator

2x Intel Xeon 5130 2.00 GHz
4GB RAM
Ninjabox Linux 2.6.x 64bit
2x DAG 4.5 G2 Cards

Host A: Traffic Generator/Sink

Intel Core i5 2.80 GHz
4GB RAM
FreeBSD 8.2-RELEASE
1x Intel Pro 1000 PCI NIC

Host B: Traffic Client/Server

Intel P4 2.66 GHz
2GB RAM
FreeBSD 8.2-RELEASE
2x Intel Pro 1000 PCI NIC
1x Intel Pro 100 PCI NIC

TP-Link Router

TL-WR1043ND
Atheros AR9132 400Mhz (MIPS)
TP-Link Linux 2.4 (v3.13.4)
OpenWRT 2.6.39.4 (Trunk) r29537
32MB RAM
8MB Flash
4x GigE LAN Ports
1x GigE WAN Port
1x GigE LAN/WiFi bridge

Host B

Host A Router

TCP UPLOADER:
192.168.1.25

Iperf
Client

Router GAME CLIENT:
192.168.1.15

SERVER (GAME AND UPLOAD):
192.168.2.20

Game
Client

Game Server
Iperf Server

WAN: Internet

LAN: Home Network

LAN

WAN

Fig. 2. Host A has two interfaces (one on the LAN subnet and one
on the WAN). The WAN interface sends game client server traffic
and acts as an Iperf server. Host B simulates a bulk TCP upload to
the Iperf server. The game server and game client are hosted on the
same workstation so that the OWD can be calculated without the
need for clock syncronisation.

The tool tcpreplay6 was used to replay traffic from
the online first person shooter game ‘Return to Castle
Wolfenstien: Enemy Territory’ (ET). TCP upload traffic

6Tcpreplay is a suite of tools that allows the replay of previously
captured traffic. Including (but not limited to) TCP and UDP flows.
http://tcpreplay.synfin.net

was generated at run-time using Iperf7.
The previously captured online game traffic was from

the SONG [13] database. It consisted of a single bi-
directional ET flow. Flows from online games such as
ET provide a good representation of the type of real-time
interactive traffic that can benefit from QoS schemes.
Although the bandwidth requirements are low (61 kbps),
it is highly sensitive to delay and the user experience
can degrade significantly as latency increases [14] [15].
This sensitivity to delay is common to other types of
real-time interactive traffic, such as VoIP [16].

To separate playback of the client and server game
traffic a tcpreplay cache file was created using tcpprep.
Tcprewrite was used to reformat the flow endpoints
to work within the testbed address space.8 We used
tcpdump to capture packets addressed to the game server
at the client and server interfaces, and calculated the
OWD of each packet.

The commands used to replay the interactive and non-
interactive traffic are in Appendix VIII-D and VIII-E.

B. Forwarding Throughput

We measured the maximum throughput of the router
when forwarding packets upstream (LAN to WAN) using

7Tool for measuring maximum TCP or UDP performance on a
link. http://sourceforge.net/projects/iperf

8Both tcpprep and tcprewrite are part of the tcpreplay suite.

CAIA Technical Report 120412A March 2012 page 4 of 13

Host A Ninjabox 500 Router

WAN:
192.168.2.0

LAN:
192.168.1.0

Unidirectional UDP Flow Traffic
Generator

Network
Sink

Fig. 3. Throughput testing: The Ninjabox generates a stream of
UDP packets of fixed size at different packet rates

both the factory firmware and OpenWRT. Other than
disabling DHCP and wireless, both firmware images are
in ‘out-of-the-box’ configurations. The testbed is shown
in Figure 3.

The Ninjabox replays a single uni-directional UDP
flow with a fixed inter-frame gap. This flow is forwarded
to the network sink on the WAN interface, where it
is null routed. To determine the maximum throughput,
we alter the frames-per-second sending rate to find the
highest rate for a given frame size for which no frames
are dropped.

Each frame rate is sustained for 30 seconds, with a
30 second wait time between trials. The Ethernet frame
sizes used in the tests were (in bytes): 128, 256, 512,
768, 1024, 1280, 1344, 1500.

This methodology is based on sections 5, 9.1 and 26.1
of [17]. Our approach differs from [17] in a number of
ways: we use a trial period of 30 seconds rather than 60
seconds, a minimum Ethernet frame size of 128 bytes
rather than 64, and a uni-directional flow rather than a
bi-directional flow (from LAN to WAN).

C. Concurrent Connections

We tested the number of concurrent connections the
router can handle when running the factory firmware
and OpenWRT firmware, and when running OpenWRT
with DIFFUSE. As the router maintains a table of all
current flows in memory, the maximum number of flows
is physically limited by the available RAM (commonly
software limited in Linux systems by the Netfilter9

option ‘nf maxconntrack’). Table II shows the default
configured nf maxconntrack for the two firmwares.

To test the maximum number of connections we used
a tool that initiates TCP flows across the router between
a client and server host. The setup is shown in Figure 4.

The client first establishes a connection and then
transmits a single packet, which the server echoes. If

9Netfilter is the Linux packet filtering framework for firewalls and
connection tracking.

Host B Host A Router

WAN:
192.168.2.0

LAN:
192.168.1.0

TCP Connections Client Server

Fig. 4. Measuring maximum concurrent connections: Host A
initiates TCP connections to Host B and detects when the router
has reached the maximum number of connections

TABLE II
DEFAULT MAXIMUM CONCURRENT CONNECTIONS

Firmware Default connections
TPLink 2.13.4 5,120

OpenWRT 2.6.39.4 #5 r29537 16,384

the client receives the echo, it creates a new connection
to the server with a new source port. This process is
repeated until the client is not able to receive the echo,
which indicates that the router has reached the maximum
configured connections, or has run out of memory. A 60-
second flow timeout was configured for both Netfilter
and IPFW to ensure that flows did not time out while
establishing the connections.

We use Slab memory statistics from /proc/meminfo
to record the memory use before and immediately after
running the tool. As both Netfilter and IPFW operate in
kernel space, the flow tables are stored in the kernel Slab
memory cache, and thus by measuring the Slab size we
are able to estimate the memory allocated per flow. More
common methods of determining kernel module memory
(/proc/slabinfo or the tool slabinfo) were not available for
the version of OpenWRT used. However, using the Slab
size to estimate per-flow memory allocation provided an
acceptable approximation as there were no additional
processes running on the router and the Slab size was
constant when the router was idle. The Slab size was
sampled multiple times during testing to ensure that it
had stabilized before a value was recorded.

D. CPU Load Measurement

We measured the CPU load under different router con-
figurations and packet rates to determine the processing
overhead of running DIFFUSE. The topology is shown
in Figure 3. We tested the router configured as a CN+AN
and as an AN.

We measured the CPU load with the following router
configurations:

• Baseline performance

CAIA Technical Report 120412A March 2012 page 5 of 13

– Netfilter only
– Netfilter with IPFW

• Performance as a CN+AN
– Netfilter with IPFW, DIFFUSE
– Netfilter with IPFW, DIFFUSE and Dummynet

• Performance as an AN
– Netfilter, IPFW and Dummynet with a varying

number of unique rule entries for priority flows
The commands used to configure DIFFUSE are de-

tailed in Appendix VIII-B.
To create CPU load, we used the Ninjabox to send a

single uni-directional UDP stream to the network sink.
The frame size remained fixed while the frame per
second rate was varied from 2,000 to 8,000 in increments
of 1,000. The duration of each trial was 120 seconds,
with a 30 second waiting period between trials. No
bandwidth limiting was applied to the WAN port.

We used vmstat10 to measure the CPU load during
the test. Although the results provided in this paper
are taken from these vmstat measurements, we also
used mpstat11 and statistics from /proc/stat12 for cross-
checking. We found the CPU load measurements to be
consistent across the three techniques.

E. Memory Use

We measured memory use with DIFFUSE enabled,
and compared this with the memory use of Netfilter
only. Using the connection-creation tool described in
Section III-C, we measured the memory use between
1,000 and 10,000 flows, at intervals of 1,000. After the
connections were set up, the flows were idle (did not
actively send packets). We also measure memory with
an increasing number of active flows (at least one packet
per second per flow) at a fixed aggregate packet rate.

Tcpreplay was used to send uni-directional UDP flows
in the upstream direction to the network sink. All flows
originated from a single IP+port pair and were differ-
entiated by the destination IP+port pair. To create the
tracefiles a single UDP flow was generated using Iperf,
and tcpmerge and tcprewrite were used to duplicate the
flow and change the destination IP+port pair to create
different flows. The setup is shown in Figure 5.

The total packet rate for each of the tracefiles was
5,000 packets per second13. The tracefile details are

10A tool that provides process, memory and I/O statistics.
11Another process and memory measurement tool.
12The /proc/stat file tracks kernel activity, including CPU time,

from which CPU load can be calculated.
13We also used the tcpreplay option “–pps 5000” to ensure that the

packet rate was consistent

Host B Host A Router

WAN:
192.168.2.0

LAN:
192.168.1.0

Unidirectional UDP Flows
Traffic

Generator
Network

Sink

Fig. 5. Per-flow memory use with active flows. Host A generates
multiple UDP flows that are null routed at Host B. The number of
flows is changed but the aggregate packet rate is always 5,000 pps.

TABLE III
TRACES USED TO MEASURE MEMORY CONSUMPTION

Number of flows Packets per second per flow
1000 5
1250 4
2500 2
5000 1

shown in Table III.
We again used Slab statistics to provide an estimate

of the amount of memory being consumed by Netfilter
and IPFW/DIFFUSE while tracking the flows.

IV. RESULTS

A. Real-time Classification on 1 Mbit and 15 Mbit links

Figure 6 plots the CDF of client to server OWD mea-
sured for a single game traffic flow without additional
traffic and with additional client to server TCP cross
traffic (with and without DIFFUSE traffic prioritisation).

Without additional traffic the game flow has a mean
OWD of 3 ms (median 1.5 ms) and there is no packet
loss. Adding a single upstream TCP flow causes the
mean OWD of the game traffic to increase to 344 ms
(median OWD 351 ms), with 7% packet loss. Such a high
OWD would negatively impact the game experience of
the user [18].

With DIFFUSE enabled the mean OWD is reduced
to 32 ms (median 31 ms) without packet loss. This is
a significant improvement and would allow a user to
play an online game while a file upload is in progress.
Figure 7 plots the OWD of the game flow over time, with
DIFFUSE and without. We can see that with DIFFUSE
at the very beginning of the flow OWD values approach
200 ms – this is due to the flow not being classified as
‘priority’ at this point. The classification packet window
(see Section II) must be filled before a classification can
be made and the flow prioritised. However once the game
flow has been identified and prioritised (a process that
takes less than two seconds) the OWD is more consistent.

CAIA Technical Report 120412A March 2012 page 6 of 13

0 100 200 300 400 500 600

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Ecdf of OWD, Game traffic on 1Mbit Symmetric Link

One Way Delay (ms)

c
d
f

●

●

Without TCP Traffic
With TCP Traffic
With TCP Traffic + DIFFUSE

Fig. 6. CDF of one way delay for game flow on a 1 Mbps link.
Measured in the client-to-server direction.

0 10 20 30 40 50

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

Per packet OWD of game flow, client to server

Time (s)

O
n
e
 W

a
y
 D

e
la

y
 (

m
s
)

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●●

●

●●●

●

●

●●

●

●●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●●
●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●
●

●

●

●
●

●●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●●

●●●

●

●
●

●●

●

●
●
●

●

●

●
●

●●

●●

●

●

●

●●

●
●●

●
●

●
●

●
●
●

●●
●

●

●

●
●●●

●

●●●

●

●

●

●

●●

●
●

●

●

●
●

●●

●
●

●
●●

●

●●

●
●

●
●
●
●

●

●
●●
●

●●

●

●

●

●
●●●

●

●●●

●

●

●●

●
●

●●
●

●

●

●
●

●●

●●

●●

●●

●●
●●

●
●
●

●

●●

●●

●
●●

●

●
●●

●

●
●

●●

●

●

●●
●

●

●●

●

●

●

●
●

●
●●

●●●

●●

●
●
●

●

●●

●●

●●
●

●

●●
●●

●
●●

●

●

●

●●

●
●

●●●

●

●

●
●

●

●

●
●

●

●

●

●

●●●
●

●
●●

●●

●
●

●●

●
●

●●

●
●

●

●

●

●
●●

●

●●●

●

●

●●

●
●

●●

●

●

●

●
●

●●
●

●●●

●●

●●
●

●
●●

●●

●●

●

●

●
●●●

●
●●

●

●

●●●

●

●●

●

●

●

●

●

●●●

●
●

●
●

●
●

●●
●
●

●●

●
●

●
●
●●

●●

●

●

●●

●●

●

●
●●●

●

●●●

●

●●●

●●

●●

●

●

●

●

●●●

●

●●●

●●

●●
●

●

●●

●

●

●●
●●

●
●

●

●

●
●●

●

●

●●●●

●

●●

●

●

●●

●●
●

●
●

●

●

●
●
●●
●
●●

●
●

●●

●
●●●

●
●●

●
●

●●●●

●●●

●

●
●●
●

●●●

●●

●●
●

●

●
●
●●

●
●●

●

●

●
●●●

●
●●

●

●

●

●

●●

●

●
●
●

●

●

●●●

●
●

●●

●
●

●

●
●●
●●

●

●

●

●
●

●●

●

●●●

●
●

●●
●

●

●●

●●

●●
●

●
●

●
●●●

●●●

●

●●

●

●
●●●

●

●

●

●●
●

●●

●●

●●

●●●

●

●●●

●
●

●
●●

●

●
●
●

●●

●
●

●
●

●

●●
●●
●●

●●

●
●

●
●●●

●
●●

●●

●●●●

●●

●
●

●●●
●

●●●

●●

●●
●

●
●

●
●

●●

●●●

●

●●●●

●

●
●●

●

●

●●

●●

●
●●

●

●

●●●

●

●●●

●

●

●●

●
●

●
●

●

●

●

●
●
●●●

●●●

●●

●●
●

●●●

●
●

●
●
●●

●●
●

●

●
●●

●●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Without DIFFUSE
With DIFFUSE

Fig. 7. With and without DIFFUSE: per-packet one way delay for
game flow with TCP cross traffic on a 1 Mbps link. Measured in the
client-to-server direction

Without DIFFUSE the game flow packets are queued
and delayed behind the TCP packets as they exit the
router, seen here in the cyclic pattern of measured OWD
values (ranging from 200 ms to 500 ms) as the upstream
queue fills and empties. TCP will increase its throughput
(congestion window size) until the queue is filled and
packets are dropped. Once packets are dropped TCP will
back-off, reducing the congestion window.

We also measured the CPU load and memory use
during the test. CPU load was found to be less that 1%,
while memory usage was 16–20 kB.

Figures 8 and 9 plot the cumulative OWD and OWD
over time with a 15 Mbps connection. The single TCP
upload increases the OWD of the game traffic flow to
a mean of 55 ms (median 57 ms) with 5% packet loss
from the game client to server. With DIFFUSE enabled
the mean and median OWD was 15 ms, without packet
loss.

The TCP cross traffic again induces a cyclic OWD
pattern on the game flow, though the period between the
queue filling and emptying is shorter. This speeding up

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ecdf(no_traf_15mbit[, 2]/1000)

One Way Delay (ms)

c
d
f

●

●

Without TCP Traffic
With TCP Traffic
With TCP Traffic + DIFFUSE

Fig. 8. CDF of one way delay for game flow on a 15Mbit link.
Measured in the client to server direction.

0 10 20 30 40 50

0
2
0

4
0

6
0

8
0

1
0
0

Time (s)

O
n
e
 W

a
y
 D

e
la

y
 (

m
s
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●
●●

●

●

●

●
●

●

●●

●●

●●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●●

●
●

●
●

●

●

●
●●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●●

●

●

●●●

●
●

●

●

●

●●

●

●●

●

●

●
●●

●

●●

●

●

●
●

●

●●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●●

●
●

●

●

●●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●●

●
●

●

●●

●

●●

●●

●●

●

●

●

●

●

●

●●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●●

●●

●
●

●

●●

●

●

●●

●

●

●

●●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●●

●●

●●

●●

●

●
●

●

●

●●

●

●

●

●

●●

●
●

●

●●

●

●

●

●●

●

●●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●●

●

●

●
●

●●

●

●

●

●●

●

●

●●

●

●

●●

●
●

●●

●●

●

●

●

●●

●

●

●●

●

●
●

●

●●

●●

●●

●●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●●

●

●
●●

●

●
●

●●

●●

●

●

●

●

●
●

●●

●

●

●●

●

●
●

●
●

●●

●
●

●●

●

●

●

●●

●●

●●

●

●
●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●●

●●

●

●

●●

●●

●●

●
●

●

●
●

●
●

●●

●●

●●

●

●●

●

●

●●

●

●

●

●

●●

●●

●●

●●

●

●

●●

●●

●●

●
●

●

●
●

●●

●●

●
●

●

●●

●

●
●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●●

●●

●

●

●●

●

●
●

●●

●●

●●

●●

●

●

●

●
●

●●

●●

●

●●

●

●

●
●

●

●

●●

●

●

●●

●●

●●

●
●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●●

●●

●

●●

●

●

●●

●

●

●

●●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Without DIFFUSE
With DIFFUSE

Fig. 9. With and without DIFFUSE: per-packet one way delay for
game flow with TCP traffic on a 15Mbit link. Measured in the client
to server direction

is due to the lower overall OWD (the serialisation time
for a 15 Mbps link is shorter than that of a 1 Mbps link).
Lower OWD allows the TCP congestion window to grow
more quickly before packet loss occurs and the window
collapses (allowing the queues to empty).

Although the overall latency of the game flow is
not high without prioritisation (a maximum OWD of
80 ms), packet loss did occur and the cyclic pattern of the
measured OWD indicates that a large amount of jitter14

was introduced. Jitter can have a negative impact on
delay-sensitive applications [16].

Multiple TCP flows (as might be expected on a high
speed link) would further impact the real-time flow.
Enabling DIFFUSE can prevent the packet loss and
reduce the delay caused by TCP flows filling a shared
upstream buffer.

CAIA Technical Report 120412A March 2012 page 7 of 13

200 400 600 800 1000 1200 1400

10
15

20
25

30
35

Router Thrpt

Frame Size (Bytes)

F
ra

m
es

 P
er

 S
ec

on
d

(T
ho

us
an

ds
)

●

●

● ●

●

●
●

●
●

●

OpenWRT
TPLink

Fig. 10. Frame forwarding rates at different frame sizes

200 400 600 800 1000 1200 1400

20
40

60
80

10
0

12
0

Router Thrpt

Frame Size (Bytes)

T
hr

ou
gh

pu
t (

M
B

it/
s)

●

●

●

●

●

●

●
● ●

●

OpenWRT
TPLink

Fig. 11. Throughput at different frame sizes

B. Throughput

Figure 10 compares the frames per second perfor-
mance against frame size when running default configu-
rations of the factory firmware and OpenWRT firmware.
The throughput in Mbps is shown against frame size in
Figure 11.

At frame sizes larger than 800 bytes, there is not a
significant difference in throughput between the firmware
images, and both were able to sustain throughput above
100 Mbps for the test duration. However throughput
decreases significantly as frame size decreases and with
128 byte frames approaches 30 Mbps.

In the range of 256–512 bytes the OpenWRT firmware
outperforms the TP-Link firmware by approximately
20 Mbps as it is able to sustain a higher frame per second
rate. An interesting observation is the peak in perfor-
mance with 256 byte packets. There is no immediate
indicator as to the cause of this behaviour, though it was
common to both firmware images.

Although the forwarding throughput did not approach
the gigabit speed of the underlying switching hardware, it

14Or packet delay variation, the difference in delay between suc-
cessive packets in a flow.

0 2000 4000 6000 8000

0
5

1
0

1
5

Memory use per flow

Number of Flows

S
la

b
 S

iz
e
 (

M
B

)

●

●

●

●

●

●

●

●

●

●

Netfilter 340B/flow estimate
Netfilter measured
Netfilter + Diffuse 1950B/flow estimate
Netfilter + Diffuse measured

Fig. 12. Projected and measured memory use with multiple
concurrent flows. The red line indicates the available memory once
DIFFUSE has been loaded.

is adequate for ADSL-like speeds of 1–24 Mbps. Overall
the performance of the router does not appear to be
substantially different when running OpenWRT firmware
in place of the original firmware.

C. Concurrent Connections

We compared the measured maximum number
of concurrent connections against the default
‘nf maxconntrack’ values of Netfilter for the TP-
Link firmware and OpenWRT firmware.

In both instances we were able to open the maximum
number of connections as defined in nf maxconntrack.
By measuring the change in Slab size before and after
opening the connections, the memory use per flow table
entry for Netfilter was estimated to be approximately 340
bytes.

OpenWRT leaves approximately 15 MB of memory
free once it has loaded. Given this we were able to
change nf conntrackmax and open 32,000 concurrent
connections. It would appear that the factory firmware
limit of 5,120 connections reflects the target market of
the device rather then any hardware/memory limitations.

D. Memory Use

Figure 12 shows memory use against the number of
current flows, as measured with the connection creation
tool. We also extrapolate the memory use based on
an estimate of 340 bytes/flow for Netfilter, and 1950
bytes/flow when running DIFFUSE as a CN+AN. The
memory use per flow when configured as an AN is not
significantly larger than that of Netfilter alone (as the
AN only keeps flow state for priority flows, not every
flow).

The size of the DIFFUSE kernel module is 131 kB.
However after loading the module total memory avail-
able is approximately 14.5 MB. We thus use 14.5MB

CAIA Technical Report 120412A March 2012 page 8 of 13

1000 2000 3000 4000 5000

0
2

4
6

8
10

Memory use per flow, 5000pps 512B packet

Number of Flows

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

● ●
●

●

●

Netfilter + DIFFUSE (Connection)
Netfilter + DIFFUSE (5000pps)
Netfilter (Connection)
Netfilter (5000pps)

Fig. 13. Comparing concurrent flow memory use of flows with
5,000 packets per second against flows that are established but idle
(no packets being transmitted).

as a ‘ceiling’, as indicated by the horizontal red line in
Figure 12.

The estimated values for per-flow memory use appear
to be accurate, and match closely with the actual mea-
sured memory use. DIFFUSE in CN+AN mode uses
considerably more memory than Netfilter alone. The
increase in per-flow memory use and the reduction in the
amount of memory available once the DIFFUSE kernel
module is loaded means that the router is limited to
6,000 concurrent flows with DIFFUSE enabled. This still
exceeds the factory default setting of the router and is
on par with a number of residential router devices [19].

We also measured memory use with multiple flows
that have an aggregate packet rate of 5,000 pps and at
least one packet per second for each flow (see Table III).
The results are shown against those measured using the
connection utility in Figure 13.

Per-flow memory use is higher with continuously ac-
tive flows. This can be expected as the kernel must in this
case process 5,000 packets each second in addition to
keeping flow state in the flow tables. Given the memory
increase measured when flows are active, an appropriate
nf maxconnection value when using DIFFUSE might
also be 5,120 (TP-Link default). With the 12.5 MB avail-
able, this would provide enough concurrent connections
to be established while leaving some memory overhead
for packet processing.

E. CPU Load

Figure 14 plots the CPU utilisation for a range of
packet rates when running Netfilter only and Netfilter
with IPFW. DIFFUSE is not enabled. We used a single
uni-directional UDP flow with a fixed Ethernet frame
size of 512 bytes.

2000 3000 4000 5000 6000 7000 8000

0
2
0

4
0

6
0

8
0

1
0
0

CPU Load vs Frame rate

Frames per Second

C
P

U
 L

o
a
d
 (

%
)

Netfilter

Netfilter + IPFW

Fig. 14. CPU load depending on the frame forwarding rate for
Netfilter and Netfilter with IPFW.

2000 3000 4000 5000 6000 7000 8000

0
2
0

4
0

6
0

8
0

1
0
0

CPU Load vs Packet rate

Frames per Second

C
P

U
 L

o
a
d
 (

%
)

●

DIFFUSE (sliding) + Dummynet

DIFFUSE (jumping) + Dummynet

DIFFUSE (sliding)

DIFFUSE (jumping)

Netfilter + IPFW

●

●

●

●

●

●

Fig. 15. CPU load against frame rate for DIFFUSE (sliding and
jumping window feature calculations), with and without Dummynet
priority queuing

By enabling IPFW the router is essentially running
two packet filters – Netfilter and IPFW. This results in a
significant increase in CPU usage, with utilisation over
50% at 8,000 pps with IPFW enabled, against 30% with
Netfilter alone.

Figure 15 plots the CPU load when running DIFFUSE
with a classification model loaded and also with Dum-
mynet enabled for prioritisation. We see a higher CPU
utilisation when classification is enabled. Using sliding
windows results in a 5% increase in CPU load over using
jumping windows (see Section II for an explanation of
windows). Using the features available in DIFFUSE 0.4,
a jumping window does not perform feature calculation
as often as a sliding window and thus will generally
result in a lower load. Enabling prioritisation using
Dummynet results in a 20% increase in CPU load for
jumping and sliding window classifiers.

Figure 16 shows the CPU Load against the number
of concurrent flows with a different number of buckets
configured for the DIFFUSE flow table (flow state is
kept in a hash table). The aggregate packet rate is always

CAIA Technical Report 120412A March 2012 page 9 of 13

1000 2000 3000 4000 5000

0
2
0

4
0

6
0

8
0

1
0
0

CPU Load vs Bucket Size

Concurrent Flows

C
P

U
 L

o
a
d
 (

%
)

●

●
●

●

●

64 Buckets

128 Buckets

256 Buckets

512 Buckets

1024 Buckets

Fig. 16. CPU Load against the number of flows with different bucket
sizes for the DIFFUSE flow table. The packet rate is 5,000 pps.

2000 3000 4000 5000 6000 7000 8000

0
2
0

4
0

6
0

8
0

1
0
0

CPU Load vs Packet rate

Frames per second

C
P

U
 L

o
a
d
 (

%
)

●

●

●

●

●

●

●

●

0 Priority Rules (Netfilter + IPFW)

5 Priority Rules

10 Priority Rules

15 Priority Rules

20 Priority Rules

Fig. 17. Router as an Action Node. CPU Load against frame rate
with increasing numbers of priority flow rules. IPFW and Dummynet
provide prioritisation

5,000 pps. We see that the CPU performance scales well
and is not dependant on the number of flows, provided
an appropriate bucket size is specified for the flow
table. With 512 buckets configured, CPU load does not
alter significantly when the number of concurrent flows
increases from 250 to 5,000 flows. For a CN+AN the
number of concurrent flows is limited to approximately
5,000 (see Section IV-D), hence 512 would be a suitable
bucket size that balances flow table memory usage and
CPU performance.

Enabling DIFFUSE CN+AN and prioritisation sig-
nificantly increases CPU load. The increased CPU
utilisation results in a reduced maximum throughput
when compared with the factory firmware and the de-
fault OpenWRT configuration. With a 512 byte frame
and nearing 100% CPU load, the DIFFUSE enabled
router has a throughput of 28.6 Mbps, while the factory
firmware and default OpenWRT measured 90 Mbps and
120 Mbps respectively.

Figure 17 shows the CPU load when running the
router as an AN. To simulate an AN we enable IPFW

and Dummynet and add a number of static rules that
represent active priority flows. As with previous tests
Netfilter was also active.

Our measurements represent the worst case scenario –
the time taken for a packet to check against all priority
rules before matching a default ‘non-priority’ rule. With
a frame size of 512 bytes, for a throughput of 32.8 Mbps
we can expect less than 80% CPU load with 20 priority
flow rules.

A higher maximum throughput can be obtained when
running as an AN only, as the router does not need
to calculate features and classify flows. It is also not
expected that users would frequently have 20 concurrent
priority flows, thus in most cases the CPU load would
be lower. Using the router as an AN results in a saving
of 20–30% in CPU load against using the router as a
CN+AN. A significant proportion of CPU load (up to
20%) can be attributed to enabling prioritisation through
Dummynet.

Although enabling DIFFUSE does increase CPU load,
the router is able to sustain ADSL-like speeds when
configured as an AN or as a CN+AN. The ability of DIF-
FUSE to decouple AN and CN functionality is clearly
beneficial where devices with limited CPU performance
must be used as ANs. With further optimisations DIF-
FUSE may be able to support higher throughput.

V. DIFFUSE OPTIMISATIONS AND FUTURE WORK

There are a number of areas for optimisation that may
lead to increased performance in the future.

Currently DIFFUSE is integrated with IPFW. When
ported to OpenWRT this results in two packet filters –
IPFW and Netfilter – running concurrently, adding CPU
load. In the future DIFFUSE could be integrated with
Netfilter. As shown in Figure 17, using Dummynet for
prioritisation increases CPU load by up to 20%. CPU
Load could be reduced in the future by having DIFFUSE
communicate directly with Linux Traffic Control (TC)
for prioritisation.

Code changes may also allow future versions of DIF-
FUSE to be more memory efficient. Currently DIFFUSE
allocates memory in the kernel cache using kmalloc.
Kmalloc allocation occurs with fixed blocks ranging
in size from 8 bytes to 8192 bytes. This can result
in inefficiency when the amount of memory required
does not fill an entire kmalloc block (more memory is
allocated then actually needed).

For example when using kmalloc to allocate 800 bytes
of memory, a 1024 byte object is created, resulting in a
“loss” of 224 bytes. Allocating 600 bytes would also

CAIA Technical Report 120412A March 2012 page 10 of 13

create a 1024 byte object – 424 bytes are allocated
that are not needed. DIFFUSE could be modified to use
custom-sized kernel cache memory blocks rather than the
default allocators, which may lead to increased memory
efficiency.

Memory use and CPU performance depends on the
classification model and the features used. In this paper
we used a single model (with packet length and packet
count features) and tested sliding and jumping windows
with the same window size. Further tests of different
classifiers with parameter tuning (e.g. different window
sizes, additional features) could provide more insight as
to the processing cost of DIFUFSE.

VI. CONCLUSIONS

We evaluated the impact of using DIFFUSE on
the TP-Link TL-WR1043ND residential router running
the OpenWRT operating system. We tested the router
in Action Node (AN) and Classifier Node (CN+AN)
configurations, and compared forwarding performance
against the baseline router performance under several
scenarios. The router is able to run DIFFUSE, perform
automated classification and prioritise flows without pre-
configuration of static QoS rules. Enabling DIFFUSE
provides a substantial reduction in latency and jitter
experienced by online game traffic flows when exposed
to TCP cross traffic. Although there is a decrease in the
forwarding throughput and an increase in memory use,
performance is suitable for typical ADSL or ADSL2+
connections.

In testing under a realistic use-case scenario on a
1 Mbps link, the mean OWD of an online game flow
was reduced from 344 ms to 32 ms after DIFFUSE was
enabled. Packet loss from the game client to server was
eliminated (originally 7%). Enabling DIFFUSE on a
15 Mbps link reduced the mean OWD from 55 ms to
15 ms. Game flow packet loss was also eliminated on
this link (from 5%).

Enabling DIFFUSE classification and prioritisation
(CN+AN) results in up to a 40% increase in CPU load
over the baseline router performance for a given packet
rate. At near 100% CPU utilisation with a constant flow
of 512 byte Ethernet frames, the forwarding through-
put when running DIFFUSE was 28.6 Mbps, around
90 Mbps less than OpenWRT in default configuration
(24.5 Mbps for the CN+AN at 80% load). Configuring
the router as an AN provided higher throughput of
32.8 Mbps at 80% CPU load.

Per-flow memory use was found to be approximately
six times higher with DIFFUSE enabled (1950 bytes per

flow compared to 340 bytes per flow). As a CN+AN,
the router was able to handle 5,000 concurrent flows
at approximately 60% CPU load. This is comparable to
the 5,120 maximum concurrent flows configured for the
router ‘out-of-the-box’.

Despite the additional CPU load and memory usage,
we find that running DIFFUSE on a residential router
would be practical. With increased CPU clock speeds
and RAM (TP-Link’s more recent TL-WR2043ND has
64MB), and with some code optimisations, DIFFUSE
could be run as both a CN+AN or AN with an even
greater number of concurrent connections and higher
throughput.

Fig. 18. A modified WR-1043ND. Header pins are soldered to the
serial connectors on the motherboard. The transmit, receive, ground
and Vcc are indicated. Photo courtesy of Warren Harrop.

VII. ACKNOWLEDGEMENTS

The authors would like to acknowledge the assistance
of Grenville Armitage who provided valuable feedback
and advice over the course of the experiment.

VIII. APPENDIX

A. Adding a serial port to gain access to factory
firmware

Adding a serial port to the TL-WR1043ND is not
difficult, but does require soldering directly onto the
router motherboard. Specific details on the process can
be found at the OpenWRT TL-WR1043ND page [9].

CAIA Technical Report 120412A March 2012 page 11 of 13

Figure 18 shows the WR-1034ND motherboard with
serial header pins added.

In addition to adding a serial port, a serial cable must
be purchased (or made) that can connect from a PC to
the router. We use a USB to 3.3V TTL-serial15 that has
been modified from a Nokia USB phone cable16.

To gain root access to the stock firmware, power on the
router with the serial cable connected. Use cu (available
on BSD/Linux) to connect to the router. The commands
are shown in Table IV. To log in, use the username root
with password 5up.17

B. Loading the DIFFUSE classifier

When logged into the router (and after loading the
IPFW kernel module if necessary), we used the com-
mands in Table V to load DIFFUSE and a classifica-
tion model. By default DIFFUSE will perform sliding
window calculations. To enable jumping windows, the
“jump-windows” parameter is used.

C. Setting up priority queuing

Table VI lists the commands used to match DIFFUSE
classifications and prioritise packets. In the example the
bandwidth is limited to 1 Mbps. The parameter match-if-
class myclass:rt means that the rule will evaluate true for
packets tagged as ‘rt’, (i.e. real-time). The label ‘other’
refers to all other traffic types. We include a default rule
sending any traffic that has not been classified to the
low-priority queue. See the IPFW/Dummynet homepage
for a guide to IPFW syntax.

D. Sending traffic with tcpreplay

Tcpreplay was run with the “–cachefile” option to
replay the server and client packets out of the appropriate
“client” and “server” interfaces and across the router. A
cachefile is required when replaying bi-directional traces
out of multiple interfaces. Table VII shows the command
used to replay the game traffic.

E. Generating TCP Cross Traffic with Iperf

The Iperf commands used are shown in Table VIII.
These commands generate a TCP upload from the client
host to the server for a duration of 60 seconds. Given the
same congestion control mechanism, TCP will behave
similarly across different applications, so Iperf provides

15TTL Serial operates between 0V and 3.3–5V. The TL-
WR1043ND uses 3.3V (a TTL-5V cable may damage the router.
A 15V RS-232 cable is likely to cause damage)

16http://www.dealextreme.com/p/usb-cable-for-nokia-n1200-1208-
1650-2630-2670-13638

17This password has been tested for factory firmware 3.13.4.

TABLE VIII
IPERF COMMAND

LAN Client: iperf -c 192.168.2.20 -t 60
WAN Server: iperf -s
-c : Act in client mode, connect to 192.168.2.20
-t : Send data for 20 seconds
-s : Act as server and wait for connections

a convenient emulation of activities such as uploading a
video or transferring files to a cloud services.

REFERENCES

[1] L. Stewart, G. Armitage, and A. Huebner, “Collateral Damage:
The Impact of Optimised TCP Variants On Real-time Traffic
Latency in Consumer Broadband Environments,” in IFIP/TC6
NETWORKING 2009, Aachen, Germany, 11-15 May 2009. [On-
line]. Available: http://dx.doi.org/10.1007/978-3-642-01399-7
31

[2] S. Zander and G. Armitage, “Practical Machine Learning Based
Multimedia Traffic Classification for Distributed QoS Manage-
ment,,” in 36th Annual IEEE Conference on Local Computer
Networks (LCN 2011), Bonn, Germany, 4-7 October 2011.

[3] S. Zander. (2012, March) Distributed firewall and flow-shaper
using statistical evidence (diffuse). [Online]. Available: http://
caia.swin.edu.au/urp/diffuse/

[4] L. Rizzo, “Porting ipfw to linux and windows.” Presented at
BSDCan Conference 2010, 2010.

[5] OpenWRT.org. (2012, March) Table of hardware. [Online].
Available: http://wiki.openwrt.org/toh/start

[6] OpenWRT.org. (2012, March) Opkg package manager. [On-
line]. Available: http://wiki.openwrt.org/doc/techref/opkg

[7] OpenWRT.org. (2012, March) Openwrt buildroot. [Online].
Available: http://wiki.openwrt.org/doc/howto/build

[8] OpenWRT.org. (2012, March) Openwrt buildroot. [Online].
Available: http://wiki.openwrt.org/doc/howto/obtain.firmware.
sdk

[9] E. M. S. Ltd. (2012, March) Tp-link tl-wr1043nd. [Online].
Available: http://wiki.openwrt.org/toh/tp-link/tl-wr1043nd

[10] Endace. (2012, March) Endace measurement systems ltd. [On-
line]. Available: http://www.endace.com/

[11] B. Cohen. (2009, June) The bittorrent protocol specification.
[Online]. Available: http://bittorrent.org/beps/bep 0003.html

[12] iiNet. (2012, March) iinet nbn plans. [Online]. Available: http:
//www.iinet.net.au/nbn/nbn-plan-residential.html

[13] G. Armitage. (2012, March) Song - simulating online networked
games database. [Online]. Available: http://caia.swin.edu.au/
sitcrc/song/

[14] G. Armitage, “An Experimental Estimation of Latency Sen-
sitivity in Multiplayer Quake 3,” in 11th IEEE International
Conference on Networks (ICON 2003), Sydney, Australia, 28-
1 September 2003, pp. 137–141. [Online]. Available: http:
//dx.doi.org/10.1109/ICON.2003.1266180

[15] S. Zander and G. Armitage, “Empirically Measuring the
QoS Sensitivity of Interactive Online Game Players,” in Aus-
tralian Telecommunications Networks & Applications Confer-
ence 2004 (ATNAC 2004), Sydney, Australia, 8-10 December
2004, pp. 511–517. [Online]. Available: http://caia.swin.edu.au/
pubs/ATNAC04/zander-armitage-ATNAC2004.pdf

CAIA Technical Report 120412A March 2012 page 12 of 13

http://dx.doi.org/10.1007/978-3-642-01399-7_31
http://dx.doi.org/10.1007/978-3-642-01399-7_31
http://caia.swin.edu.au/urp/diffuse/
http://caia.swin.edu.au/urp/diffuse/
http://wiki.openwrt.org/toh/start
http://wiki.openwrt.org/doc/techref/opkg
http://wiki.openwrt.org/doc/howto/build
http://wiki.openwrt.org/doc/howto/obtain.firmware.sdk
http://wiki.openwrt.org/doc/howto/obtain.firmware.sdk
http://wiki.openwrt.org/toh/tp-link/tl-wr1043nd
http://www.endace.com/
http://bittorrent.org/beps/bep_0003.html
http://www.iinet.net.au/nbn/nbn-plan-residential.html
http://www.iinet.net.au/nbn/nbn-plan-residential.html
http://caia.swin.edu.au/sitcrc/song/
http://caia.swin.edu.au/sitcrc/song/
http://dx.doi.org/10.1109/ICON.2003.1266180
http://dx.doi.org/10.1109/ICON.2003.1266180
http://caia.swin.edu.au/pubs/ATNAC04/zander-armitage-ATNAC2004.pdf
http://caia.swin.edu.au/pubs/ATNAC04/zander-armitage-ATNAC2004.pdf

TABLE IV
CONNECTING TO THE ROUTER USING CU

cu -s 115200 -l /dev/cuaU0
-s : The baud rate is 115200
-l : the serial line to connect to. We use a USB serial cable – on FreeBSD this begins with /dev/cuaU0.
If using the DIFFUSE Ubuntu Linux VirtualBox image, the serial line will appear similar to /dev/ttyUSB0

TABLE V
LOADING DIFFUSE AND A CLASSIFIER MODEL

With Sliding Windows
ipfw feature delete plen
ipfw feature plen config module plen window 20 payload-len
ipfw feature delete pcnt
ipfw feature pcnt config module pcnt window 40
ipfw mlclass myclass config algorithm c4.5 confirm 20
–line continued– model /root/fps model/rt vs other plen+pcnt.c45.diffuse
With Jumping Windows
ipfw feature delete plen
ipfw feature plen config module plen window 20 jump-windows payload-len
ipfw feature delete pcnt
ipfw feature pcnt config module pcnt window 40 jump-windows
ipfw mlclass myclass config algorithm c4.5 confirm 20
–line continued– model /root/fps model/rt vs other plen+pcnt.c45.diffuse

TABLE VI
IPFW QUEUE SETUP: USING DUMMYNET TO CONFIGURE A 1 MBIT PIPE WITH TWO QUEUES

ipfw add pipe 1 ip from any to any
ipfw pipe 1 config bw 1Mbit
ipfw queue 1 config pipe 1 weight 100
ipfw queue 2 config pipe 1 weight 5
ipfw add 10 queue 1 ipv4 from any to any match-if-class myclass:rt in
ipfw add 10 queue 2 ipv4 from any to any match-if-class myclass:other in
ipfw add 10 queue 2 ipv4 from any to any in

TABLE VII
TCPREPLAY ET GAME TRAFFIC

tcpreplay –intf1=em1 –intf2=em0 –cachefile=ET trace.cache ET Trace.dmp
–intf1 : server traffic interface. The server traffic will be played back via this interface
–intf2 : client traffic interface. The client traffic will be played back via this interface
–cachefile: This cache file defines the client and server endpoints for flows.

[16] L.Stewart, D. Hayes, G. Armitage, M. Welzl, and A. Petlund,
“Multimedia-unfriendly TCP Congestion Control and Home
Gateway Queue Management,,” in ACM Multimedia Systems
Conference (MMSys 2011), San Jose, California, 23-25 Febru-
ary 2011. [Online]. Available: http://portal.acm.org/citation.
cfm?id=1943558

[17] S. Bradner and J. McQuaid, “Benchmarking methodology for
network interconnect devices,” United States, 1999.

[18] M. Dick, O. Wellnitz, and L. Wolf, “Analysis of factors affecting
players’ performance and perception in multiplayer games,” in
Proceedings of 4th ACM SIGCOMM workshop on Network and
system support for games, ser. NetGames ’05. New York, NY,
USA: ACM, 2005, pp. 1–7. [Online]. Available: http://doi.acm.
org/10.1145/1103599.1103624

[19] S. N. Builder. (2012, March) Router charts: Maximum
simultaneous connections. [Online]. Available:

http://www.smallnetbuilder.com/lanwan/router-charts/bar/
77-max-simul-conn

CAIA Technical Report 120412A March 2012 page 13 of 13

http://portal.acm.org/citation.cfm?id=1943558
http://portal.acm.org/citation.cfm?id=1943558
http://doi.acm.org/10.1145/1103599.1103624
http://doi.acm.org/10.1145/1103599.1103624
http://www.smallnetbuilder.com/lanwan/router-charts/bar/77-max-simul-conn
http://www.smallnetbuilder.com/lanwan/router-charts/bar/77-max-simul-conn

	Introduction
	Background
	DIFFUSE
	OpenWRT
	TPLink TL-WR1043ND

	Equipment and Test Methodology
	Real-time Classification on 1Mbps and 15Mbps Links
	Forwarding Throughput
	Concurrent Connections
	CPU Load Measurement
	Memory Use

	Results
	Real-time Classification on 1Mbit and 15Mbit links
	Throughput
	Concurrent Connections
	Memory Use
	CPU Load

	DIFFUSE Optimisations and Future Work
	Conclusions
	Acknowledgements
	Appendix
	Adding a serial port to gain access to factory firmware
	Loading the DIFFUSE classifier
	Setting up priority queuing
	Sending traffic with tcpreplay
	Generating TCP Cross Traffic with Iperf

	References

