
The Effect of Round Trip Time on Competing TCP
Flows

Chris Holman∗, Jason But, Phillip Branch
Centre for Advanced Internet Architectures, Technical Report 120405B

Swinburne University of Technology
Melbourne, Australia

6963420@student.swin.edu.au, jbut@swin.edu.au, pbranch@swin.edu.au

Abstract—In this paper we describe experiments to in-
vestigate the interactions of competing TCP flows typical of
a home network. Using a standard FreeBSD 8.2-RELEASE
installation, we explore the relationship between queue
sizes, congestion windows, latency, and bandwidth and
how they relate to each other in such an environment. We
find that flows with a higher RTT are at a disadvantage,
especially over long running competition.

I. INTRODUCTION

Home Internet connections are often shared concur-
rently between multiple users with little or no Quality of
Service (QoS) utilised. Therefore, Transmission Control
Protocol (TCP) [1] streams will overlap and compete
regularly. TCP, by design, attempts to use as much of
the available bandwidth as possible. When two flows
start competing for 100% of the available bandwidth,
interactions occur to determine how much bandwidth
each stream receives.

We investigate these interactions between two con-
current TCP connections with different endpoints. In
particular we are interested in comparing interactions
between low latency (near) flows and high latency (far)
flows.

We find that high latency connections suffer the most
when sharing a bottleneck link and that the bandwidht
share of streams with equal Round Trip Time (RTT) will
alternate which has more bandwidth but essentially will
be be equal over a longer period of time.

The remainder of this paper is structured as follows.
Section II details the experimental method used for this
report. Section III looks at the data gathered and analyses
the significance of it.

∗The author was on an internship at CAIA while writing this report

II. METHODS

Three PCs were configured with FreeBSD 8.2 RE-
LEASE running the default NewReno congestion control
algorithm (see Figure 1). Two of these were config-
ured as endpoints while the third was configured as an
Ethernet bridge. We implemented traffic shaping and
random packet loss using ipfw and dummynet on the
bridge device. Figure 2 describes how dummynet was
configured to simulate varying data sources traversing
the same bottleneck link.

The benchmark program nttcp [2] was used to gen-
erate traffic between endpoints. nttcp can create a
TCP/UDP stream consisting of an arbitrary amount of
test data, and then report basic statistics on the genreated
flow.

tcpdump [3] was used to capture traffic from both the
inbound and the outbound interface of the bridge, on
either side of the delays and queues.

In this experiment we captured a series of data points
for each flow:

• One-way latency: latency is calculated from the
tcpdump files using the SPP [4] tool

• TCP congestion window size (cwnd): SIFTR [5]
was deployed to log cwnd data from within the
kernel on server host.

• Instantaneous queue utilisation: modifications were
made to dummynet to retrieve and log the number
of packets in a queue as each packet enters that
queue

• Estimate of bandwidth utilisation: all data trans-
ferred in the 300ms preceding a packet was summed
to determine a moving average for bandwidth util-
isation

We configured ”far” streams as those experiencing
a 100ms RTT as a reasonable approximation for an
international data source. An RTT of 100ms is typically

CAIA Technical Report 120405B April 2012 page 1 of 5

mailto:6963420@student.swin.edu.au
mailto:jbut@swin.edu.au
mailto:pbranch@swin.edu.au

Fig. 1. The configuration of hardware

Fig. 2. Delay and queue path. This process is repeated in the same
order for packets returning through the bridge. The destination port
number is used to determine which delay is applied

witnessed on communications between the East Coast
of Australia and Japan. ”Near” streams were configured
with an RTT of 30ms as a typical value for local data
sources.

We tested a variety of scenarios involving two TCP
streams competing for bandwidth. We add delays, stag-
gered starts and bursty traffic.

III. ANALYSIS

A. Basic competition

When two TCP streams have no differentiating factors,
the result is roughly 50/50 shared bandwidth. Figure 3

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12 14

T
hr

ou
gh

pu
t (

M
B

ps
)

Time (s)

Competing equal streams

Stream 1
Stream 2

Fig. 3. Two identical TCP streams, started at the same time.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 6 8 10 12 14 16 18 20 22

T
hr

ou
gh

pu
t (

M
B

ps
)

Time (s)

Equal RTT and delayed start

Stream 2
Stream 1

Fig. 4. Two identical TCP streams, with staggered starts

demonstrates that while instantaneous throughput fluc-
tuates, it averages out over a longer period of time
to roughly an equal split. When a packet loss event
occurs, it typically only happens to one stream - that
stream will reduce its cwnd and consequently reduce
its transmission rate. The other stream sees that extra
bandwidth is available and continues with normal growth
until the first stream begins to recover, at which point
they return to roughly equal throughputs again and the
cycle continues.

Figure 4 shows throughput when one stream has
started early enough to grow its window to fully utilise
the available bandwidth prior to the second stream
starting. While there is an initial transition period as
this stream increases its throughput from 0, once the
streams begin to share bandwidth equally, they continue
interacting as in the previous scenario.

CAIA Technical Report 120405B April 2012 page 2 of 5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90

T
hr

ou
gh

pu
t (

M
B

ps
)

Time (s)

Long running competition

100ms RTT
30ms RTT

Fig. 5. Delay in competing streams, over a long time duration

 0

 0.5

 1

 1.5

 2

 2.5

 3

 20 22 24 26 28 30 32 34

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

Competing stream throughput

100ms RTT
30ms RTT

Fig. 6. A far TCP stream allowed to reach its full throughput before
near streams are introduced

B. The effect of latency on competition

We then experimented with combinations of near and
far away data sources, each transferring both large and
small files. An example scenario would be akin to
streaming a video from the USA while updating a Linux
distro from a local ISP mirror - would the successive fast
but small flows negatively impact on the long running
video flow? Or likewise, would streaming an on demand
TV show from the ISP service be affected at all by a
large, far away stream?

When different latencies are configured for the two
flows, a significant discrepancy in the throughput ob-
tained by the competing streams is apparent; this can be
seen in Figure 5. As the near stream has a lower RTT,
it is able to complete more round trips in the same time
period than the far stream. As such, its inflight window
increases at a faster rate, subsequently allowing it to

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20

T
hr

ou
gh

pu
t (

M
B

ps
)

Time (s)

Bursts of far traffic

30ms RTT
100ms RTT

Fig. 7. A long running near stream coexists with bursts of far traffic

transmit at a higher bitrate. This results in the queue at
the bottleneck filling and causing congestion events. The
far stream experiences the same congestion events and
reduces its own cwnd1, effectively putting a bandwidth
cap on it. Given its shorter RTT, the near stream is better
able to recover, and therefore take more of the available
bandwidth.

In Figure 6, a far TCP flow is running at its peak
throughput. A near flow joins the bottleneck and fills the
queue. This results in the far flow losing about 30 packets
over the space of 30ms - one RTT of the near flow -
and subsequently causes the TCP slow start algorithm to
reset the cwnd. Slow start determines that this was two
separate instances of packet loss and subsequently the
Slow Start Threshold (SSTHRESH) is reduced twice.
As the second reduction happens very soon after the
first, the congestion window has not had the opportunity
to recover, resulting in the SSTHRESH being set very
low as well. Consequently, very little time is spent in
the exponential growth phase, resulting in the majority
of future window growth occurring under congestion
avoidance.

C. Bursty traffic

Often, traffic flows are bursty in nature. Loading web
pages, for instance, will result in a series of short TCP
flows in a bursty sequence every time a new page is
loaded.

In the scenario in Figure 7, a near stream is allowed to
reach full bandwidth before short (1-3MB) bursts of far
streams are started. As the round trip for the far streams

1The far stream is not always impacted by the congestion events,
see Section III-E

CAIA Technical Report 120405B April 2012 page 3 of 5

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

M
B

ps
)

Time (s)

Bursts of near traffic

100ms RTT
30ms RTT

Fig. 8. A long running far stream is interrupted by bursts of near
traffic

is 100ms, the average inter-packet arrival time is initially
quite high, and consequently takes some time to build up
the throughput. The stream does not send enough packets
per second to fill up any queues, so there is only a minor
impact on the near stream.

Conversely, bursts of near streams are not as fair to a
long running far stream. The RTT is short enough that
even a small payload can occasionally cause the TCP
slow start algorithm to engage and reset the cwnd of
the far stream, causing significant disruption to the far
stream, as shown in Figure 8.

D. Window size and queue utilisation

Figure 9 plots the queue utlisation, and the corre-
sponding window size, of a large, far TCP flow. During
the life of the far flow, two shortlived near TCP flows are
initiated (at time=1s and again at time=6). The low RTT
of the near flow causes the queue to fill more quickly.
When the queue fills, one or more packets are dropped.
This will be detected by the TCP sender which reduces
the cwnd size and consequently transmits at a slower
rate.

However, the far flow does not always suffer a cwnd
reduction when the queue fills in this scenario; when the
near flow suffers packet loss, it reacts quickly enough
to allow the queue to drain, allowing the far flow to
avoid any effect the congestion might have had on its
transmission rate.

Figure 10 shows the throughput of the same streams
over the same time period. The far stream’s rate of
growth decreases when the near stream starts, as the
queue is being shared and packets take longer to make
a round trip. The near stream is able to reach its peak

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

Q
ue

ue
 (

P
ac

ke
ts

)

W
in

do
w

 s
iz

e
(B

yt
es

)

Time

Queue size vs window size

Queue size
Window

Fig. 9. cwmd size of a far TCP flow with a near TCP competitor
(not shown) and the queue size of the bottleneck

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

Multi-stream Throughput

Total Throughput
Far Stream Throughput

Near Streams Throughputs

Fig. 10. The variation in throughput of two varied competing TCP
streams, starting at the same time. Total throughput is also shown.

throughput within half a second, while the far stream
is left running at a fraction over 1/10th of the available
bandwidth.

E. Latency and queue sizes

While not specific to competing TCP flows, the la-
tency induced by queue sizes has an impact on the
competition between two flows. As the queue utilisation
grows, the instantaneous RTT grows proportionally, as
shown in Figure 11. In this example shown, a maximum
of an extra 25ms is added to the RTT of a flow by the
queue filling up. In the case of a growing far stream,
this could be quite a hindrance in allowing cwnd to grow
promptly.

IV. CONCLUSION

The aim of this report was to investigate the in-
teractions of TCP streams with different RTTs over a

CAIA Technical Report 120405B April 2012 page 4 of 5

 0.095

 0.1

 0.105

 0.11

 0.115

 0.12

 0.125

 11.5 11.6 11.7 11.8 11.9 12 12.1 12.2 12.3
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

R
T

T
 (

s)

Q
ue

ue
 S

iz
e

Time (s)

Queue size vs latency

Queue size
RTT (s)

Fig. 11. Queue and latency relationship with competing TCP flows

bottleneck. A testbed was set up to limit bandwidth and
add arbitrary delays across a link to collect data.

An unfair negative impact on a stream’s throughput
was seen when the competing stream had a smaller
RTT. Under the latency conditions used for our ”long
running” experiments, the bias was found to be large,

with the low latency stream obtaining about 80% of the
available bandwidth. Additionally, short bursts of data
from a lower RTT were shown to have a significant
detrimental effect on existing, larger RTT, streams.

These results demonstrate a weakness in the NewReno
congestion control algorithm (and perhaps loss-based
TCP congestion control algorithms in general), in that
low RTTs are favoured in bandwidth contention scenar-
ios.

REFERENCES

[1] J. Postel, “Transmission Control Protocol,” RFC 793 (Standard),
Internet Engineering Task Force, Sep. 1981, updated by
RFCs 1122, 3168, 6093, 6528. [Online]. Available: http:
//www.ietf.org/rfc/rfc793.txt

[2] “NTTCP.” [Online]. Available: http://www.freebsdsoftware.org/
benchmarks/nttcp.html

[3] “tcpdump.” [Online]. Available: http://www.tcpdump.org/
[4] CAIA, “SPP - Synthetic Packet Pairs.” [Online]. Available:

http://caia.swin.edu.au/tools/spp/
[5] CAIA, “SIFTR - Statistical Information For TCP Research.” [On-

line]. Available: http://caia.swin.edu.au/urp/newtcp/tools.html

CAIA Technical Report 120405B April 2012 page 5 of 5

http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.freebsdsoftware.org/benchmarks/nttcp.html
http://www.freebsdsoftware.org/benchmarks/nttcp.html
http://www.tcpdump.org/
http://caia.swin.edu.au/tools/spp/
http://caia.swin.edu.au/urp/newtcp/tools.html

	Introduction
	Methods
	Analysis
	Basic competition
	The effect of latency on competition
	Bursty traffic
	Window size and queue utilisation
	Latency and queue sizes

	Conclusion
	References

