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Abstract—The Internet contains many devices that must
process multiple jobs at the same time. For many purposes,
such devices can be modelled as M/G/1-PS queues. This
report investigates such a queue.

We consider single-pass, lossless, queueing systems at
steady-state subject to Poisson job arrivals at an unknown
rate. Service rates are in general allowed to depend on the
number of jobs in the system, i.e. speed-scaling. A general
goal is to control the state dependent service rates such
that both energy consumption and delay are kept low. As
there is a tradeoff between the two, a sensible performance
measure is a linear combination of the mean job delay and
energy consumption, where power is generally assumed to
be an increasing polynomial function of the speed.

We consider both the “architecture” of the system,
which we define as a specification of the number of
speeds that the system can choose from, and the “design”
of the system, which we define as the actual speeds
available. Previous work has illustrated, that when the
arrival rate is precisely known, there is little benefit in
introducing complex (multi-speed) architectures, yet in
view of parameter uncertainty, allowing a variable number
of speeds improves robustness.

In the current report, we numerically quantify the
tradeoffs of architecture specification with respect to ro-
bustness.

I. Introduction

Performance analysis, design and control by means
of stochastic queueing models (c.f. [1]) has affected a
variety of fields, including not only telecommunications
and computing systems but also service engineering,
manufacturing, logistics, health-care, road traffic and
biological modelling. A typical queueing model abstracts
unknown job arrival and service requirements by means
of stochastic processes and distributions. The result-
ing dynamics of queue-length, workload or other per-
formance processes are analyzed yielding performance
measures, that ultimately allow for better design and

control of the system at hand.Design of the system
often refers to an off-line specification of parameters
whereascontrol of the system typically refers to an on-
line decision making based on state measurements (e.g.
setting service speeds). In this report we shall use a third
term, architecture selection, referring to the action of
deciding what are the design and control parameters.

Almost all of the queueing theoretic, performance
analysis, design, control and architecture selection lit-
erature is based on the underlying assumption that the
probability laws of arrival and service processes are
precisely known. A few exceptions to this rule are
mentioned below. In practice, this is often too strong of
an assumption, especially due to the fact that obtaining
precise a-priori parameter estimates is not possible in
many settings. Our contribution in this report is in quan-
tifying the effect of architecture selection on robustness.
Here the property ofrobustnessrefers to the ability of the
system to operate in a near-optimal manner even when
estimates of parameter values are not precise, or even
grossly incorrect. As this is generally a vague concept,
one of the contributions of this report is in proposing
measures of robustness.

Our analysis focuses on a model applicable to comput-
ing systems operating in an energy aware speed-scaling
environment (c.f. [2] and references there-in). The model
we consider is an M/G/1-PS queue with variable, state
dependent service rates. A Poisson stream of arriving
jobs at rateλ are served by a processor sharing (PS)
regime that operates as follows: When there aren jobs
in the system, each job is served at a ratesn/n, where
the sequence of speeds, 0= s0 < s1 ≤ s2, . . ., is a
result of the design and control of the system. High
service rates generally imply low job delay yet typically
incur higher computing energy costs due to the fact
that power consumption of devices is often a convex
increasing function of the processing speed. A sensible
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objective of design and control is thus to minimize
a linear combination of mean delay and mean energy
consumption.

This model and objective was extensively studied
in [2] with the finding that in the case whereλ is
known, a single speed architecture (s1 = s2 = . . .)
yields comparable performance to an optimally tailored
sequence of speeds. Hence it was found that a simple
architecture can be sufficient. The pitfall mentioned in
[2] is that in the more realistic setting in whichλ is
unknown, multi-speed architectures are generally more
robust. More precisely, fix some design arrival rate,
λd. Then a multi-speed architecture where the speeds
are optimized forλd greatly outperforms a single-speed
architecture also optimized forλd in cases where the
actual arrival rateλa differs fromλd.

The robust multi-speed architecture in [2] in general
allows each system occupancy,n to have an arbitrarysn.
Such an architecture generally does not come without
additional costs of manufacturing, device-footprint, con-
trol complexity and other application specific issues. The
question then remains:How many speeds are required
in order to allow for robust speed-scaled systems?Or
equivalently:How does architecture selection affect the
robustness of the system to parameter uncertainty?

In this report we answer the above questions. Our con-
tribution is mainly conceptual and numerical, yet bears
significant importance for computer system engineers.

In specifying an architecture, one aspect is the number
of available speeds, and another is the ability of the con-
trol to adapt to the arrival rate. We consider two regimes:
Fixed Allocation(FA) andAdaptive Allocation(AA). In
both regimes, the set of available speeds is fixed at design
time, yet the way states are mapped to speeds varies:
Fixed Allocation (FA) : There is a fixed (design-time)

mapping settingsn to be one of the available speeds.
In this case there is no run-time control calculation.

Adaptive Allocation (AA) : It is assumed that the true
arrival rateλa is accurately estimated at run-time
hence allowingsn to be mapped to one of the avail-
able speeds in a way that optimizes performance for
the givenλa.

It is quite obvious from a robustness point of view that
adaptive allocation is preferred compared to fixed alloca-
tion, yet in many computing scenarios, this is not without
additional design complexity. Here our contribution is in
comparing the robustness of the two regimes. We should
note that our adaptive allocation scheme assumes thatλ

is estimated perfectly and that the resulting system is in
steady state with thatλ. One may also consider adaptive

control in the sense of estimatingλ and optimizing the
control in a time-varying environment, yet this is not the
focus of our current work.

Robustness, parameter uncertainty and adaptive
control of queues: Except for [2], it appears that the
field of performance analysis and control of queues in
face of parameter uncertainty is very limited in extent
and thus virtually almost unstudied. For illustration,
observe the annotated bibliography, [3], containing an
exhaustive list of publications to date dealing with pa-
rameter estimation in queues. There are under 200 such
publications, and virtually none of them deals with con-
trol in view of uncertainty. An exception is [4], dealing
with robustness with respect to the probability laws of
the underlying stochastic processes using advanced point
process theory. A comprehensive survey of robust control
methods in the greatest context of operations research
is in [5], yet it appears that the robustness point of
view has not yet fully been investigated in queues. Note
though that one may view the general line of research
of insensitivity (c.f. [6]), as supplying robust results. Yet
these are with respect to distributions and typically not
with respect to unknown demand rates.

The remainder of the report is organized as follows: In
SectionII we define our model and objective function,
and survey related work. In SectionIII we present
our robustness measure results. The results are then
summarized in SectionIV where further open questions
are put forward.

II. Model

We consider an M/G/1-PS queue with variable, state
dependent service rates. Jobs arrive according to a Pois-
son process with rateλ > 0. Job sizes are finite mean
i.i.d. random variables independent of the arrival process.
Without loss of generality we assume the mean job size
is 1. We letQ(t) denote the number of jobs in the system
at time t. The PS scheme is as follows: At timet if
Q(t) = n, each job is served at a ratesn/n, where the
sequence of speeds, 0= s0 < s1 ≤ s2, . . . is a result of
the design and control of the system.

The insensitivity of the M/G/1-PS, even under speed
scaling, (c.f. [2], [7]), allows us to ignore the actual shape
of the job-size distribution with respect to the law of
the processQ(t). The processQ(t) is represented by an
irreducible continuous time birth-death process on the
state space{0,1, . . .}. We assumeλ < sup{s1, s2, . . .} and
henceQ(t) is positive-recurrent with a unique stationary
distribution, (π0, π1, . . . , ), πi = limt→∞ P

(

Q(t) = i
)

,
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satisfying the partial balance equations,λπi = si+1πi+1

and
∑∞

i=0 πi = 1.
Speeds are constrained to be within the set [0, µmax].

The number of unique speeds is specified by the archi-
tecture parameter,K ∈ {0,1,2, . . .} ∪ ∞. For finite K,
the available set of speeds is,M = {0, µ1, . . . , µK , µmax},
hence there areK + 2 available speeds. IfK = ∞,
any speed within [0, µmax] is allowed. We refer to such
architectures ascontinuum speedarchitectures. In any
case, speed 0 is only fors0. Since we assume the
speeds are monotonically non-decreasing, in the case of
K < ∞, the mapping ofsn toM may be specified by a
non-decreasing sequence of integer thresholds such that
0 = θ0 < θ1 ≤ θ2 ≤ · · · ≤ θK < θK+1 = ∞. The speed-
scaling mapping is then, fori = 0, . . . ,K + 1,

sn = µi if n ∈ {θi−1 + 1, . . . , θi} (1)

whereµK+1 = µmax.
The performance metric we consider is the average

running cost per unit time. The running cost of a
single job consists of two parts: the sojourn time in
the system and the energy consumed by processing it.
Let Z/λ denote the running cost for a single job, then:
Z/λ = βTwaiting + E. The average running cost per job
is then:E[Z]/λ = βE[T] + E[E]. The average running
cost per unit time – which we will henceforth refer to
as simply “cost” – is then achieved by multiplying both
sides byλ and applying Little’s law [8]:

z= E[Z] = βE[N] + E[PN] (2)

wherePn denotes the power consumption when the oc-
cupancy isn. This objective has been studied previously
in both the stochastic context [9], [10] and in worst-case
contexts [11]. Here P is the power consumption (energy
consumption per unit time). The parameterβ indicates
the relative cost of delay. This can be omitted by the
appropriate choice of units, but we retain it to emphasize
that the relative weights given toN and P are problem
specific. OftenP is a convex non-decreasing function of
the speed, and we assume that

Pn = sαn. (3)

We are specifically interested in the case that speed vari-
ation is achieved using dynamic voltage and frequency
scaling in a CMOS integrated circuit. In this case,α
typically takes a value around 2 or 3.

An explicit expression ofz for a given architecture
specification and design is obtainable through straight
forward (yet tedious) computations ([12, Ch. 5] for back-
ground on solutions of the stationary distribution). For a

given architecture specification, the design variables can
be cast as the vectors,

µ =
(

µ1, . . . , µK
)

, θ =
(

θ1, . . . , θK
)

,

which may be taken to be infinite vectors ifK = ∞.
Then, zK is given by (4) on the following page, where
ρi = λ/µi for i = 1, . . . ,K + 1. This expression is
valid only whenρi , 1 for all i, otherwise the singular
case replaces geometric series by constant sums and
yields a different algebraic expression. The latter may
either be obtained by calculating a limit onz or can
written explicitly. For simplicity (and without harm to
the numerical results that follow), we omit these details
in the report yet indicate that the numerical procedures
were coded to take care of the singular cases also.

Design Framework: In our framework the design
variables are optimized for a pre-determined arrival rate,
λd < µmax (“d” stands for design), yet at runtime there
is an alternative arrival rateλa < µmax (“a” stands
for actual), where typicallyλd , λa. In the Fixed
Allocation (FA) case, letµ∗FA(λd) andθ

∗

FA(λd) denote the
optimizing design variablesµ andθ of,

min
µ, θ

zK(µ, θ, λd, β, α),

subject to the coordinates ofµ and θ being ordered.
In the Adaptive Allocation(AA) case, use the fixed
componentµ∗FA(λd) as above and consider the following
optimization,

min
θ

zK(µ∗FA(λd), θ, λa, β, α).

Denote the optimizer asθ
∗

AA(λd, λa).
For a given architecture, solving the fixed allocation

design problem or the adaptive allocation control prob-
lem involves optimization ofzK(·). For K < ∞ we have
implemented the optimization using a “Gauss-Seidel iter-
ation” approach (c.f. [13]) with a local-search refinement.
In case ofK = ∞ we use dynamic-programming as in
[9]. We omit these technical details in this report.

Practical implications for CMOS: In the CMOS
situation we are modeling, different decision variables
are decided on at different phases in the design process.
We assume theµi are fixed properties of a given piece
of hardware. They must be chosen when that chip is
designed, before it is known what load it will be sub-
jected to. The thresholdsθi are typically implemented in
software in the operating system, and can be determined
later based on a real-time estimate of the load, or ofβ. In
contrast,K might determine the size of a software-visible
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zK(µ, θ, λ, β, α) =

∑K+1
i=1

(

∏i−1
j=1 ρ

θ j−θ j−1

j

)

[

β
(θi−1−θiρ

θi−θi−1
i )(1−ρi )+(ρi−ρ

1+θi−θi−1
i )

(1−ρi )2 +
ρi−ρ

θi−θi−1+1
i

1−ρi
µαi

]

∑K+1
i=1

(

∏i−1
j=1 ρ

θ j−θ j−1

j

) 1−ρ
θi−θi−1
i

1−ρi

, (4)

register that stores the current speed, or might determine
the number of external pins required to signal this
information; for compatibility reasons, this information
may need to be held constant over an entire family
of chips sharing the same instruction set architecture
(ISA). For that reason, we concern ourselves more with
robustness of the choice ofK than robustness of the
individual µi .

III. Quantifying Robustness

Our analysis of architecture robustness forFixed Al-
location is with respect to the robustness measure

∆FA(λa, λd,K) =zK(µ∗FA(λd), θ
∗

FA(λd), λa, β, α
)

−z∞
(

µ
∗
FA(λa), θ

∗

FA(λa), λa, β, α
)

.

and forAdaptive Allocationit is with respect to

∆AA(λa, λd,K) =zK
(

µ
∗
FA(λd), θ

∗

AA(λd, λa), λa, β, α
)

−z∞
(

µ
∗
FA(λa), θ

∗

FA(λa), λa, β, α
)

.

Obviously these measure are non-negative. They capture
the distance to the optimal cost indicating the effect of
parameter uncertainty on performance: a low∆ value
implies “more robustness”.

The Fixed Allocation (FA) case:Figure1 shows the
metric∆FA(λa, λd,K) for increasing architecturesK from
K = 0 (“Only µmax”) and K = 1 (“Two speeds”) up to
a continuum of speeds, for a system that uses both the
speeds and the thresholds optimized forλd, with µmax =

1, andα = 3.
Note that all examples includeµmax as one (the largest)

of the available speeds; this is in contrast to the single-
speed “gated static” policy studied in [10], in which the
single speed was optimized for the design load, and the
“continuum” case could use arbitrarily high speeds as
the occupancy increased.

Recall that [10] observed substantially greater robust-
ness when using a system designed with no constraints
on the speeds than when using a system with a single
optimally chosen speed. This was explained by the fact
that, if the actual load is much higher than the design
load, then the mean occupancy will be higher; since the
speed is an increasing function of the occupancy, this
increased occupancy causes the average speed used to
be higher, as is appropriate for a higher load.

It is natural to expect that a similar conclusion would
apply to the model studied here, in which the system
is forced to include the maximum speedµmax as one
available speed, and that increasing the number of avail-
able speeds will monotonically increase the robustness.
When the actual load is low, this is indeed the case.
In fact, having even a single additional speed (“Two
speeds”) incurs most of the benefit obtained from having
a continuum of speeds.

However, as the actual load approachesµmax, de-
signs with more available speeds actually become mono-
tonically less robust, in the sense that the penalty
∆FA(λa, λd,K) for mis-estimating the load increases. This
is most apparent when the design load is low, and little
weight (β) is given to delay.

This paradox is explained by noting that fixed thresh-
olds were used. When the load is almostµmax, the
average processing speed must also be almostµmax. Thus
the system in whichµmax is the only speed available is
optimal. If more speeds are available, then the system
will need to maintain a higher occupancyN to cause
speedµmax to be used. If the second highest speedµK−1 is
much less thanµK , then the occupancy will be increased
by almostθK , increasing the cost by almostβθK.

The Adaptive Allocation (AA) case: Results for
adaptive allocation are in Figure2. Note that here the
robustness monotonically increases as the number of
available speeds increases, as intuition suggests.

Comparison of FA and AA: Recall that adjusting
the thresholdsθi occurs on a much slower timescale
than adjusting the actual speeds. Implementing dynamic
thresholds incurs a non-negligible additional cost to
software development. To decide whether or not to im-
plement dynamic thresholds, it is important to quantify
how much benefit it provides over using dynamic (state-
dependent) speeds with static thresholds. Figure3 shows
this improvement for several parameter combinations.
This suggests that dynamically adjusting the thresholds
may not be justified unless the design load is well below
the maximum load for which the system can be stable.

IV. Conclusion and Outlook

This report has identified and explained an anomaly in
the performance of queues with speed scaling optimized
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Fig. 1. Fixed Allocation (FA): Distance to the optimal cost using policy optimised for loadλd with the reality of loadλa.
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Fig. 2. Adaptive Allocation (AA): Distance to the optimal cost using policy optimised for loadλd with the reality of loadλa and adjustable
thresholds.
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Fig. 3. Benefits in cost reduction of having adjustable thresholds at runtime: ∆FA(λa, λd,4)− ∆AA(λa, λd,4).

for an inaccurate estimate of the load. Specifically, this
is due to inappropriate choice of speed at runtime. This
effect causes the performance of such a speed scaler
operating at high load to degrade as the number of
available speeds increases, which makes it difficult to
quantify the improvement in robustness due to such an
increase.

However, when the error in the load estimate is
low, the performance does monotonically improve as
the number of levels increases. This suggests that it
may be possible to define a meaningful measure of
“local robustness” which could be used to determine the
number of speeds required.

In future work, we plan to estimate analytically the
magnitude of the degradation due to poor runtime control
and to quantify the degree of local robustness.

This work assumed very simplified models. For ex-
ample, the speed scaling functionPn only considers
active power in CMOS circuits, whereas leakage power
is becoming an increasing fraction of total power con-
sumption. The form ofPn is also suitable for cases
where the speed of processing is proportional to the clock
speed, whereas modern processors are heavily influenced
by delays due to memory access. Nevertheless, we
expect the qualitative insight to hold more generally:
If the speed selection algorithm is based on inaccurate
parameter estimates, then having a wider range of speeds
available may be counterproductive.
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