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Abstract—This paper proposes a comprehensive but
tractable model of IEEE 802.11 carrying traffic from a
mixture of saturated and unsaturated (Poisson) sources,
with potentially different QoS parameters, TXOP limit,
CWmin and CWmax. The model is used to investigate the
interaction between these two types of sources, which is
particularly useful for systems seeking to achieve load-
independent “fair” service differentiation. We show that,
when the TXOP limit for unsaturated sources is greater
than one packet, batches are distributed as a geometric
random variable clipped to TXOP limit. Furthermore, we
present asymptotic results for the access delay distribution,
which indicates that it is infeasible to obtain real-time
service in the presence of 8 or more saturated sources
regardless of the real time traffic load given that all stations
use CWmin of 32.

I. INTRODUCTION

In recent years, wireless local area networks (WLANs)
have become very popular and are widely deployed,
due to the rapid increase in demand for Internet access
at any time and place through WiFi-enabled mobile
devices such as laptops and personal digital assistants
(PDAs). Internet applications over WLANs consist not
only of throughput-intensive applications such as email,
file transfer or web surfing but also of delay-sensitive
ones such as voice and video. To provide quality of
service (QoS) differentiation, IEEE 802.11e was spec-
ified in [1], which defines a contention-based medium
access control (MAC) scheme called the Enhanced Dis-
tributed Channel Access (EDCA). In particular, EDCA
provides service differentiation by the tuning of various
MAC parameters: the minimum spacing between packets
(Arbitration Inter-Frame Space or AIFS), minimum and
maximum contention windows (CWmin and CWmax),
and lengths of packet bursts or transmission opportunity
limit (TXOP limit).

In this paper, we model the performance of EDCA
with a mixture of saturated non-realtime sources (i.e.

each always has a packet to transmit) which seek high
throughput, and unsaturated real-time sources which
demand low delay. The motivation for our model is to
enable the study of MAC mechanisms such as [18] that
improve service for both types of users by means of three
of the EDCA parameters: CWmin and CWmax, which
control how long a source waits before transmission, and
TXOP limit, which controls how much it can transmit
per channel access. We do not model AIFS because it
provides load-dependent prioritization, which does not
help to achieve the “fair” service differentiation we seek.

Before reviewing the related work, we first briefly
describe the protocol and related concepts. Like the
original Distributed Coordination Function (DCF) in
IEEE 802.11, EDCA enables users to contend for the
wireless channel using carrier sense multiple access
with collision avoidance (CSMA/CA), with truncated
binary exponential backoff (BEB) and slotted idle time.
When a packet arrives to an idle source, it senses
the channel for a period AIFS. If it is idle during
this whole time, the packet is transmitted immediately
(asynchronously). Otherwise, the source waits until the
channel is continuously idle for AIFS, and then starts
a backoff process. A backoff counter is initialized to
a random integer uniformly distributed between 0 and
(CW−1), where CW is the current contention window.
For each new packet, CW is initialized to CWmin and
doubles after each unsuccessful transmission until it
reaches CWmax, after which it remains constant. The
backoff counter is decreased by one at every idle slot
time, of duration σ, and frozen during periods of channel
activity. Decrementing is resumed one slot time before
the expiration of an AIFS time after a channel activity
period ends. (A subtle difference between EDCA and
DCF is that in DCF, the decrementing is not resumed
until after the expiration of AIFS [3].) When the backoff
counter reaches zero, the source is allowed to transmit
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for a TXOP limit period of time, which may allow
one or more packets to be transmitted. (Note that the
standard [1] also defines a mode in which only a single
packet is transmitted when the backoff counter reaches
zero.) An acknowledgment (ACK) is sent back from
the receiver after a Short Inter-Frame Space (SIFS) for
every successful packet reception. If an ACK is not
received, the source increases CW as described above,
and attempts again until the retry limit is reached. After
receiving an ACK, the source performs a “post-backoff”
process with contention window CWmin before being
allowed to restart the above procedure. This prevents
back-to-back packet transmission.

There has been much work in modeling DCF and
EDCA using different approaches [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16]. It is usually
assumed that if two sources transmit at the same time,
they experience a collision, and both packets are lost.
Most models are based on the approximation proposed
in [2] that the collision probability of a transmission is
constant and independent of the number of retransmis-
sions suffered. To obtain the collision probability, a fixed
point formulation was introduced in [2] describing the
relationship between the collision probability and a so-
called attempt probability. The latter is the probability
that a source will attempt to send a packet in a slot,
and is a function of both the collision probability and
the evolution of the backoff process driven by its MAC
(DCF or EDCA) parameters. Existing models can be
classified by the traffic (saturated vs. unsaturated) and
protocol issues (DCF vs. EDCA) they consider, and by
whether they explicitly model backoff as a Markov chain
or only require the mean value at each backoff stage
(mean-based analysis). Our model is of the latter, simpler
type but more comprehensive than existing models of
that type. To clarify this contribution, we first look at
what the current existing models offer.

Recall that we are interested in models of heteroge-
nous users. Several models have been proposed for unsat-
urated traffic with heterogeneous arrival rates and packet
sizes in single-class IEEE 802.11 DCF WLANs: [5] and
[6] propose Markov chain models while [7] proposes a
mean-based analysis. The former are derived from the
saturated model in [2] by introducing to the Markov
chain additional states representing an idle station. The
latter uses the same approach of extending a saturated
model, this time by introducing a conditional attempt
probability conditioned on a source having a packet
to send [21]. Conversely, saturated traffic can also be
approximated by setting the probability a source has a

packet to send at any given time to be 1 as suggested
in [7].

Naturally, the above DCF models do not include
TXOP limit and CWmin differentiation. Many existing
models [8], [9], [10], [11], [12], [13], [14], [17], [15],
[16] of IEEE 802.11e EDCA consider heterogeneous
traffic differentiated by CWmin and AIFS; however,
few explicitly consider TXOP limit. Among those that
explicitly model TXOP limit, most such as [8], [10]
are based on Markov chains. Few [13], [16] use mean-
based analysis. It has been shown in [13] that creating
an accurate model of TXOP limit differentiation requires
more than simply inflating the packet length and is a
nontrivial extension that requires careful consideration.
We notice that in networks with large TXOP limit, two
important aspects are missed in most previous models:
the distribution of the number of packets sent per channel
access (hereafter called “burst size”) and the residual
time of an ongoing transmission from other stations seen
by a burst of an unsaturated source arriving during that
transmission as a component of the burst’s delay. The
model in [10] captures the first aspect but requires a
burdensome matrix calculation on each iteration when
solving the fixed point. Besides, it does not capture the
effect on the distribution of the loss probability due to
exceeding retransmission limit.

The contributions of our paper are as follows

• We point out the need for modeling the residual
time of an ongoing transmission when a burst of an
unsaturated source arrives. We include that in our
model.

• We propose a closed form expression for the distri-
bution of the queue size of an unsaturated source,
which allows us to obtain a closed form distribution
of the burst size. Unlike prior work, we also capture
the effect of loss probability on the distribution.

• We propose a simple method to approximate the
distribution of access delay, which is much simpler
than existing analysis using the z-transform [13],
[17]. Based on the approximation, the slope of
distribution curve’s tail is easily obtained.

• We derive a lower bound on the number of saturated
sources for which unsaturated sources of any load
experience unacceptable delay.

The remainder of the paper is organized as follows.
Section II introduces the notation and assumptions used
in our model. Section III presents a new model of
an 802.11e EDCA WLAN with both unsaturated and
saturated sources. This model is validated in Section IV,
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and applied in Section V to the analysis of the delay
distribution.

II. NOTATION AND MODELING ASSUMPTIONS

We will model an 802.11 EDCA WLAN with Nu ≥ 0
unsaturated Poisson sources (e.g. voice traffic) and Ns ≥
1 saturated sources (e.g. bulk data transfer), which by
definition always have packets available for transmission.
The model can easily be modified to describe DCF’s
different backoff rule.

The model assumes that channel conditions are ideal
(no channel errors, hidden terminals or capture effect), so
that packets are lost only due to collisions, which occur
if and only if multiple sources transmit at the start of the
same slot. In particular, if a burst from an unsaturated
source arrives asynchronously (i.e., arrives at an empty
queue and senses the channel idle for AIFS) then it is
assumed that carrier sensing will prevent a collision,
since other stations will not attempt to transmit until
the next slot boundary, by which time they can sense
this transmission. In our model, all sources use the basic
access scheme without RTS/CTS and an AIFS that is
equal to the Distributed Inter-Frame Space (DIFS). We
also assume that all packets from a given source have
equal size, and non-saturated sources can accommodate
an arbitrary large number of packets (i.e., no buffer
overflow).

Here we will use the same approximation proposed
in [2] that the collision probability of a transmission is
constant and independent of the number of retransmis-
sions suffered. However, the model can also be modi-
fied to cover different collision probabilities at different
transmission attempts of a burst as done in [22]; in this
case, collision probability varies due to the Paradox of
Residual Life [20].

The summary of notation used in our model is as
follows

• Subscripts s and u, respectively, denote a generic
saturated and unsaturated source; subscripts x and y
both denote a generic source, which can be saturated
or unsaturated.

• Superscripts i, c and s denote a quantity pertaining
to a slot which is idle, a collision and a successful
transmission, respectively.

• px and τx, respectively, are the collision probability
and attempt probability of a source x ∈ S ∪ U.

• Lu is the probability that the first packet of a burst
from an unsaturated source u ∈ U is dropped due
to exceeding retransmission limit.

• m and K, respectively, are the doubling limit and
retransmission limit (m ≤ K). The doubling limit
is the maximum number of times a station doubles
its contention window due to collision.

• Y is a random variable (r.v.) representing the dura-
tion of a generic slot, which is σ if the slot is idle,
or longer if the slot is busy.

• Yu is a r.v. representing a slot duration observed by
a burst of the unsaturated source u ∈ U during its
backoff.

• λu is the packet arrival rate of an unsaturated source
u ∈ U.

• Wx is the minimum contention window of the
source x ∈ S ∪ U.

• U [a, b] denotes an integer uniformly distributed on
[a, b], A ∼ B denote that A and B are equal in
distribution, and E[·] denote the mean of a r.v..

• Uxj ∼ U [0, 2min(j,m)Wx − 1] (0 ≤ j ≤ K) is a r.v.
representing the number of backoff slots in the jth
backoff stage of a burst from the source x ∈ S∪U.
In our model, Uxj is assumed to be independent of
all random variables mentioned above.

• lx is the size of a packet from the source x ∈ S∪U.
• ηx is a r.v. denoting the number of packets per burst

of the source x ∈ S ∪ U intending to transmit per
channel access.

• rx is the maximum number of packets which fit into
TXOP limit of the source x ∈ S ∪ U.

• ρu is the probability the non-saturated source u ∈ U
has at least a burst in the queue at a given time.

• bu is the probability that a burst arriving at the
unsaturated source u ∈ U, when the latter has no
packets queued, finds the channel busy.

• T s
x is the random time that a burst sent by a

source x ∈ S ∪ U occupies the channel if it is
successfully transmitted. It is related to physical
802.11 parameters by:

T s
x = Tdifs + ηx(Tpx + Tack) + (2ηx − 1)Tsifs (1)

where Tdifs, Tsifs, and Tack are the duration of
DIFS, SIFS, and transmission of an ACK packet,
respectively, and Tpx is the transmission time of a
packet from the source x.

• Tx is T s
x conditioned on ηx = 1, which is determin-

istic.
Note that the total collision time experienced by a

source in a collision will be the transmission time of
the longest packet involved in that collision, plus an
Extended Inter-Frame Space (EIFS) for stations not
involved in the collision or ACKtimeout + DIFS for
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stations involved in the collision. From [1], the duration
of EIFS is

Teifs = Tsifs + Tack + Tdifs (2)

and the duration of ACKtimeout can safely approxi-
mated by

TACKtimeout = Tsifs + Tack (3)

From above, it is clear that the total collision time
experienced by a source in a collision is equal to Tx

where x is the source with longest packet size among
sources involved in the collision.

III. MODEL

The following model captures the interaction between
unsaturated realtime traffic and saturated data flows in
an 802.11e EDCA WLAN. Using the assumptions and
notation described in Section II, the model takes the
system parameters Wx, rx, Tpx (x ∈ S ∪ U), and λu

(u ∈ U), as input, and predicts the throughput of the
saturated sources and the access delay of the unsaturated
sources.

Without loss of generality, define sources to be in-
dexed in non-increasing order of packet size, regardless
of whether they are saturated or unsaturated. That is, for
all x, y ∈ S ∪ U, Tx ≥ Ty for x < y.

A. Fixed point model

Central to the model is a set of fixed-point equa-
tions, where the collision probabilities of all sources
are expressed in terms of the attempt probabilities of
all sources, and vice versa. We will now derive the
fixed point equations which will be presented in (14)
below. Note that the collision probability of a source is
the probability that source experiences a collision given
that it is transmitting. Moreover, in our paper, the word
“attempt” means the contention attempt, which is the
attempt of the first packet of a burst.

First, to determine the collision probability, denote the
probability that no sources transmit in a given slot by

G =
∏

x∈S∪U
(1− τx). (4)

The collision probability of a given source x ∈ S∪U
is then

px = 1− G

1− τx
. (5)

Second, the attempt probability of a saturated source
s ∈ S is the mean number of attempts per burst divided

by the mean number of slots per burst

τs =
∑K

k=0 pk
s∑K

k=0(E[Usk] + 1)pk
s

(6)

where the mean number of backoff slots is

E[Usk] =
2min(k,m)Ws − 1

2
. (7)

Next, we will determine the attempt probability of an
unsaturated source. First note that the attempt probability
of an arbitrary unsaturated source u ∈ U is the expected
number of attempts per source u per second divided by
the expected number of system slots per second, where
the expected number of attempts per source u per second
is the product of the expected number of bursts per
source u per second and the expected number of attempts
per burst. These are given as follows.
• The mean number of bursts per source u per second

is its packet arrival rate λu divided by the mean size
of a burst departing from the queue.
The size of a burst departing from the queue is on
average E[ηu] if the burst is successfully transmit-
ted, or 1 if the retry limit is exceeded, since in that
case only the head of line packet is dropped. Hence,
its mean is

Lu + (1− Lu)E[ηu] (8)

where
Lu = pK+1

u (9)

is the loss probability, and the mean size of a
burst attempting to transmit in a given slot, E[ηu],
depends on the queue size distribution at the node.
For light load, E[ηu] = 1; in general, it is given by
(41) in Section III-C.
Then, from (8), the mean number of bursts per
source u per second is

λu

Lu + (1− Lu)E[ηu]
(10)

• To determine the average number of attempts per
burst from unsaturated sources, we make usual ap-
proximation [7], [10], [16], [19] that bursts from an
unsaturated source arriving at an empty queue and
sensing channel idle will contend for the channel,
the same as when they arrive at non-empty queue or
sense channel busy. Then, the mean number of at-
tempts per burst from the source u is approximated
by

1 +
K∑

j=1

pj
u =

1− pK+1
u

1− pu
(11)
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Simulation results suggest this is reasonably ac-
curate, which appears to be due to the presence
of saturated sources. This approximation is not
required in the delay model of Section III-B.

• The mean number of system slots per second is

1
E[Y ]

(12)

From (10), (11) and (12), the attempt probability of
the source u is

τu =
λu

Lu + (1− Lu)E[ηu]
1− pK+1

u

1− pu
E[Y ] (13)

A special case of Eq. (13) in 802.11 DCF WLANs
without saturated sources coincides with the model of
[19].

The fixed point is between the collision probabilities
in (5) and the attempt probabilities derived from (6) and
(13):

τs = 2(1− pK+1
s )/

(
Ws(1− (2ps)m+1)

1− ps

1− 2ps
+

(2mWs + 1)(1− pK+1
s )− 2mWs(1− pm+1

s )
)
, s ∈ S

(14a)

τu =
λu

Lu + (1− Lu)E[ηu]
E[Y ]

1− pK+1
u

1− pu
, u ∈ U

(14b)

px = 1− G

1− τx
, x ∈ S ∪ U. (14c)

The mean slot time E[Y ] can be expressed in terms of
the probability ai that no sources transmit in a given slot,
the probability as

x that a source x successfully transmits
a burst in a given slot, and the probability ac

x that there
is a collision involving the source x and only sources
y > x with packets no larger than Tx. Specifically,

E[Y ] = aiσ +
∑

x∈S∪U
as

xE[T s
x ] +

∑

x∈S∪U
Txac

x (15a)

ai = G (15b)

as
x =

τx

1− τx
G (15c)

ac
x = τx

∏
y<x

(1− τy)


1−

∏
y>x

(1− τy)




=
τx

1− τx


∏

y≤x

(1− τy)−G


 (15d)

E[T s
x ] = Tdifs + E[ηx](Tx + Tack) + (2E[ηx]− 1)Tsifs

(15e)

where G is given by (4). Note that all Ns +Nu values of
ac

x can be calculated in O(Ns +Nu) time, by the nested
structure of the products in (15d).

The fixed point (14) involves E[ηx] and E[Y ]. For
light load, E[ηx] = 1; hence, solving the fixed point
(14) requires only (15). In general, E[ηx] is given by
(41) derived from the delay model; hence, solving the
fixed point (14) requires (15) and the delay model in
Sec. III-B.

Simpler form for K = m = ∞: Although the re-
transmission limit K is equal to 7 in 802.11 standards, in
many settings a source rarely uses all 7 retransmissions.
In that case, it is reasonable to reduce the complexity
of the model by approximating K and m to be infinite.
Then, the fixed point (14) simplifies to

τs =
2

Ws
1−ps

1−2ps
+ 1

, s ∈ S (16a)

τu =
λu

E[ηu]
E[Y ]

1
1− pu

, u ∈ U (16b)

px = 1− G

1− τx
, x ∈ S ∪ U (16c)

B. Delay model

In this section, we calculate the access delay of bursts
from an unsaturated source. This is not only an important
performance metric for those sources, but is also used to
determine E[ηx] used in the fixed point (14).

Define the access delay to be the time between the
instant when the burst reaches the head of the queue and
begins contending for the channel, and the time when it
is successfully received. Note that our model assumes a
packet is lost only due to exceeding the retry limit.

We first propose the access delay model of a burst
that arrives at an empty queue. The novelty is that we
capture two important features which cannot be ignored
in that case: the behavior when the burst arrives at an idle
channel, and the residual time of the busy period during
which the burst arrives. The probability bu that the burst
arrives at a busy channel, and hence initiates a backoff
process, can have an effect of up to 25% on the delay
estimates when load is light. Hence, it is considered in
our delay model, unlike in the fixed point model (14).
Moreover, Tres,u, a r.v. that represents the residual time
of the busy period during which the burst arrived, is
significant in the existence of sources with large TXOP
limit. Prior work has neglected the effect of Tres,u.

Let Du be a r.v. representing the access delay of a
burst from the unsaturated source u ∈ U. Then

Du = T s
u + Au. (17)
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Here the transmission time T s
u , given by (1), is random

since ηu is random. The r.v. Au representing the total
backoff and collision time of the burst before it is
successfully transmitted has the distribution

Au =





0 w.p.
1− bu

1− bu + bu(1− pK+1
u )

Auk w.p.
bupk

u(1− pu)
1− bu + bu(1− pK+1

u )
, K ≥ k ≥ 0

(18)

in which Auk is a r.v. representing the total backoff and
collision time of the burst provided that it is successfully
transmitted in the kth backoff stage. The remainder of the
complexity of the delay model comes from estimating
the duration of the backoff slots which comprise Auk.

Write

Auk =
k∑

j=0

Buj +
k∑

j=1

Cu + Tres,u (19)

where the r.v. Buj accounts for the backoff time in the
jth backoff stage; and the r.v. Cu represents the duration
of a collision involving a tagged burst.

The backoff time Buj is given by

Buj =
Uuj∑

k=1

Yu,k (20)

where Uuj is the number of backoff slots in the jth
backoff stage, and the Yu,k ∼ Yu are the independent,
identically distributed (i.i.d.) durations of a slot condi-
tional on source u not transmitting, namely

Yu =





σ w.p. ai
u

Tx w.p. ac
xu, x ∈ S ∪ U \ {u}

T s
x w.p. as

xu, x ∈ S ∪ U \ {u}
(21)

where ai
u, ac

xu and as
xu are the probabilities, conditional

on u not transmitting, of an idle slot, a collision between
a source x and sources y > x with packets no larger than
Tx, and a success of a burst from a source x. ai

u and
as

xu are obtained by dividing the analogous quantities in
(15b)–(15c) by 1− τu while ac

xu is given by

ac
xu =

τx

1− τx




∏

y≤x
y 6=u

(1− τy)− G

1− τu


 (22)

The random collision time Cu is the duration of the
longest packet involved in a collision involving source
u,

Cu = max(Tu, Tx) w.p. acu
xu, x ∈ S ∪ U \ {u} (23)

where acu
xu is the probability that the source u collides

with the source x and possibly sources y > x with
packets no larger than Tx, given by

acu
xu =

τx

1− ai
u

∏
y<x
y 6=u

(1− τy) (24)

Finally, the probability bu that the burst arrives during
a busy slot can be estimated as

bu = 1− ai
uσ

E[Yu]
(25)

Mean access delay: From (17), the mean access delay
is

E[Du] = E[Au] + E[T s
u ] (26)

where by Wald’s theorem for sums of i.i.d. random
variables [23],

E[Au] ≈ bu

1− bu + bu(1− pK+1
u )

(
Wu

2

.
(2(1− (2pu)m+1)(1− pu)

1− 2pu
− 1 + pm+1

u

+ (−1 + 2m+1 −m2m)(pm+1
u − pK+1

u ) + 2m

.
(pm+1

u − pK+1
u

1− pu
+ mpm+1

u −KpK+1
u

))
E[Yu]

+ E[Cu]
(1− pK

u

1− pu
pu −KpK+1

u

)

+ E[Tres,u](1− pK+1
u )

)
(27)

The approximation in (27) comes from approximating

E[Uuj ] =
2min(j,m)Wu − 1

2
≈ 2min(j,m)−1Wu. (28)

The mean slot duration E[Yu] observed by the source
u and the mean collision delay E[Cu] can be found
from (21) and (23), respectively. The mean residual time
E[Tres,u] is given by [20]

E[Tres,u] =
E[Y b

u ]
2

+
Var[Y b

u ]
2E[Y b

u ]
, (29)

where Y b
u is the duration of a busy period caused by

transmissions of other sources. Its distribution is similar
to that of Yu of (21), conditioned on the slot not being
idle.

CAIA Technical Report 110811A August 2011 page 6 of 21



Simpler form for K = m = ∞: In this case, the
mean access delay in (27) is reduced to

E[Au] ≈bu

( (
1

2(1− 2pu)

)
WuE[Yu] +

E[Yu]
2(1− pu)

+
pu

1− pu
E[Cu] + E[Tres,u]

)
. (30)

Remark 1: Although E[Yu] and E[Y b
u ] can be calcu-

lated using (21), it is simpler to use

E[Yu] =
E[Y ]− as

uE[T s
u ]− E[Cu]τupu

1− τu
, (31)

which comes from the fact that Yu is Y excluding
components involving the source u which are successful
transmission of u or collision involving u and the fact
that the probabilities a slot is idle, contains a successful
transmission, or contains a collision among an arbitrary
number of sources of Yu are similar to those of Y scaled
by 1− τu.

Then, E[Y b
u ] is given from E[Yu] as

E[Y b
u ] =

E[Yu]− σai
u

1− ai
u

(32)

However, the form (21) is needed to calculate Var[Y b
u ],

and the distribution of delay as done in Appendix A.
Remark 2: Under high load, a burst of an unsaturated

source is likely to see a non-empty queue when arriving.
Hence, it will have queueing delay in addition to access
delay.

In this case, the access delay model above can still be
used, which can be justified as follows.

Under high load, there are three possibilities a burst
from an unsaturated source will observe upon arriving:
• Empty queue and channel idle for DIFS. For this

case, Au = 0 but its probability is small. Hence, it
is reasonable to approximate it by the first term of
(18).

• Empty queue and channel idle less than DIFS. For
this case, Au = Auk with Auk given in (19).

• Non-empty queue. For this case, Au = Auk with
Auk given in (19) but without E[Tres,u].

The last two cases can be reasonably approximated by
the second term of (18) because Au in these cases only
differ in E[Tres,u]. Hence, the above delay model can be
a good approximation under high traffic load. This will
be confirmed by simulation in Sec. IV.

Note that the above delay model is not very accurate if
E[Tres,u] is significant compared with other components
of the access delay, which is the case when the load from
the tagged unsaturated source is high while the load from

other stations in the network is light and other stations
use very large TXOP limit.

To have more accurate calculation of the access delay
under any load, the above delay model can be extended
by modifying (18) and (19) as follows
• Au in (18) now becomes A′u given by

A′u =





0 w.p. (1− bu)(1− ρu)/Θ
A′uk + E[Tres,u] w.p. bu(1− ρu)/Θ

A′uk w.p. ρupk
u(1− pu)/Θ

(33)

where Θ = (1 − bu)(1 − ρu) + (1 − (1 − bu)(1 −
ρu))(1 − pK+1

u ) and A′uk (0 ≤ k ≤ K) is given in
(34) below.

• Auk in (19) now becomes A′uk given by

A′uk =
k∑

j=0

Buj +
k∑

j=1

Cu (34)

The mean queueing delay can be straightforwardly
calculated using the P-K formula for an M/G/1 queue
with the mean and variance of the service time deter-
mined from the access delay model. However, that is
out of scope of the present paper.

C. Distribution of burst size

1) Saturated sources: The burst size ηs of a saturate
source s ∈ S is a constant and equal to rs, the maximum
number of packets that fit in TXOP limit of the source s.
This is because a saturated source always has a packet
waiting to transmit.

In particular, by (1),

ηs = rs =
⌊

TxOP limit− Tdifs + Tsifs

Tpx + Tack + 2Tsifs

⌋
(35)

2) Non-saturated sources: A non-saturated source u
will send in bursts up to ru or the number of packets in
the queue, whichever is less. To estimate the distribution
of these burst sizes we first model the queue size process.
Note that in this model, packets arrive separately. In
practice, packets may arrive in bursts. The model could
be extended to one such as [25], but that is out of the
scope of this paper.

a) Distribution of queue size: Model the queue size
process as a Markov chain, with state k = 0, 1, 2...
corresponding to having k packets in the queue. From
state k, there are transitions at rate λu to state k + 1
corresponding to packet arrivals. From state k ≥ 1, there
are transitions to state k−1 at rate µuLu, corresponding
to the loss of a single packet due to excess collisions.
In states k = 1, ..., ru, all packets can form a single
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batch, and so there are transitions to state 0 at rate
µu(1−Lu), corresponding to the successful transmission
of this batch. In states k > ru, each batch consists of
ru packets and so there are transitions to state k− ru at
rate µu(1− Lu). This is illustrated in Fig. 1.

Note that this Markov approximation is only useful for
estimating the queue distribution for low occupancies;
we will show in Section V that the tail of the service
time distribution can be heavy, which means this Markov
approximation does not capture the tail properties of the
queue size. However, the burst size distribution does not
depend on the tail.

In the above Markov chain, the total service rate at
each state is the same and determined by

µk = µu =
1

E[Du]
, ∀k ≥ 1 (36)

where µk is the total service rate at state k; µu is the
average service rate of an unsaturated source u; E[Du] is
its mean service time, which is mean access delay given
by (26).

E[Du] = E[Au] + E[T s
u ] (37)

where E[T s
u ] is the mean successful transmission time of

a burst, given by (1) with ηu = E[ηu].
As noted in [24], the service rate may actually differ

between states. However, as will be shown by simulation
below, the approximation of constant service rate is
actually more accurate than the approximation in [24]
under the considered circumstances, as well as being
more tractable.

Let Qu be a random variable representing the queue
size of an unsaturated source u in this Markov model.

Observe that Fig. 1 is similar to that of bulk service
systems presented in [20] where the service rate of all
states are approximated to be equal to the average one,
except the fact that there is a transition from every state
k to the previous state k − 1 which represents the case
when the head of queue (HoQ) packet is dropped due
to exceeding the retransmission limit. This suggests the
following result.

Theorem 1: If 0 < λu < µu(Lu + ru(1 − Lu)) then
the above Markov chain has a geometric steady state
distribution,

P [Qu = k] =
(
1− 1

z0

)( 1
z0

)k
, k = 0, 1, 2, · · · (38)

where z0 > 1 is a solution of

ρuzru+1 − (1 + ρu)zru + Luzru−1 + 1− Lu = 0 (39)

where ρu = λu/µu.

Proof: The proof decomposes the transition matrix
A of the Markov chain as the sum of those of an M/M/1
queue and a bulk service queue, with equal steady state
distributions.

Let A′x be the transition matrix of an M/M/1 queue
with service rate Luµu and arrival rate xλu, and A′′x be
the transition matrix of a bulk service queue [20] with
service rate (1−Lu)µu and arrival rate (1−x)λu. For x ∈
(0, Luµu/λu), the M/M/1 queue has geometric steady
state probabilities Q′

x whose mean q′x increases continu-
ously from 0 to ∞. For x ∈ (1− (1−Lu)µu/λu, 1), the
bulk service queue has geometric steady state probabili-
ties Q′′

x whose mean q′′x decreases continuously from ∞
to 0. Let (a, b) be the intersection of those intervals. This
is non-empty by the upper bound on λu. Then q′x − q′′x
increases continuously on (a, b). It is negative as x → a,
as either q′a = 0 if a = 0 or q′′x → ∞ as x → ∞
if a > 0. Similarly, it is positive as x → b. Hence
there is an x̃ ∈ (a, b) ⊆ (0, 1) such that Q′

x̃ = Q′′
x̃.

Then 0 = Q′
x̃(A′ + A′′) = Q′

x̃A, and so the geometric
distribution Q′

x̃ is the steady state distribution of the
original Markov chain.

Substitution of the form (38) into balance equations of
the Markov chain, implies that z0 is the solution greater
than 1 of (39).

b) Distribution of burst size: Here we determine
the distribution of burst size ηu that an unsaturated source
u transmits whenever a burst is removed from the queue
by successful transmission or the HoQ packet is removed
from the queue due to exceeding the retry limit. This
burst size is a function of the queue size. Since the
transmission rate is equal (µu) in each state, the dis-
tribution of burst size ηu is equal to that of min(Qu, ru)
conditioned on Qu ≥ 1, which has complementary
cumulative distribution function (ccdf)

P [ηu > k] =

{
(1/z0)k 0 ≤ k < ru

0 k ≥ ru.
(40)

Then, the mean burst size is the sum of its ccdf as
follows.

E[ηu] =
∞∑

k=0

P [ηu > k] =
1− (1/z0)ru

1− 1/z0
(41)

c) Comparison with other work: Note that [24]
proposed a Markov chain of the queue size which is
similar to the above except that it (a) assumes different
service rates for different states, (b) ignores the tran-
sition when the retry limit is exceeded, and (c) has a
finite buffer. Then, the distribution of queue size Qu is
determined by numerically solving the balance equations
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Fig. 1. The state-transition-rate diagram of queue size of an unsaturated source u.

and the distribution of burst size is approximated by the
(time average) distribution of min(Qu, r) conditioned on
Qu > 0.

One drawback of that approach is that it does not
admit a closed-form solution for the distribution. Hence,
it is computationally costly due to the matrix calculation
on each iteration when solving the fixed point, especially
when the buffer size of system is large. Since the model
allows the service rates to differ in each state, it is natural
to assume that the model of [24] would be more accurate
(which would compensate for the higher complexity), but
we now demonstrate that this is not the case.

Using the fixed-point model (14)–(15), we investigate
the mean burst size E[ηu] determined from two Markov
chains of queue size distribution: ours in Fig. 1 and the
one in [24]. To have fair comparison, Lu is assumed
to be 0 and the buffer capacity is set to be large (100
packets). The highest difference in E[ηu] between two
Markov chains occurs when the network load is light
and the arrival rate of a given unsaturated source is
reasonably high. To investigate the accuracy of each
scheme, we simulate such a scenario, specifically one
with one saturated source and one unsaturated source
with the arrival rate changing from small to large.

Note that [24] does not explicitly state how the service
rate in each state is determined. Since it is constant for
states greater than ru, we assume that the service rate at
state k satisfies

1/µk = E[Au] + T s
u |ηu=k, ∀k ≥ 1 (42)

where T s
u |ηu=k is the duration of a successful transmis-

sion of a burst of k packets, given by (1) with ηu = k.
The results are in Fig. 2, which shows that E[ηu]

from our Markov chain is closer to the simulation
than that from the Markov chain of [24]. At this light
load, the truncation to an occupancy of 100 packets is
insignificant, and Lu = 0; hence, two Markov chains
only differ in whether the service rate µk is constant
or given by (42). This is counterintuitive, since (42)
captures the increase in transmission time with k. We
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Fig. 2. The average burst size E[ηu] as a function of the arrival rate
of an unsaturated source λu. (Unsaturated stations: Poisson arrivals
with rate λu, Nu = 1, lu = 100 Bytes, Wu = 32, ru = 7; Saturated
stations: Ns = 1, ls = 1040 Bytes, Ws = 32, ηs = 1.)

believe the inaccuracy is because (42) neglects the fact
that the some fraction of the access delay E[Au] has
already elapsed by the time state k is reached, and so
should not be reflected in (the reciprocal of) the transition
rate. Since the true mean transmission time is the sum of
an increasing term and a decreasing term, it is not clear
a prior whether the constant rate µu or the increasing
rate (42) would be a better model.

Another possible source of error is in obtaining the
burst size distribution from the queue occupancy distri-
bution. In [24] the burst size distribution was approx-
imated by the time average distribution of min(Qu, r)
conditioned on Qu > 0. However, the burst size de-
pends on the queue size not at a typical point in time,
but at a service instant. Thus, the weights given to
different queue occupancies should be proportional to
µkP [Qu = k], rather than P [Qu = k]. In our model, µk

is independent of k and so these become equivalent.
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D. Throughput of saturated sources

The throughput in packets/s of a saturated source
s ∈ S is the average number of packets successfully
transmitted per slot divided by the average slot length
[2]

Ss =
E[ηs]τs(1− ps)

E[Y ]
(43)

where E[ηs] is the average number of packets per burst
and the rest of the numerator is the probability the source
s successfully transmits a burst in a given slot.

E. Model summary

The model described in the foregoing sections can be
summarized as follows.

At low load, E[ηu] = 1 for u ∈ U; hence, the fixed
point consists of (14), (15) and (35).

At high load, E[ηu] (u ∈ U) depends on the distri-
bution of queue size which involves the access delay;
hence, the fixed point includes not only (14), (15) and
(35) but also the delay model (17)–(29) and the burst
size model (36)–(41).

The outputs px, τx (x ∈ S∪U), Ss (s ∈ S) and E[Du]
(u ∈ U) can be determined by iteratively solving the
fixed point numerically.

Consistency of the model: For our model to be physi-
cally meaningful, the rate of successful channel accesses
per second of an unsaturated source should be less than
that of a saturated source with the same CWmin, m, and
K.1 When all sources have equal CWmin, m, and K,
this implies that for all s ∈ S and u ∈ U,

λu

E[ηu]
<

Ss

E[ηs]
(44)

For situations where the burst arrival rate λu/E[ηu] does
not satisfy this condition, an alternate instance of model
(14)–(44) should be used, in which the unsaturated
source u is replaced by a saturated source.

IV. NUMERICAL EVALUATION AND DISCUSSION

To validate the model consisting of (14)–(15),(17)–
(29),(35)–(41), and (43), it was compared with simu-
lations and, where possible, two existing models [5],
[7]. The simulations used ns-2.33 [29] with the EDCA
package [30].

1It is not trivial that a saturated source achieves higher throughput
than an unsaturated one; a network of only unsaturated sources can
obtain a higher throughput than one of saturated sources [2, Fig. 3]
because of the lower collision rate. However, within a given network,
a saturated source gets a higher throughput than an unsaturated one
with the same parameters.

TABLE I
MAC AND PHYS PARAMETERS FOR 802.11b SYSTEMS

Parameter Symbol Value
Data bit rate rdata 11 Mbps

Control bit rate rctrl 1 Mbps
PHYS header Tphys 192 µs
MAC header lmac 288 bits

UDP/IP header ludpip 160 bits
ACK packet lack 112 bits

Slot time σ 20 µs
SIFS Tsifs 10 µs
DIFS Tdifs 50 µs

Retry limit K 7
Doubling limit m 5
Buffer capacity 50 packets

We simulated networks of unsaturated sources and
saturated sources sending packets to an access point
using both DCF and EDCA. Under DCF, all stations
are allowed to transmit only one packet per channel
access; hence, ηx = 1,∀x ∈ S ∪ U. Recall that under
EDCA, the standard [1] defines a mode which allows
a source to transmit only one packet per burst, instead
of specifying a duration TXOP limit. Throughout this
section and Sec. V-B, we refer to this mode as η = 1.

All sources use the user datagram protocol (UDP).
The traffic type used for unsaturated sources is either
Poisson or quasi-periodic (CBR with some randomness
in the inter-arrival time), as indicated in each scenario.
Saturated sources receive CBR traffic at a rate faster
than they can transmit. The MAC and physical layer
parameters are set to the default values in IEEE 802.11b,
as shown in Table I. These parameters determine Tx and
T s

x of (1) through the transmission duration of a packet
of size lx from a source x, and of an ACK packet,

Tpx = Tphys +
lmac + ludpip + lx

rdata
, x ∈ S ∪ U

Tack = Tphys +
lack

rctrl

In the figures of this section, simulation results are
shown with confidence intervals which are determined
using the Student t-distribution with confidence 95%
[27]. Note that in some figures, the confidence intervals
are too small to be seen.

A. Validation and comparison with existing DCF models

First, we compare our model with existing models of
heterogeneous traffic [5], [7], which only consider IEEE
802.11 DCF, without multiple CWmin or TXOP limits.
To apply our model to DCF, we adjusted the backoff
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decrement rule by replacing T s
x and Tx (x ∈ S ∪ U) in

(15a) and (21) by (T s
x + σ) and (Tx + σ).

1) Summary of two benchmark models: Before de-
scribing the simulation results, let us recall the models
in [5] and [7].

a) Markov chain: The model in [5] is based on a
Markov chain similar to that of [2], with additional states
for unsaturated sources. It assumes that unsaturated
sources have minimal buffers; therefore, when a packet
arrives at a busy unsaturated source, it will be dropped.
This causes the collision probability computed from this
model to be smaller than that of models with non-zero
buffers, such as our model. In [5] for heterogeneous
traffic, the attempt probability of each type of traffic is
obtained by solving a Markov chain and the collision
probability of each type of traffic is determined as the
probability that, when a source of that type transmits,
there is at least one other source transmitting at the same
time. The attempt and collision probabilities of each
type of traffic are found by solving four simultaneous
equations iteratively.

b) Mean-based: The model in [7] uses the mean-
based approach for heterogeneous traffic, with an ap-
proximation in modelling an unsaturated source by a
conditional attempt probability conditioned on the source
having a packet to send. The approximation was first
proposed in [21] for homogeneous traffic. This model
assumes that unsaturated sources have infinite buffers.

The collision probabilities are again determined as
the probability that, when a source of a given type
transmits, there is at least one other source transmitting.
Conversely, the attempt probability of each type of traffic
is computed from the conditional attempt probability and
the probability ρ that a source of that type has a packet
to send at any given time. Because ρ depends on service
time (which is the access delay in our model), this
gives a fixed point involving two equations for collision
probabilities and two equations for service times which
can be solved iteratively. For a saturated source, ρ = 1.

It will be shown later in Figs. 3 and 4 below that the
results of this model are not very accurate in the setting
we consider. This appears to be a result of using the
time average occupancy ρ instead of the probability that
a source has a packet in a given slot. Thus we propose
a modification to the model of [7] which replaces ρ by

ρslot =
λ(w̄u + E[Ru])
Ss(w̄s + E[Rs])

(45)

where the numerator is the mean number of slots an
unsaturated source has a packet per second and the

denominator is the mean number of system slots per
second. Ss and λ, respectively, are the throughput of
a saturated source and the packet arrival rate of an
unsaturated source; w̄u and E[Ru], respectively, are the
average total number of backoff slots and the average
number of attempts a packet from an unsaturated source
will encounter before it is successfully sent; and w̄s

and E[Rs] are the corresponding values for a saturated
source. These quantities are already calculated in the
model of [7]. Note that in this calculation, the packet
service time of an unsaturated source is not used and as a
result it need not be involved in the fixed point equations
as it is in [7]. The proposed modification improves the
match between the model of [7] and simulated values of
the collision probabilities and throughput, but the match
to mean access delay remains poor.

2) Validation: We simulated DCF networks of Nu

identical unsaturated sources sending packets of size
lu with the Poisson arrival of rate λ, and Ns identical
saturated sources sending packets of size ls, all sending
to an access point. We varied Nu, Ns, λ, lu, and ls. These
two types of traffic have the same MAC parameters
〈CWmin = 32, η = 1〉 because there is no service
differentiation in DCF.

Recall that subscripts s and u denote saturated and
unsaturated sources, respectively.

a) Scenario 1: In this scenario, we vary the number
of saturated (Ns) and unsaturated (Nu) sources. The col-
lision probability and throughput of a saturated source,
and the collision probability and mean access delay of
an unsaturated source, respectively, are shown in Fig. 3
as functions of Nu, parameterized by Ns. These figures
show results computed from our model as well as from
[5] and [7]. Simulation results are also plotted in the
same figures.

Our model and the model of [5] accurately capture
the increase in collision probabilities when Ns and Nu

increases, and the resulting decrease in the throughput
of saturated sources and increase in the mean access
delay of unsaturated sources. However, the collision
probabilities and mean access delay estimated from [7]
are much higher than those of the simulation.

b) Scenario 2: In this scenario, we vary unsaturated
sources’ packet size (lu, and hence Tu for u ∈ U) and
packet arrival rate (λ) while keeping the Nu and Ns

unchanged. The collision probability and throughput of
each saturated source, and the collision probability and
mean access delay of an unsaturated source, respectively,
are shown in Fig. 4 as functions of lu, parameterized by
λ. Results are obtained from our model, [5], [7], and
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(a) Collision probability of a saturated source
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(b) Throughput of a saturated source
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(c) Collision probability of an unsaturated source
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Fig. 3. Collision probabilities, throughput, and mean access delay for DCF, Scenario 1. Figs. 3(a), 3(c) and 3(d) clearly show that our
model is much more accurate than the model in [7]. (Unsaturated stations: Poisson arrivals with rate λ = 10 packets/s, lu = 100 Bytes,
Wu = 32, ηu = 1; Saturated stations: ls = 1040 Bytes, Ws = 32, ηs = 1.)
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(b) Throughput of a saturated source
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(c) Collision probability of an unsaturated source
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(d) Mean access delay of an unsaturated source

Fig. 4. Collision probabilities, throughput, and mean access delay for DCF, Scenario 2. Figs. 4(b) and 4(d), respectively, show clearly that
our model is much more accurate than the models in [5] and [7]. (Unsaturated stations: Poisson arrivals with rate λ, Nu = 10, Wu = 32,
ηu = 1; Saturated stations: Ns = 2, ls = 1040 Bytes, Ws = 32, ηs = 1.)
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simulation.
Figure 4 shows that results from our model correctly

capture the increase in collision probability with increas-
ing lu and λ, and the resulting decrease in throughput
of saturated sources and increase in mean access delay.
As for Scenario 1, the model in [7] overestimates the
collision probabilities and mean access delay.

This scenario violates the zero-buffer assumption of
[5], which hence becomes inaccurate when the packet
arrival rate of unsaturated sources is 50 packets/s. That
model predicts a high packet drop rate at high traffic
load, which causes the collision probabilities to be un-
derestimated.

In summary, our model for a network with both unsat-
urated and saturated sources developed in Section III is
simple and versatile, and provides results more accurate
than existing models when buffers are large.

B. Validation in 802.11e EDCA

In this subsection, we validate our model in 802.11e
EDCA WLANs.

1) Scenario 3: We simulated networks with four types
of traffic, denoted u1, u2, s1 and s2, of which the first
two are unsaturated. The number of sources N , burst size
η and packet size l will be distinguished by subscripts
u1 to s2. Unsaturated sources of types u1 and u2 have
different arrival rates λu1 and λu2.

In this scenario, Nu1 = Nu2 = Ns1 = Ns2 = N ,
lu1 = 500 Bytes, λu1 = 10 packets/s, lu2 = 100 Bytes,
λu2 = 45 packets/s, ls1 = 1200 Bytes, and ls2 =
800 Bytes. Packets arrive at unsaturated sources accord-
ing to a Poisson process.

The QoS parameters 〈CWmin, η〉 of sources of types
u1, u2, s1 and s2, respectively, are 〈32, 2〉, 〈32, 5〉,
〈96, 1〉 and 〈96, 2〉.

The throughput in packets/s of a saturated source
of type s1 and s2, and the mean access delay of an
unsaturated source of type u1 and u2, respectively, are
shown in Fig. 5 and Fig. 6 as a function of the number
of sources per type N .

From Fig. 5, the throughput of a saturated source of
type s1 is less than that of type s2. This is because types
s1 and s2 have the same CWmin but type s1 has smaller
TXOP limit and larger packet size. As can be seen, our
model provides a surprisingly accurate estimate of the
throughput.

Fig. 6 shows that our model also provides a reasonably
accurate estimate of the mean access delay despite its
simplicity compared with Markov chain based models.
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Fig. 5. Throughput of a saturated source of type s1 and s2, Scenario
3. (Unsaturated stations of type u1: Poisson arrivals with rate λu1 =
10 packets/s, lu1 = 500 Bytes, ηu1 = 2; Unsaturated stations of type
u2: Poisson arrivals with rate λu2 = 45 packets/s, lu2 = 100 Bytes,
ηu2 = 5; Saturated stations of type s1: ls1 = 1200 Bytes, ηs1 = 1;
Saturated stations of type s2: ls2 = 800 Bytes, ηs2 = 2.)

2) Scenario 4: We simulated networks of Nu identi-
cal unsaturated sources sending bursts of ηu packets of
size lu with the arrival rate λ, and Ns identical saturated
sources sending fixed bursts of ηs packets of size ls to
an access point. Recall that subscripts s and u denote
saturated and unsaturated sources, respectively.

Unsaturated sources have QoS parameters 〈CWmin =
32, η = 1〉. The QoS parameters of saturated sources are
〈CWmin = 32ηs, η = ηs〉.

In this scenario, we vary the burst size of saturated
sources (ηs). Also instead of Poisson arrivals, the packet
inter-arrival times of unsaturated sources are set to be
uniformly distributed in the range 1/λ±1%. This quasi-
periodic model represents voice traffic (which is often
treated as periodic CBR traffic [31]), subject to jitter
such as that caused by the operating system. Explicitly
including this jitter is necessary to avoid “phase effect”
artifacts in the results.

The throughput of a saturated source is shown in
Fig. 7(a) as a function of ηs, parameterized by Ns.
When ηs increases, there are fewer bursts from saturated
sources contending for the channel, which decreases their
collision probability. As a result, the throughput of a
saturated source (in packets/s) increases.

One of the contributions of our proposed model is
to capture the residual time of the busy period during
which the burst arrived Tres,u, which was not important
in DCF, and has often been overlooked in EDCA models.
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Fig. 6. Mean access delay of an unsaturated source of type u1 and u2, Scenario 3. (Unsaturated stations of type u1: Poisson arrivals
with rate λu1 = 10 packets/s, lu1 = 500 Bytes, ηu1 = 2; Unsaturated stations of type u2: Poisson arrivals with rate λu2 = 45 packets/s,
lu2 = 100 Bytes, ηu2 = 5; Saturated stations of type s1: ls1 = 1200 Bytes, ηs1 = 1; Saturated stations of type s2: ls2 = 800 Bytes,
ηs2 = 2.)
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Figure 7(b) shows the mean access delay of a burst from
unsaturated sources with and without Tres,u in the access
delay model under the same scenario. As can be seen,
when ηs is large, Tres,u has significant effect on the delay
estimation.

Also from Fig. 7(b), when ηs increases, for Ns greater
than 1, there is a local minimum access delay. Initially,
the dominant effect is the decrease in collisions due to
the larger backoff window Ws of the saturated sources.
For larger ηs, the increase in residual time Tres,u dom-
inates this. This suggests that there is an optimal value
for ηs where the access delay of unsaturated sources
is minimum. This qualitative effect is not captured by
models that neglect Tres,u.

More importantly, Fig. 7 shows that increasing Ws

and ηs together can benefit both unsaturated sources
and saturated sources. Although the optimal value of
ηs may vary in different scenarios, in most cases, ηs

of 2 provides an improvement in the throughput of a
saturated source and a reduction in mean access delay
of unsaturated sources.

As our model is able to capture the right trend of mean
access delay of unsaturated sources and throughput of
saturated sources, it can be used to estimate the optimal
ηs in this scenario.

V. APPLICATION OF THE MODEL

To demonstrate the usefulness of our model, we will
use it to determine the distribution of access delay
experienced by a burst from an unsaturated source. This
is useful for tasks such as determining the appropriate
size for jitter buffers.

For tractability, we approximate K and m to be infi-
nite in the whole model and impose the approximation
bu = 1 in the delay model. Simulation results show that
this gives accurate estimates of delay in the typical range
of interest, from 10 ms to 1 s.

A. Analysis of access delay distribution
First note that the access delay distribution can be

calculated using transform methods. The generating
function of the complementary cumulative distribution
function (ccdf) of access delay can be derived from
its probability mass function (pmf). The distribution
can then be obtained by numerical inversion of the
z-transform, using, say, the Lattice-Poisson algorithm
[26]. The details are not illuminating and are deferred
to Appendix A. However, this demonstrates that this
distribution information is embedded in our proposed
model, unlike simpler models such as [7] which only
consider the mean delay.

1) Approximation method: It is more informative to
consider a simple approximate model of the access delay.
The total burst access delay is the sum of many random
variables: the backoff delays at each stage. However, at
particular points, the ccdf of the access delay can be
estimated accurately, from which the remainder can be
estimated by interpolation. We will now derive such an
approximation.

Let Wmed(k) be the median number of backoff slots
used by bursts which succeed at the kth backoff stage
(starting from k = 0). Since the number of slots at each
stage j, Uuj , is symmetric about its median M [Uuj ] =
(2jWu − 1)/2, the median of their sum is

Wmed(k) =
k∑

j=0

M [Uuj ] =
(

2k − 1
2

)
Wu − k + 1

2
. (46)

Note also that Wmed(k) is larger than (2k − 1)Wu −
k, the maximum number of backoff slots that could be
experienced by a burst that succeeds at stage k − 1 or
earlier. It is possible for a burst which succeeds at stage
k+1 or later also to experience Wmed(k) backoff slots but
the probability of that is small, especially if pu is small.
Thus the unconditional ccdf of experiencing Wmed(k)
backoff slots is slightly below the following upper bound

ccdfW (Wmed(k)) ≤ 1−



k−1∑

j=0

(1− pu)pj
u +

1
2
(1− pu)pk

u




= pk
u

(
1 + pu

2

)
, (47)

which becomes tight for pu ¿ 1.
So far, this gives a good approximation for the ccdf

of the number of backoff slots experienced. This can be
related to the actual delay distribution by approximating
the duration of each backoff slot by its mean, and adding
the additional overhead of each stage. Thus, the delay
associated with Wmed(k) backoff slots is approximately

D(Wmed(k)) ≈Wmed(k)E[Yu] + kE[Cu] + E[Tres,u] + E[T s
u ]

=2kWuE[Yu] + k(E[Cu]− E[Yu]/2) + K
(48)

≡f(k)

where Yu is a slot duration observed by a burst of the
unsaturated source u during its backoff and Cu is the
duration of a collision involving a burst from the source
u. The approximation becomes tight for large k by the
law of large numbers.
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This implies k ≈ f−1(D(Wmed(k)), and so when D =
D(Wmed(k)) for some k,

ccdfD(D) ≈
(

1 + pu

2

)
pf−1(D)

u (49)

It turns out that (49) is a good approximation for any
delay D ≥ D(Wmed(0)), rather than only the discrete
points for which it was derived.

However, for delay D < D(Wmed(0)), which cor-
responds to the total number of backoff slots from 0
to Wu/2 − 1, a much better approximation is possible.
Note that the most likely way to back off for a small
number of slots is to back off once, which gives a
uniform distribution of the number of slots. Thus for
j = 0, 1, . . . , Wu/2− 1, the ccdf of a delay

D(j) = jE[Yu] + E[Tres,u] + E[T s
u ]

is approximately

ccdfD(D(j)) ≈1− (1− pu)
j + 1
Wu

=1− 1− pu

Wu

(
1

+
D(j)− E[Tres,u]− E[T s

u ]
E[Yu]

)
. (50)

Thus, we propose the approximation that finds the ccdf
from (50) for delays less than D((Wu−1)/2), and from
(49) for larger delays.

2) Power law delay distribution: In the proposed
model, with unlimited retransmissions, the distribution
of burst access delays has a power law tail (AtkP (D >
t) → 1 as t → ∞ for some A, k). Although the
true delay cannot be strictly heavy tailed when there
is a finite limit on the number of retransmissions, the
approximation holds for delays in the typical range of
interest, from 10 ms to 1 s [32].

This power law arises since both the duration and
probability of occurrence of the kth backoff stage in-
crease geometrically in k. This is distinct from the
heavy tailed delays occurring in ALOHA [33], which are
caused by heavy-tailed numbers of identically distributed
backoffs. Although the latter effect is very sensitive
to the assumption of infinite retransmissions and the
lack of burst fragmentation [34], 802.11 can be usefully
modeled as heavy tailed even with typical limits of 6 to
8 retransmissions.

Note from (48) that f(k) = 2kWuE[Yu]+O(k), where
h(m) = O(g(m)) means that there exists a C such that
for all sufficiently large m, |h(m)| < Cg(m). Thus,

by (49), the complementary CDF of a large delay D
is approximately

ccdfD(D) ≈ 1 + pu

2

(
D

WuE[Yu]

)log2(pu)

(51)

That is, the distribution has a power law tail with
slope log2(pu), which increases (becomes heavier) with
increasing congestion, as measured by the collision
probability pu. This is consistent with the more detailed
calculations of [35]. Note that this insight would not be
obtained by the direct use of the z-transform.

3) Excessive queueing delay: One application of the
preceding result is to determine the congestion level
at which the expected queueing delay for unsaturated
sources becomes excessive. Although “excessive” will
depend on the specific application, we will use the
criterion that the expected queueing delay is infinite
in our model with no limit on the binary exponential
backoff. If each source is assumed to implement an
M/G/1 queue, then this corresponds to the service time
having infinite variance. (Note that the service time is
the access delay in our model.)

Consider a log-log plot of the ccdf of a random
variable D whose ccdf is the right hand side of (51). The
minimum (steepest) slope for which the variance of D
becomes infinite is −2 [35]. The right hand side of (51)
suggests that this slope is log pu/ log 2. Thus the variance
of D is infinite when pu ≥ 2−2 = 1/4. Under the model
(16) and (43)–(44), we will now derive the minimum
number of saturated sources Ns for which this occurs;
that is, the Ns such that, for any number of unsaturated
source Nu with arbitrary arrival rate, unsaturated sources
which use the same backoff parameters as the saturated
sources will have pu ≥ 1/4. Let us start with the
following lemma, proved in Appendix B.

Lemma 1: Let s and u, respectively, denote an ar-
bitrary saturated and unsaturated source. Under the
model (16) and (43),

τs

τu
=

SsE[ηu]
λuE[ηs]

1− τs

1− τu
.

If, in addition, (44) holds then pu > ps.
Theorem 2: Consider the model (16) and (43)–(44),

with all sources using the same backoff parameters
(Wx = W,∀x ∈ S ∪ U). If

Ns ≥ 1 +
log(3/4)

log(1− 4
3W+2)

(52)

then for any Nu ≥ 1 and λu > 0, the variance of the
random variable whose ccdf is the right hand side of
(51) is infinite.
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The proof is given in Appendix B. Surprisingly, the
sufficient condition for infeasibility (52) depends only
on W , the minimum contention window of all stations,
and not settings such as the channel data rate, traffic of
the real-time service, or the TXOP limit.

From (51), the distribution of an unsaturated source’s
access delay Du under the model (16)–(44) has a tail
which is approximately power law, given by the right
hand side of (51). Hence, under the condition (52), the
variance of the unsaturated source’s access delay Du is
predicted to be infinite.

Note that the variance of the delays in the real system
will not be infinite, due to the truncation of the backoff
process. However, the high variability is enough to cause
significant degradation of the user experience.

B. Numerical validation and discussion

This section has three objectives: (i) to validate the two
methods of determining the distribution of access delay
by comparing them with simulations; (ii) to validate the
slope of the distribution curve’s tail; (iii) to validate the
condition (52) for the infinite variance of unsaturated
sources’ access delay.

The simulated network is the same as that in Sec. IV.
Packets arrive at unsaturated sources according to a
Poisson process. In the simulation of this section, all
sources have the retry limit of 7 and the doubling limit
of 5.

1) Validation of the distribution of access delay:
The distribution of unsaturated sources’ access delay
determined from approximation and z-transform meth-
ods in comparison with simulation in different scenarios
is shown in Figs. 8 and 9. Although derived assuming
infinite retransmission, both the approximation and z-
transform methods provide accurate estimates in the
typical range of interest, from 10 ms to hundreds of
ms. In particular, the approximation is of comparable
accuracy to the z-transform method.

The big round markers on the approximation method
curve show D(Wmed(k)) of (48). In these scenarios, the
approximation is quite accurate between the second and
final attempts.

The approximation method inherits the limitations of
our model on which it is based.

2) Slope of distribution curve’s tail: The straight lines
in Figs. 8 and 9 show the slope log2(pu). These capture
the trend of the distribution curve in the typical range of
interest, from tens to hundreds of ms.

3) Validation of Theorem 2: According to (52), when
W is equal to 32 as in 802.11 DCF, the minimum
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Wu = 32, ηu = 1; Saturated stations: Ns = 2, ls = 1040 Bytes,
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arrivals with rate λ = 10 packets/s, Nu = 20, lu = 100 Bytes,
Wu = 32, ηu = 1; Saturated stations: Ns = 6, ls = 1040 Bytes,
Ws = 32, ηs = 1.)

number of saturated sources for the infinite variance of
unsaturated sources’ access delay is 8. This is validated
in Fig. 10 which shows the distribution of access delay
of unsaturated sources from NS-2 simulation. As can
be seen, the slope of distribution curve’s tail is slightly
greater than −2 in the typical range of interest, from
tens to hundreds of ms. This shows that these delays
will occur as often as if the system had a power law tail
with infinite variance.
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VI. CONCLUSION

We have provided a comprehensive but tractable fixed
point model of 802.11 WLANs consisting of both unsat-
urated and saturated sources and shown that it provides
accurate estimates of delay, throughput and collision
probability in comparison with two existing models.
We have proposed a closed form approximation for the
distribution of the queue size of an unsaturated source,
which is sufficiently accurate at low queue occupancies
to predict the burst size distribution.

Using the fixed point model to investigate the in-
teraction between these two types of traffic, we have
briefly shown that “fair” service differentiation can be
achieved based on two QoS parameters, TXOP limit
and CWmin. Moreover, a simple method to approximate
access delay distribution has been proposed. Based on
this approximation, the slope log2(pu) of distribution
curve’s tail has been obtained and then used to determine
the lower bound on the number of saturated sources
at which excessive queueing delay will be seen by
unsaturated sources of arbitrary load, when all sources
use the same MAC parameters.

APPENDIX A
THE z-TRANSFORM OF DELAY

The generating function of the pmf of a non-negative
integer-valued random variable X is given by

X̂(z) =
∞∑

k=0

P (X = k)zk, for z ∈ C (53)

To apply the z-transform, the continuous r.v.s Du,
Au, Aui, and Tres,u were quantized in steps of δ. Other
random variables in Section III-B are non-negative and
discrete, but some are not integer-valued. However, they
can be transformed to integer-valued random variables,
using the scale factor δ. Similarly, positive real variables
such as σ, Tx, and T s

x (x ∈ S ∪U) are also transformed
to integers using δ.

By (17), the generating function of the access delay
is

D̂u(z) = T̂ s
u(z)Âu(z) (54)

Note that T̂ s
x(z) can be calculated from the distribution

of ηx given by (40) for x ∈ U or (35) for x ∈ S.
From (18), Âu(z) is given by

Âu(z) =
1

1− bu + bu(1− pK+1
u )

(
bu(1− pu)

.
K∑

k=0

pk
uÂuk(z) + (1− bu)

)
(55)

where, by (19), Âuk(z) can be approximated as

Âuk(z) = Ĉu(z)kT̂res,u(z)
k∏

j=0

B̂uj(z) (56)

where T̂res,u(z) is [20]

T̂res,u(z) =
z

(1− z)E[Y b
u ]

(
1− 1

1− ai
u

.

( ∑

x∈S∪U\{u}
as

xuT̂ s
x(z) +

∑

x∈S∪U\{u}
ac

xuT̂x(z)
))

(57)

and

Ĉu(z) =
1

1− ai
u

∑

x∈S∪U\{u}
acu

xu
̂max(Tu, Tx)(z) (58)

From (20), B̂uj(z) is [28]

B̂uj(z) = Ûuj(Ŷu(z)) (59)

where Ûuj(z) is given by

Ûuj(z) =
1− z2min(j,m)Wu

2min(j,m)Wu(1− z)
(60)

and Ŷu(z) is determined from (21) as

Ŷu(z) = σ̂(z)ai
u+

∑

x∈S∪U\{u}
as

xuT̂ s
x(z)+

∑

x∈S∪U\{u}
ac

xuT̂x(z)

(61)
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In summary, D̂u(z) is given by

D̂u(z) =
(
bu(1− pu)

K∑

k=0

pk
uĈu(z)kT̂res,u(z)

k∏

j=0

Ûuj(Ŷu(z))

+ (1− bu)
) T̂ s

u(z)
1− bu + bu(1− pK+1

u )
(62)

Then, the generating function of the ccdf, D̂c
u(z) can

be obtained from D̂u(z) via the identity

D̂c
u(z) =

1− D̂u(z)
1− z

. (63)

The access delay ccdf is the inverse z-transform of
D̂c

u(z).

APPENDIX B
PROOF OF THEOREM 2

Proof of Lemma 1: Dividing ps from (16c) by pu

from (16c), we have

1− pu

1− ps
=

1− τs

1− τu
(64)

Moreover, by (43),

τs =
Ss

E[ηs]
E[Y ]
1− ps

(65)

Dividing (65) by τu from (16b), and applying (64)
gives

τs

τu
=

SsE[ηu]
λuE[ηs]

1− pu

1− ps
=

SsE[ηu]
λuE[ηs]

1− τs

1− τu
(66)

which establishes the first claim.
By (44), this implies τs > τu, whence pu > ps by (64).

Proof of Theorem 2: The result is a consequence
of Lemma 1 and the following observations, which will
be established below.

1) All else being equal, ps is increasing in Nu.
2) If there are Nu = 0 unsaturated source and

Ns ≥ 1 +
log(3/4)

log(1− 4
3W+2)

(67)

then ps ≥ 1/4.
3) If pu > 1/4 then the variance of the random

variable whose ccdf is the right hand side of (51)
is infinite.

These can be shown as follows:
1) This follows from (16c) since τu ∈ [0, 1], and τs

is decreasing in ps.

2) When Nu = 0, (16c) becomes ps = 1 − (1 −
τs)Ns−1. Thus ps ≥ 1/4 if

τs ≥ 1−
(

3
4

)1/(Ns−1)

. (68)

Conversely, (16a) is decreasing in ps, and so ps ≥
1/4 if

τs ≤ 4
3W + 2

(69)

Combining (68) and (69), ps ≥ 1/4 if

1−
(

3
4

)1/(Ns−1)

≤ τs ≤ 4
3W + 2

which upon rearrangement gives (67).
3) If pu > 1/4, then the random variable whose ccdf

is the right hand side of (51) has a tail heavier than
kD−2

u for some k, and hence infinite variance.
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