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Abstract—In recent years a growing number of re-
searchers investigated the performance of machine learn-
ing based traffic classification using statistical properties
– classification techniques that do not require packet
payload inspection. Such techniques assist Internet Service
Providers to work within any legal or technical limitations
on direct payload inspection. Potential new applications
include automated ‘market research’, automated traffic
prioritisation, and Lawful Interception. For many of these
new applications a de-coupling between the flow classifi-
cation and subsequent flow treatment, such as blocking or
shaping, is highly desirable. We developed DIFFUSE – an
extensions for an existing packet filter that provide ML-
based traffic classification based on statistical properties
and de-couple flow classification from flow treatment. This
report describes the selection of the existing packet filter
extended, the design of the overall architecture and key
components, as well as the machine learning techniques
supported. This report is an updated version of tech report
101223A [1].

Index Terms—Statistical Flow Classification, Machine
Learning, Quality of Service, Traffic Prioritisation

I. INTRODUCTION

During recent years a body of research emerged
around the identification and classification of traffic flows
based on statistical properties (features) and in particular
the application of Machine Learning (ML) techniques
to generate such classifiers [2]. Statistical properties,
such as distributions of packet sizes or inter-packet
arrival times, can be calculated without accessing packet
payloads (payload inspection). Such techniques assist
Internet Service Providers (ISPs) to work within any le-
gal or technical limitations on direct payload inspection.
Potential new applications include automated ‘market
research’, characterising traffic for Lawful Interception
[3], or automated prioritisation of real-time traffic [4].

For many of these new applications a decoupling be-
tween flow classification and subsequent flow treatment

(the actions performed on flows), such as blocking or
shaping, is highly desirable. For example, a single high
performance classifier near the core of an ISP network
may control multiple low-power nodes near the network
edge (perhaps embedded within Asynchronous Digital
Subscriber Line or Cable modem gateways) so that
centralised traffic classification can automatically modify
the Quality of Service (QoS) treatment experienced
by packets at the network edge. This decoupling also
enables potentially computationally intensive per-flow
statistics calculations to be offloaded from the packet
forwarding path.

Common open-source packet filters that combine fire-
wall and traffic shaping (such as IPFW [5], PF [6],
Netfilter [7] and others) currently do not use traffic
statistics, instead relying on direct inspection of packets
passing through the filtering node’s local interfaces.
Furthermore, these filters couple the flow classification
and treatment tightly, i.e. the actions are executed locally
immediately after the flow classification.

In the DIFFUSE project [8] we are designing and de-
veloping extensions for an existing packet filter that pro-
vide ML-based traffic classification based on statistical
properties and decouple flow classification and treatment.
In our architecture there are classifier nodes that classify
traffic flows and then instruct action nodes via a control
protocol to carry out actions for the classified flows.

In this report we describe the design of the system and
its key components. To avoid ‘reinventing the wheel’ our
system will be based on an existing packet filter. As
main development platform we selected the FreeBSD
operating system since it is often used for building
firewalls and/or traffic shapers, and a number of existing
packet filters run on FreeBSD. This report is an updated
version of a tech report describing DIFFUSE version 0.1
[1] and obsoletes the older report.
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The report is organised as follows. First we define
fundamental terms and concepts in Section II. In Section
III we explain which FreeBSD packet filter we chose
as platform to develop and demonstrate DIFFUSE. In
Section IV we describe the overall architecture of the
system and its key components, and show example
scenarios illustrating how the system could be used.

In Section V we describe the extended command
language that enables the configuration of classifier and
action nodes. In Section VI we describe the software
design of classifier and action nodes. In Section VII
we describe the design of the control protocol used to
exchange data between classifier and action nodes.

In Section VIII we outline how classifier models
can be created, and how DIFFUSE can be used for
offline experiments. In Section IX we describe the initial
choice of ML techniques supported. Since our system is
designed to be flexible other ML techniques can be added
in the future. Section X concludes the report.

II. DEFINITIONS

First we define some fundamental terms and concepts
used throughout the report.

A. Flows

A flow is a number of consecutive packets that have
the same values for a defined set of packet header fields
within a certain time frame. The set of packet header
fields is usually the commonly used 5-tuple (source and
destination IP addresses, source and destination ports,
protocol), but it could be a different set of fields (such
as only the source and destination IP addresses).

For connection-oriented protocols (like TCP) the flow
start and end is usually marked by the establishment and
teardown of a connection. For non connection-oriented
protocols (like UDP) the first packet seen marks the
start and no packets arriving for a certain duration (flow
timeout) marks the end of the flow.

A unidirectional flow is a flow where packets flow
only in one direction (e.g. only packets matching a 5-
tuple), whereas a bidirectional flow is packets flowing in
both directions (e.g. all packet matching a 5-tuple and
the same 5-tuple with source/destination addresses and
ports reversed).

A sub-flow is part of a flow. For our purposes a sub-
flow is a sliding window of n consecutive packets within
a unidirectional flow (as in [9]).

Bidirectional flows have two directions which we refer
to as forward and backward. For connection-oriented
protocols (and if the initial handshake can be observed)

packets from the originator of the connection are going
in the forward direction, and packets from the other end
are going in the backward direction. For connection-less
protocols or when the handshake could not be observed
the first packet defines the forward direction.

If a rule defines a source or a destination (by speci-
fying a match pattern, e.g. matching against the source
IP address), packets matching the pattern are considered
to flow forward, whereas packets that are going in the
reverse direction are considered to flow backward.

B. Features

Previous work usually used the two level hierarchy of
features and feature sets, where a feature is a characteris-
tic of a flow or sub-flow (such as the mean packet length)
and a feature set is a number of different features. For
the DIFFUSE architecture we extended this hierarchy.
Feature statistics are statistics of a series of feature
values (such as the minimum, mean or maximum),
features are characteristics of flows, sub-flows or packets
(such as packet length or inter-arrival times) and feature
sets are a number of features (as before).

The main reason for this three-level hierarchy is that
DIFFUSE v0.4 supports different independent feature
modules, but for performance reasons different statistics
of the same feature are part of the same module.

III. CHOICE OF FIREWALL

Here we discuss our choice of the existing packet
filter we extended. Since DIFFUSE v0.4 is based on
FreeBSD we have a choice between three packet filters:
IP Firewall (IPFW) [5], IPFilter (IPF) [10], [11] and
Packet Filter (PF) [6]. We compare these based on a
number of criteria.

A. Functionality

All three packet filters support the basic functions of
filtering based on network and transport layer informa-
tion, network address translation, logging etc. IPFW and
PF can tag packets for implementing policy-based rules
and have interfaces to traffic shapers that can queue and
prioritise packets. IPFW mostly uses Dummynet [12] but
also has an interface to ALTQ [13], whereas PF uses
ALTQ. IPFW/Dummynet can also be used to emulate
certain network link conditions by limiting link capacity,
emulating delay and packet loss etc.

PF has more advanced functionality than IPFW and
IPF, most notably the ability to implement redundant
firewalls (state transfer and fail-over protocol [6]), load-
balancing, logging to tcpdump files, and filtering on
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operating system fingerprints. However, IPFW now also
supports tables and in-kernel NAT and has reduced the
functionality gap to PF.

DIFFUSE needs packet queuing and prioritising sup-
port, which rules out IPF. While the advanced functions
of PF are nice they are not really required for DIFFUSE.

B. Portability

IPFW has been developed and used in FreeBSD over
many years, is the network firewall in MacOSX, and has
recently been ported to Linux and Windows [12]. IPF
runs on the BSD family (FreeBSD, OpenBSD, NetBSD)
as well as on Solaris, HP-UX, IRIX and Linux. PF is
the main firewall of OpenBSD, and it has been ported
to FreeBSD and NetBSD.

As far as portability is concerned IPFW and IPF are
the best options for DIFFUSE. PF falls behind as the
number of operating systems it runs on is very limited.

C. Support

IPFW is the FreeBSD sponsored firewall; it is au-
thored and maintained by FreeBSD volunteer staff mem-
bers. IPF was the main packet filter of OpenBSD, before
it was replaced by PF in 2001. Given that we have chosen
FreeBSD as development platform in terms of future
support IPFW is most promising. The PF firewall comes
second being OpenBSD’s official firewall and given that
it is part of the FreeBSD source tree. IPF is also part of
the FreeBSD source tree.

However, the PF sources part of FreeBSD are al-
ways lagging behind the latest OpenBSD version. For
example, the PF version in FreeBSD-9.0-current checked
out in July 2010 are the PF sources from March 2007.
Similarly, the IPF sources in FreeBSD lack one major
version behind the latest release. For example, the IPF
version in FreeBSD-9.0-current checked out in July 2010
are the IPF sources from October 2007 (version 4.1)
and much older than the latest release from May 2010
(version 5.1). For IPF this is less of a problem because
the IPF sources are released independently of FreeBSD
and should compile on all supported operating systems.

All three packet filters are actively maintained and
used. For DIFFUSE IPFW and PF have a slight edge as
they are the main packet filters of FreeBSD/OpenBSD.

D. Performance

Measuring the performance of packet filters is not
straightforward, as the performance depends heavily on
the scenario, i.e. the actual firewall rules and network
traffic. Nevertheless, one can compare different packet

filters in particular scenarios. Previous work compared
IPF, PF and Linux Netfilter [14], [15]. According to these
studies PF performs similar to IPF and whether PF and
IPF perform better or worse than Netfilter depends on
the scenario. We were unable to find a study of IPFW or
a recent performance comparisons of all three firewalls.

The performance of the packet filter should be rea-
sonably good, but this criteria is not of very high
importance for DIFFUSE. Since IPFW, IPF, and PF are
are all deployed we believe they all provide sufficient
performance in practice.

E. Usability

The rule set language of PF is better designed than the
languages of IPF and IPFW, which both look somewhat
organically grown. The structure of PF and IPF rulesets
differs from IPFW (and Linux Netfilter). By default for
IPF and PF the last rule that matches determines the
action, whereas for IPFW (and Netfilter) the first rule
that matches determines the action. This makes it more
difficult to convert IPF and PF rulesets to IPFW rulesets
and vice versa.

While the rule language of PF is better designed, the
languages of IPF and IPFW are still logical, easy to
read and use. As far as usability is concerned all three
firewalls are adequate for DIFFUSE.

F. Extensibility

IPFW, IPF and PF have nicely written user documen-
tation, but for all three there is not much developer docu-
mentation. None of them has a fully modular framework
that can be extended easily. However, IPFW’s Dum-
mynet now has a modular framework for adding packet
schedulers. All three packet filters have nicely written
code, but IPFW stands out because it also has a lot of
useful comments inside the code, whereas comments in
IPF and PF code are rather sparse. Furthermore, here at
CAIA we have some in-house expertise for extending
IPFW. Hence, IPFW wins this category.

G. Decision

IPF does not have functions for packet queuing and
prioritisation and hence cannot be used. We chose IPFW
over PF because IPFW supports the three arguably most
popular operating systems (FreeBSD, Linux, Windows)
and it appeared to be easier to extend than the others due
to well documented code, relatively modular structure
and existing in-house expertise.
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IV. SYSTEM DESCRIPTION

A. Architecture

In order to provide ML-based traffic classification and
decouple the classification from the subsequent action
the DIFFUSE system has several key components:

• A Classifier Node (CN) computes statistical features
from flows identified by their 5-tuple and classifies
them based on local machine-learning rules.

• An Action Node (AN) performs configured actions
(block, redirect, rate shape, etc.) on packets belong-
ing to flows that have been classified by a local or
remote CN.

• An IP-layer Control Protocol (CP) between CNs
and ANs to enable real-time coordination, such
as alerting ANs when to start and stop acting on
identified flows.

• An extended set of Packet Filter Rules (PFRs) to
express ML-based traffic matching based on statis-
tical attributes at CNs and specify the actions to be
taken by nominated ANs.

A CN records flow identification information (5-tuple)
and computes flow characteristics, such as packet length
and inter-arrival time statistics. It continuously compares
the statistics of observed flows to a configured set of
rules and uses this information to generate traditional
header-only inspection rules for ANs. When a flow (flow
X) matches a statistical rule, the CN passes the flow’s 5-
tuple and class to AN(s) to actually instantiate the flow
class’ associated action. The action is then applied to
all subsequent packets belonging to flow X . The rule is
removed from the AN(s) once flow X has stopped.

CNs and ANs automatically establish IP based control
links via a CP to share information as matching flows
come and go. CNs and ANs are different logical entities,
but they can be co-located on the same physical network
device. For example, a traditional packet filter combines
them in a single device. In this case the control link is
inside the host.

Small networks with a few CNs and ANs can be con-
figured manually by creating and distributing rulesets.
In large networks comprising many CNs and ANs it is
desirable to have a management system that automat-
ically translates network policies into rulesets that are
distributed to CNs and ANs. Such a management system
is out of scope of this document, but it can be designed
and build on top of our developed system in future work.

B. Classifier Node

A CN consists of an extended packet Filter/Classifier
in kernel space and a userspace daemon process (called
Exporter) that exports the flow specification (5-tuple),
class and (optionally) an action to the AN(s) via the CP
(see Figure 1). We call this information flow rules.
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Figure 1. Classifier node and action node components, and control
protocol

The extended packet filter computes statistical features
for packet flows. These features can be used directly as
patterns for matching packets or as input for an ML-
based classifier that assigns classes to packets based on
these features.

The feature computation and classification is done
on a per-packet basis inside the kernel to maximise
performance. The sending of flow rules to remote ANs
is done by a userspace daemon, because this task is less
performance critical1 and a userspace daemon is easier to
develop, test, and port to other operating systems (OSs),
and it has access to a much larger set of functionality
via libraries.

The Exporter needs access to flow information gener-
ated by the classifier. Since the IPFW control interface
(based on socket options) does not allow unsolicited
messages from kernel to userspace and frequent polling
of the in-kernel classifier is impractical, a separate inter-
face (UDP socket) is used to send the flow information
from classifier to Exporter.

Section VI describes the CN design in more detail.

C. Action Node

The AN consists of an userspace daemon (called
Collector) that listens for flow information from CNs and
configures the packet filter and traffic shaper accordingly
using the existing IPFW configuration interface(s). The
Collector consists of a frontend and a backend. The
frontend handles the control protocol communication

1We assume the number of simultaneous active flows that trigger
remote actions is typically only a few thousand and there is a limit
on how often actions are updated.
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and manages the addition/removal of flow rules stored
in an internal database. The backend is responsible for
generating IPFW traffic filter/shaper rules based on the
flow rules in the database.

The advantage of a userspace daemon is that no kernel
code needs to be modified, again easing development,
testing, porting to other OS and access to userspace
libraries. Furthermore, in the future different firewalls or
traffic shapers can be supported easily by modifying or
extending the backend of the Collector. Besides packet
filter or traffic shaper specific actions, other actions could
be implemented, such as logging of classified traffic in
a database.

Section VI describes the AN design in more detail.

D. Ruleset operations

On the CN the rule language of IPFW has to be
extended to allow the specification of features to be
computed, use of feature values in match patterns, use
of ML classifiers, and the configuration of remote ANs
(see Section V). On the AN only the existing packet filter
and traffic shaping functionality is used and no rule set
language modifications are required.

However, in addition to the extended rule set language
we need new commands to configure the Exporter and
Collector (see Section V).

E. Control protocol operations

CNs send “add rule” messages (ARMs) to ANs (see
Figure 3), which contain (partial) rules that have a match
part (flow specification), one or more class tags, and
optionally an action part. Our notion of ARMs includes
the updating of existing rules. If a CN sends an ARM
to an AN with the same flow specification but different
action as a rule sent previously, the AN must replace the
previous rule with the new rule.

If a CN is configured such that it does not send actions
in ARMs, the receiving AN(s) must be configured so that
they have a list of flow classes and associated actions.
In this case the AN(s) will determine the actions based
on the classes identified by the CN. If the AN(s) are
configured with such action lists, the configured actions
always overrule any actions specified in ARMs.

Rules can have a timeout which will cause ANs to
remove rules after a specified duration has elapsed since
the rule became active (rule timeout), or when no packets
have matched the rule for the specified duration (flow
timeout). This is shown in Figure 2. If rule timeouts are
used CNs need to periodically refresh rules (so that long
running flows are properly handled).
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Figure 2. Rule creation and timeout based rule removal

CNs can also send explicit “remove rule” messages
(RRMs) to ANs (see Figure 3). An AN will remove all
rules that match the rule specification in the message. If
the rule specification is broad, e.g. only the protocol is
specified, this may trigger the removal of many rules.
If one wants to remove exactly one rule, the flow
specification in the RRM must be specified exactly as
in the ARM.
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Figure 3. Rule creation and explicit rule removal messages

The use of flow timeouts has advantages over explicit
RRMs. Firstly, they save network capacity as the number
of messages can be reduced. Secondly, they can also
prevent control loops that may occur otherwise because
actions like blocking or shaping affect packet flows and
their characteristics and hence the decisions of CNs.

Imagine the following scenario. A CN identifies a flow
to block, triggers an AN, and the AN blocks the flow.
The flow times out at the CN triggering a RRM from
the AN, which unblocks the flow. The CN identifies the
flow again and so on. If the AN handles the flow timeout
locally (using a timeout provided by the CN), the rule
will be active as long as packets are matching and then
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it will timeout. This approach presupposes that the flow
times out at the AN before it times out at the CN, but
the CN can ensure this by controlling the AN’s timeout
value. This approach also covers the case when the rule
is (prematurely) removed due to resource constraints at
the AN.

However, flow timeouts may not be available every-
where (they may not be efficient to implement on all
devices) and then RRMs must be used. But the delivery
of RRMs cannot be guaranteed in all cases, e.g. CNs may
crash. To avoid rules living forever in the AN, the AN
purges old rules based on last recently used information
(flow timeout). Should the AN run out of memory it is
up to the AN to decide what to do, i.e. what rules to
purge, unless it was advised by the CN what to do. For
example, if the CN attached priorities to rules, then the
AN must purge rules according to their priority.

In our prototype implementation by default the CN
uses explicit RRMs, and the AN uses flow timeouts to
time out rules. Explicit RRMs can be turned off, then
both the CN and AN use flow timeouts.

The CN classifies flows all the time (in the extreme
case for each packet arriving), but the CN will only
notify AN(s) for new or changed flows (same flow
specification but different class or action). Note, that
a new flow may have the same flow specification as
a previous flow if the previous flow has ended before
the new flow started. Furthermore, there are options to
further limit the sending of rules, see Section V-H.

Section VII describes the details of the protocol.

F. Example Scenarios

We illustrate the DIFFUSE v0.4 architecture in an
example scenario, where the ISP differentiates a cus-
tomer’s traffic into real-time and non-real-time traffic and
subsequently uses this information to prioritise the real-
time traffic. Figure 4 shows the customer and the ISP
network. A CN with a rule database is located on or
connected to an edge router inside the ISP’s network.
Two ANs are located on the ISP’s edge router and
customer’s router.

During operation the system does the following. The
CN continuously classifies traffic flowing between the
customer and ISP networks based on statistical charac-
teristics and stored rules. For each new real-time flow
detected, the CN sends the flow’s 5-tuple, class and
action to the ANs. The ANs then create a new rule for
the real-time flow that will prioritise its traffic over non-
real-time flows. After the real-time flow has stopped, the
rule is removed from the ANs.

V. DESIGN OF COMMAND SET EXTENSIONS

Here we describe the DIFFUSE v0.4 extended IPFW
command set used to configure CN and AN.

A. Notation

We use the following notation based on ABNF
[16]. Bold typewriter font identifies parameter
names (terminal symbols) and italic typewriter
font identifies parameter values chosen by the user
(non-terminal symbols that do not contain spaces). Sym-
bols in double quotes “” are also terminal symbols.
Normal typewriter font identifies non-

terminal symbols that are broken down into parameter
names and values at a later point. Parameters and values
in square brackets [] are optional, a slash / defines
alternatives, and round brackets () are used for grouping.

A preceding n*m means a symbol or group is repeated
a minimum n and a maximum m times. If n is zero it is
omitted, and if m is infinity it is omitted as well. This
allows short forms such as * for 0–infinity or 1* for
1–infinity.

B. Existing IPFW rules

First we define existing IPFW rules and a number of
symbols for parts of existing IPFW rules that we later use
in the definitions of extended rules (see Figure 5). The
symbol ipfw-rule-id is the optional rule number,
the rule set number and it also includes IPFW’s match
probability. The symbol ipfw-log-altq-tag com-
prises the log, ALTQ and tag options. ipfw-action
is one of the actions executed when the pattern part
of the rule matches (note that ... is a placeholder for
the other actions not shown here [5]). The symbol
ipfw-patterns describes the patterns that are used
to match a packet and options describes all possible
options, such as keep-state, tagged [5].

C. Configure, delete and show features

Figure 6 shows the command to configure a feature.
The argument feature-name is a user-defined name
for the feature. The argument module-name is the
name of the feature as defined in the feature’s imple-
mentation (basically an implemented feature module is
the class and a configured feature is an instance of the
class). The feature’s kernel module must be available,
i.e. loaded into the kernel.

The symbol options stands for further options pro-
vided by the feature module. Each option is either a
flag (enabling or disabling a property of a feature) or a
parameter name followed by an argument. Our prototype
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Figure 4. Using the DIFFUSE architecture for distributed traffic prioritisation

ipfw-rule = ipfw-rule-id ipfw-action ipfw-log-altq-tag ipfw-patterns

ipfw-rule-id = [rule-number] [set set-number] [prob probability]
ipfw-log-altq-tag = [log [logamount number]] [altq queue] [(tag / untag) number]
ipfw-action = (allow / deny / count / ...)
ipfw-patterns = proto from source to destination [ipfw-options]

ipfw-options = (keep-state / tagged tag-list / ...)

Figure 5. Existing IPFW rules

ipfw feature feature-name config module module-name [options]
options = *((option-flag / (option-name option-value)) )

ipfw feature ( delete / show ) feature-name

Figure 6. Configure, delete and show features

implementation creates default instances for all existing
features with feature-name set to module-name.
When a feature has no options or the default options are
deemed acceptable the default feature instances can be
used straight-away.

A feature can be viewed or deleted with the commands
shown in Figure 6. The reserved feature name all can
be used to show or delete all defined features.

D. Current features and their options

There are two types of features: unidirectional and
bidirectional. Unidirectional features compute statistics
for unidirectional flows. For bidirectional flows these
are computed separately for each direction. Bidirectional
features compute statistics over both directions of bidi-
rectional flows (or only one direction of unidirectional
flows).

The initial prototype has the features shown in Table I.
The “plen” feature provides minimum, mean, maximum,
standard deviation and sum of packet-length statistics.
The “iat” module provides minimum, mean, maximum,
and standard deviation of inter-arrival time statistics. As
the names suggest, the “plenbd” and “iatbd” features are

the bidirectional versions of “plen” and “iat” and provide
the same statistics over bidirectional flows. The “pcnt”
feature provides packet count statistics. The “skype”
feature provides mean packet length, packet ratio and
absolute two-packet length difference statistics tailored
to detect Skype traffic.

All of our initially implemented features provide the
window and partial-window options. The option
window defines the window in packets over which
a feature is computed. By default features are only
computed for full windows, unless partial-window
is set. Any match for a feature statistic that has not been
computed yet due to a partial window will fail. Note
that a feature does not necessarily need to be computed
over windows of packets, i.e. there could be features
computed for single packets only.

By default the packet length computed by “plen” is the
packet length of an IP packet including the IP header.
If the option ipdata-len is used, the packet length
computed is the length of an IP packet excluding the IP
header. If the option payload-len is used the length
computed is the payload length (UDP or TCP data).
The “iat” (inter-packet arrival time) feature has an option
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Table I
FEATURES AND THEIR OPTIONS

Feature Type Options
plen uni window size, partial-window, payload-len, ipdata-len

plenbd bidir window size, partial-window, payload-len, ipdata-len
iat uni window size, partial-window, accurate-time

iatbd bidir window size, partial-window, accurate-time
pcnt bidir window size, partial-window

skype bidir window size, partial-window, payload-len, ipdata-len

accurate-time. If set the computed timestamps are
more accurate, at the cost of more processing time.

Figure 7 shows examples how features are defined.

E. Compute and use features for matching

Features are computed and used for matching as
shown in Figure 8. Such rules compute the specified
features for all sub-flows that match ipfw_patterns.
Once the feature statistics are available they can be used
for matching and when all IPFW patterns and feature
patterns match the rule’s action will be executed.

A feature-list is a comma-separated list of one
or more feature names, specifying the features to be
computed. Note that if one or more feature-test
are present, all features used in the tests will be implic-
itly added to feature-list if not already present.
This means that normally one does not need to specify
feature-list.

By default (without unidirectional) unidirec-
tional features are computed separately for both di-
rections of bidirectional sub-flows and feature tests
can be used with an optional direction attribute. If
unidirectional is specified, features are computed
for unidirectional sub-flows and hence a rule matches
unidirectional sub-flows (“fwd” or “bck” are not used
in feature matches). Bidirectional features are computed
over both directions of bidirectional flows and hence
“fwd” or “bck” are also not used in feature matches.

If feature matches are used but features is not
specified an implicit features is generated, listing
all features used in the tests and producing bidirectional
flows. Note that if unidirectional is not set rules
match against features computed in both directions and
if a rules matches the action will be executed for packets
in both directions as well. With unidirectional a
rule’s action is only applied to unidirectional flows.

The ipfw commands delete, flush, list, show,
zero and resetlog work with feature-enabled rules
as before. Figure 9 shows example commands for using
feature matches.

Table II
CLASSIFIER ALGORITHMS SUPPORTED BY DIFFUSE V0.4

Classifier algorithm-name Description
c4.5 C4.5 decision tree classifier

nbayes Naïve Bayes classifier

F. Use machine learning classifier

An ML classifier takes a set of features of a sub-flow
F (n = |F |) as input and returns a classification c, where
c is exactly one class out of the set of classes C (m =
|C|). A classifier is configured as shown in Figure 10.

The argument classifier-name is the name of
the classifier. The argument algorithm-name defines
the classification algorithm to use and must be a name of
a classifier module present (loaded into the kernel). Table
II lists the module names of the currently implemented
algorithms (C4.5 and Naïve Bayes), a more detailed
description of the algorithms is in Section IX.

The argument of model defines the classifier model
to use for the classification. The model file is a text
file created by a modified version of the Waikato En-
vironment for Knowledge Analysis (WEKA) [17] (see
Section IX-C). The model file is parsed and the resulting
classifier is setup in the kernel.

The model file contains the list of statistics needed, but
the names may not be valid DIFFUSE names. Hence the
parameter use-feature-stats allows to specify the
list of features statistics the classifier uses for classifying
flows. This parameter is also handy if one wants to
use the same classifier model with differently generated
feature statistics, for example the same statistics but gen-
erated over different window sizes. If used this parameter
always overrules the statistics listed in the model file.

The argument of use-feature-stats must list
the same number of feature statistics in exactly the
same order they were used when building the classifier.
Feature statistics are listed in the same format as for
feature matches explained above. As for feature matches,
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ipfw feature myplen config plen window 10

ipfw feature myiat config iat window 20 accurate-time

Figure 7. Feature configuration examples

ipfw add ipfw-rule-id ipfw-action ipfw-log-altq-tag ipfw-patterns [features feature-list]
[1*feature-test] [unidirectional] [every / once / sample packets]

feature-list = feature-name[*(”,”feature_name)]

feature-test = [(fwd / bck)”.”]feature-statistic”.”feature-name(<=/</=/>/>=)value

Figure 8. Matching with features

ipfw feature myplen config plen window 25
ipfw add deny udp from any to any features myplen min.myplen<100 bidirectional

ipfw add deny udp from any to any fwd.min.myplen<100 # same as above rule

Figure 9. Feature matching examples

ipfw mlclass classifier-name config algorithm algorithm-name model file-name
[use-feature-stats feature-stat(n-1)*(“,”feature-stat)] [class-names name(m-1)*(“,”name)]
[confirm number]
feature-stat = [(fwd / bck)”.”]feature-statistic”.”feature-name

ipfw mlclass ( delete / show ) feature-name

Figure 10. Configure, delete show classifier

for unidirectional features and bidirectional flows the
direction is assumed to be forward (fwd) if not specified.

The parameter class-names can be used to over-
write the class names specified in the model file. The
class names are used to match packets as shown in Figure
11. One can either use rules with the new mlclass
action and use IPFW tags, or use rules with the new
match-if-class option, or a combination of both.

For rules with mlclass action or match-if-
class option(s) feature lists are generated implicitly
in the same way as for feature matches (see previous
sub section). For bidirectional flows actions of matching
rules will be applied to both directions of flows.

The parameter classifier_name references
a classifier configured previously. The parameter
class-tags defines a list of IPFW tags, where each
tag is associated to one class in C. As the result of
the classification each packet is tagged with the tag
configured for the class it matches. The tags can be used
in subsequent rules for matching (with the tagged
option of IPFW).

The new match-if-class parameter specifies a
classifier name and a list of class names or indices
that make a rule match. A preceding hash symbol

“#” differentiates between class names and class num-
bers (see Figure 11). If the current class of a packet
or sub-flow matches any of the classes listed the
match_if_class option matches.

The confirm parameter (in Figure 10) is a simple
filter for the classification process. It specifies how many
times a class needs to be “confirmed” before a classifier
will match. For example, if confirm is set to two a
match-if-class will only match if at least three
consecutive packets have been classified as the same
class. (By default confirm is set to zero.)

Mutually-exclusive options exist for controlling how
often flows are (re)classified. By default a flow is
(re)classified at every packet. If once is specified a
flow is classified only once (when all feature statistics
have been computed for the first time). With sample a
flow is classified periodically at every packets packets,
and with rnd-sample a flow is classified at pack-
ets selected with a uniform random probability prob
(using the kernel’s random() function). The previous
class (if any) is assigned to packets not (re)classified.
To minimise classification latency when sample or
rnd-sample are used, the first packet where all fea-
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ipfw add ipfw-rule-id ( mlclass classifier-name / ... ) ipfw-log-altq-tag ipfw-patterns
[class-tags tag(m-1)*(“,”tag)] [match-if-class class-name:class[*(m-1)(“,”class)]] [once /
sample packets / rnd-sample prob]

class = ( name / “#”number )

Figure 11. Classes-based matching

ture statistics have been computed for the first time is
always classified.

A classifier can be viewed or deleted with the com-
mands shown in Figure 10. The reserved classifier name
all can be used to show or delete all defined classifiers.
Note that classifier models are only shown for single
classifiers, but not when all is used.

Without IPFW tags one can write rules that use an
ML-based classifier as shown in Figure 12. If IPFW tags
are used one can write rules as shown in Figure 13.

Flows can be classified by multiple classifiers.
Hence multiple match-if-class with different
class-name can be used in one rule. The standard
IPFW options can be used to select what type of flows
are classified. For example, if one wants to classify only
UDP flows the “ip” in the example rules can be replaced
by a “udp”.

Note that classification is only performed once all
feature statistics needed are available. For example,
if the statistics have not been computed yet because
windows are only filled partially and the feature option
partial-window (described in Section V-D) has not
been used, the flow will not be classified.2 (In future
work some of the classifiers could be extended to handle
missing features.)

G. Flow table

State of all flows for which features are computed is
stored in a flow table. The flow table can be displayed
with the show command (see Figure 14). This command
shows information for all flows, such as the rule that
generated the flow, packet and byte counters, the 5-tuple,
a list of all computed features and their current values
and a list of all class labels.

By default only active flows are shown, but if the
expired parameter is specified expired flows are also
shown. (Expired flows are no longer active but their state
is still in the table. State is not immediately deleted when

2Even with partial-window configured more than one packet
may be required to compute the feature statistics. For example, the
“iat” feature requires at least two packets to compute inter-arrival
time statistics.

flows expire, but only when more space is needed for
adding new flows.)

All entries in the flow table can be removed (flushed)
or the packet and byte counters can be zeroed by using
the flush or zero commands (see Figure 14).

H. Export flow rules to ANs

On the CN we need to configure rules that decide
what information the classifier sends to the Exporter or
to remote AN(s).

Firstly, an export target needs to be configured as
shown in Figure 15. The argument export-name is
the name of the new export target instance. The argument
of target is the destination of the flow rules. The
protocol must be UDP, host is the fully qualified host
name (or IP address), and port is the port number the
target is listening on. The arguments action-name
and action-params-val are the action name and
parameters that are send for matching flows. Note that
action name and parameters must specify valid IPFW
actions3. Note that the receiving AN(s) may overrule
these with locally specified actions.

The argument of min-batch is the minimum num-
ber of flow rules exported in one batch. Similarly, the
argument of max-batch is the maximum number of
flow rules exported in one batch (must be equal or larger
than min-batch). Note that increasing min-batch
also increases the delay for delivering flow rules.

The argument of max-delay specifies a maximum
delay between the generation of flow rules and their
export. Note that if max-delay is set (value larger than
zero) the minimum batch size is still enforced, but the
maximum batch size can now be exceeded (if at the time
of exporting more rules are over the maximum delay than
the size of the maximum batch).

The argument of confirm specifies how many times
a flow has to be consecutively classified as the same
class before flow information is exported. For example,
if confirm is set to 2, information is only exported

3Currently, these are opaque values that are not checked.
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ipfw mlclass myclass config algorithm c4.5 model /etc/ipfw/realtime.model use-feature-stats
fwd.min.myplen,fwd.mean.myplen,fwd.max.myplen,bck.min.myplen,bck.mean.myplen,bck.max.myplen
class-names rt,nonrt
ipfw add pipe 1 ip from any to any match-if-class myclass:rt

ipfw add pipe 2 ip from any to any match-if-class myclass:nonrt

Figure 12. Matching using the new match-if-class option

ipfw mlclass myclass config algorithm c4.5 model /etc/ipfw/realtime.model use-feature-stats
fwd.min.myplen,fwd.mean.myplen,fwd.max.myplen,bck.min.myplen,bck.mean.myplen,bck.max.myplen
class-names rt,nonrt
ipfw mlclass myclass ip from any to any class-tags 1,2
ipfw add pipe 1 ip from any to any tagged 1

ipfw add pipe 2 ip from any to any tagged 2

Figure 13. Matching using IPFW tags

ipfw flowtable show [expired]

ipfw flowtable ( zero / flush )

Figure 14. Flow table commands

ipfw export export-name config target udp://host:port [action action-name] [action-params
action-params-val] [min-batch number] [max-batch number] [max-delay delay] [confirm number]
[unidirectional]

ipfw add ipfw-rule-id ( export export-name / ... ) ipfw-log-altq-tag ipfw-patterns

diffuse-patterns

Figure 15. Configure export target and trigger export of rules

if the class was confirmed twice (three consecutive
classifications resulting in the same class).4

By default ANs treat flows as bidirectional, i.e.
apply actions to both directions of a flow. Setting
unidirectional instructs ANs to treat flows as
unidirectional, but only if they were unidirectional at
the CN as well. However, based on local configuration
the receiving AN(s) may still decide to treat flows
differently.

Secondly, we need to define the rules that, if they
match, will send flow rules to the configured AN(s) as
shown in Figure 15. A rule with the new export target
will export flow rules according to the configured ex-
porter export-name for all flows that match the rule.
Figure 16 shows an example where all flows classified
as real-time are exported to localhost.

The classifier in the kernel can only export information
via the UDP transport protocol. If UDP is sufficient the

4Typically, this option is only used for classifiers configured
without using the classifier confirm option. However, it can always
be used to more aggressively filter for flow-rule exports than for local
rules.

classifier can send rules to ANs directly. However, in
many cases UDP will not be appropriate, for example
if reliable transport is required (see Section VII). In
this case the classifier needs to send the information to
the userspace Exporter via UDP, which then forwards
the information to the Collector via SCTP or TCP (see
Section VII).

The Exporter is configured as shown in Figure 17.
By default the Exporter listens for flow rules from any
(kernel) classifier on the default port 3191. The -c
switch can be used to specify a particular classifier
host and change the default port number5. The flow
information is forwarded to a number of ANs specified
as list of URLs with the -a switch. The -q switch turns
off any output to stdout.

Note that not only the 5-tuple describing the flow, the
class tags and the action is exported to ANs. A variety
of other data is sent as well, such as a bidirectional
flag that specifies if actions should be executed for both

5Typically the Exporter runs on the same host as the kernel
classifier, but it could run on a different host.
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ipfw export myexp config target udp://localhost min-batch 1 max-batch 5

ipfw add export myexp ip from any to any match-if-class myclass:rt

Figure 16. Export flow rules example

ipfw_exp [-c host:port] [-a list-of-urls] [-q]

list-of-urls = url*(“,”url)

url = (udp / tcp / sctp)”://”host”:”port

Figure 17. Userspace exporter configuration

directions of bidirectional flows, rule timeouts and so on
(see Section VII).

I. Listen to remote CNs
On the AN we need to configure the Collector to

listen to remote Exporter(s) as shown in Figure 18. The
parameters -s, -t and -u specify on which SCTP, TCP,
UDP ports the Collector is listening (at least one of
these must be specified). The -n switch turns off the
IPFW rule generation (useful for testing as non-root).
The -q switch turns off any output to stdout. The -r
switch specifies the IPFW rule number space used by
rules generated by the Collector (default 1000–2000).
The Collector will create as many IPFW rules as fit
into this space. Note that it is the users responsibility
to ensure that the range specified is available.

The -c switch specifies a file that defines a mapping
between classes and actions (actions file). If flow rules
are received with one of the classes specified in the
actions file, the specified actions will always overrule
any actions given by the CN. The syntax of the actions
file is shown in Figure 19. Figure 20 shows an example
actions file.

In principle the Collector is independent of the firewall
or traffic shaper used to treat flows. However, currently
the Collector can only be used with IPFW. Also note
that currently prototype action names and parameters are
opaque values, which are not checked by the Collector.

The Collector has its own flow table. For each rule
received from a CN via an ARM the Collector checks
if the rule is already present in the table. If a flow
rule is present with same flow specification and action,
the collector only updates the timeouts (if any). If a
flow rule is present with the same flow specification but
different action and there is no actions file, the Collector
replaces the old rule with the new rule and updates
timeouts (if any). If no rule is present with the same
flow specification the collector inserts the new rule into
the table.

If a new rule was inserted or an existing rule was
updated the Collector will create a new IPFW rule or up-
date an existing IPFW rule by using the IPFW command
line interface. Removal of rules occurs upon timeout
or explicit RRM. In both cases the Collector removes
the rule from its internal database and then removes the
IPFW rule via IPFW’s command line interface.

Figure 21 shows an example for configuring an Ex-
porter and Collector.

VI. DESIGN OF CLASSIFIER AND ACTION NODE

Now we describe the software design of CN and AN.

A. Classifier Node

1) Overview: Figure 22 shows the main building
blocks of the CN. Inside the kernel there is a new
DIFFUSE module. At load time the DIFFUSE module
registers a new raw socket option which is used to
configure feature, classifier and export instances, as well
as for showing and deleting them using the raw socket
interface. This is the same interface used by IPFW and
Dummynet.

The DIFFUSE module also registers itself with the
IPFW module (which must be loaded before DIFFUSE
can be loaded). After DIFFUSE has registered the IPFW
module will call DIFFUSE hooks every time an IPFW
rule is added or removed with an action or option
unknown to IPFW. This allows the DIFFUSE module
to handle the instantiation and removal of new rule
actions and options, such as the mlclass action or the
match-if-class option.

The IPFW module also calls a DIFFUSE hook for
every packet that is checked when there are rule actions
and options unknown to IPFW. This allows the DIFFUSE
module to process the new actions or options, and decide
whether a packet matches or not.

Since the IPFW control interface (based on raw socket
options) does not allow unsolicited messages from kernel
to userspace and frequent polling of the kernel classifier
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ipfw_col [-c actions-file] [-r min-rule-no[“-”max-rule-no]] [-s sctp-port] [-t tcp-port] [-u

udp-port][-nq]

Figure 18. Collector configuration

actions-file = 1*line

line = ( # comment / default / classifier-name:class_number) action [action_parameters]

Figure 19. Actions file syntax

# class 0 is rt and class 1 is non-rt
default queue 2
myclass:0 queue 1

myclass:1 queue 2

Figure 20. Actions file example

ipfw_exp -c localhost -a sctp://action1.node:5000 -q

ipfw_col -c class_actions.txt -r 10000-20000 -s 5000 -t 5000 -q

Figure 21. Exporter and Collector configuration example

is impractical, a separate interface (UDP socket) is used
to convey flow rules to the Exporter (IPFW-EXP). The
DIFFUSE module only exports flow rules, if there are
any rules with the new export action. The Exporter
receives the flow information and forwards them to
ANs, possibly using different transport protocols, such
as SCTP or TCP (see Section VII).

Users use the DIFFUSE-specific config, show and
delete commands as well as the new rule actions and
options via an extended ipfw userspace tool (see Section
V). A modified version of WEKA [17] generates clas-
sifier models based on training data. The extended ipfw
userspace application parses the models and configures
the DIFFUSE kernel module.

Figure 23 shows the internals of the DIFFUSE kernel
module (dashed lines indicate relations between objects
and solid lines indicate message flows). Feature and
classifier algorithms are actually separate modules. The
config commands create configured instances of these
algorithms, which are kept in linked lists. Configured
export instances are also stored in a linked list. DIF-
FUSE actions and options in IPFW rules point to these
instances. Flow information, computed features and flow
classes are stored in a flow table. Flow rules are stored
in a first in first out queue and later exported via the CP.

Flow information, such as 5-tuples, flow state (e.g.
TCP state, timeouts), computed features and flow classes
are stored in a flow table, which is realised as hash table
with last recently used sorting of the bucket lists. Export

rules create flow rules that are stored in a first in first out
(FIFO) list and later exported via the control protocol.

2) Flow table: The flow table stores the active bidi-
rectional packet flows (5-tuple), their current feature
statistics and assigned classes. The flow table is im-
plemented as hash table with last recently used sorting
of the bucket lists. For consistency we use the same
XOR-based hash function IPFW uses for dynamic rules.
This hash function is very fast to compute, and since
it is commutative only one computation is required for
bidirectional flows. However, depending on the flows’ 5-
tuples it may produce a sub-optimal (non-uniform) hash
value distribution. Improving the hash function is left for
future work.

3) Flow timeouts: Flows are ended by configurable
timeouts that depend on the protocol (UDP or TCP) and
for TCP it also depend on the flows’ state (connection
establishment, running or teardown). If explicit rule
removal messages (see Section VII) are not needed,
expired flows are only freed once a new flow is inserted
to the same bucket. However, if rule removal messages
are required, timely flow timeouts are needed. This is
implemented using a variation of a timing wheel [18],
supporting one-second precision timers.

Our timing wheel is a array of double-linked lists.
Each entry in the array corresponds to a second, and the
entry’s list holds all the timers that expire at this second.
The current time is indicated by a pointer that moves
through the array, wrapping around from end to start
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Figure 22. Classifier node design, main building blocks
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Figure 23. Classifier node design, DIFFUSE module

(circular array). This data structure allows adding and
expiring of timers, as well as removal of expired timers
with O(1) computational complexity. To maintain timer
accuracy and avoid expiry of many timers at once, the
timer wheel is checked for expired timers every 100 ms.

4) Feature computation: DIFFUSE can compute fea-
ture statistics over (overlapping) sliding windows or non-
overlapping “jumping windows”. Let w be the window
size in packets. Sliding windows allow more frequent
feature statistic updates but have O(w2) computational
complexity and O(w) memory complexity. Jumping
windows update statistics less frequently but have only
O(w) computational complexity and only O(1) memory
complexity in the best case (if statistics can be computed

without the need to store per-packet information, e.g. to
compute the mean of the packet length only the sum of
the packet lengths and the number of packets is needed)
or O(w) memory complexity otherwise.

By default DIFFUSE will only classify flows once the
first window has been filled. To minimise classification
latency, DIFFUSE also supports classification of partial
windows. If enabled DIFFUSE will classify flows as
soon as at least one statistic is available (e.g. for inter-
arrival times at least two packets are needed).

5) Independent rules: IPFW/DIFFUSE rules are in-
dependent of each other. This is beneficial because it
allows ruleset modifications (adding and deleting rules)
on the fly. However, a consequence is that DIFFUSE
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must check during run-time whether the features needed
by a newly added rule are already computed because of
previous rules or must be added to the set of features
that need to be computed, but this has only minimal
performance impact.

6) Classifier sampling: To improve performance DIF-
FUSE supports randomly sampled classification. Feature
state is updated for every packet (e.g. the packet length
is stored), but feature statistics (e.g. the mean) are
computed and the classifier is executed only for sampled
packets. The class of the last sampled and classified
packet of a flow (if any) is assigned to non-sampled
packets. However, the first sub-flow of a flow is always
classified to minimise classification latency. Furthermore,
rules can be configured to match only if n consecutive
sub-flows were classified as the same class.

7) Passive and active CN: Classifications made by
DIFFUSE can be used straight-away to decide the fate of
local or remote (via ANs) packets, such as allow, block
or prioritise packets (active CN). However, DIFFUSE
can also be used for passive monitoring, such as collect-
ing traffic statistics (passive CN).

8) Locking: Locks are needed to protect key data
structures since they are accessed based on arriving pack-
ets as well as management from userspace (the ipfw
command) and IPFW/DIFFUSE supports concurrency
on multi-processor machines (nearly every recent PC).
The feature, classifier and export lists are protected by
a “main” read-write lock. The flow table and flow rule
queue are each protected by separate read-write locks.

When a packet is inspected by IPFW/DIFFUSE the
main lock is only acquired in read mode, hence packets
can be processed in parallel (and processing is blocked
only when rules are modified). However, during part of
the processing packets may block each other, because
the two other locks must be acquired in write mode
when flow table or rule queue need to be modified. (Flow
timeouts also block access to the flow table.)

B. Action Node

Figure 24 shows the main building blocks of the AN.
The Collector (IPFW-COL) listens for flow rules from
CNs and configures the packet filter and traffic shaper
accordingly using existing configuration interface(s). We
implemented our Collector as a front-end (handling the
CP communication and managing addition/removal of
flow rules stored in an internal database) and back-end
(which generates rules customised for the underlying
packet filter or traffic shaper).

Our implementation creates IPFW/Dummynet rules
via the command line (ipfw add). Flow information
in the database is deleted based on rule removal mes-
sages and timeouts, which triggers removal of the corre-
sponding IPFW/Dummynet rules (ipfw delete). On
the AN an unmodified IPFW/Dummynet can be used
(without DIFFUSE extensions).

The AN is not limited to operating systems with
IPFW/Dummynet. A front-end can be written in any
suitable language, and support for other firewalls or
traffic shapers can easily be provided by alternative back-
ends. The back-end might also implement actions such
as logging of classified traffic in a database.

C. Implementation Language(s)

The kernel part of DIFFUSE is implemented using
the C programming language. To be able to share code
between userspace and kernel and achieve high perfor-
mance we decided to also implement the Exporter and
Collector using C/C++. Since WEKA is implemented in
Java, our WEKA extension is also implemented in Java.

VII. DESIGN OF REMOTE ACTIONS PROTOCOL

We first discuss the requirements and then describe
the design of the protocol.

A. Transport Protocol

UDP and TCP are the main transport protocols cur-
rently used in IP networks. UDP is a connectionless
protocol providing unreliable data transport without flow
and congestion control. Due to its simplicity the over-
head (both in terms of network capacity and CPU
utilisation) is lower than for TCP. Furthermore, it allows
more precise timing of messages by the sender.

TCP on the other hand is a connection-oriented proto-
col and provides flow and congestion control as well as
reliable transport of data at the cost of higher overhead
and less control for the sender. TCP overhead can
be somewhat reduced by measures such as persistent
connections (e.g. used by web browsers and servers).

SCTP is a newer transport protocol that provides a
number of advanced features that are very useful for
DIFFUSE [19]. SCTP is more reliable than TCP, as it
has a stronger checksum, and supports transparent fail-
over a) over different network interfaces of one host
and b) over different hosts due to its multi-homing
capability. SCTP allows out of order delivery of data,
which prevents the head of the line blocking problem
inherent in TCP. Furthermore, SCTP allows to bundle
different independent data transfers (called streams) into
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Figure 24. Action node design

one connection (called association), so only a single
socket is needed. PR-SCTP is an extension of SCTP that
also provides timely unreliable data transport (avoiding
unnecessary retransmissions) with congestion control.

By default SCTP will use multiple network interfaces
for one association, so it provides fail-over in case
an interface on either side of an association becomes
(temporarily) unusable. Furthermore, SCTP allows one-
to-many socket associations, which can be used by a CN
to transmit the same message to multiple ANs simultane-
ously. One-to-many socket associations can also be used
to provide fail-over, e.g. if there are redundant ANs.

Our main criteria for the transport protocol are re-
liability, timeliness of message reception, congestion
control and overhead (network and computational at
the sender/receiver). We now discuss our requirements
on the transport protocol taking into account different
scenarios in which DIFFUSE could be used.

For traffic prioritisation one might not need maxi-
mum reliability, but it depends on the business case.
If customers pay money for an improved QoS then it
should be a very reliable service. For security-based
applications often very high reliability is required. For
market research high reliability is probably not needed.
Very importantly a timely message delivery is needed
for traffic prioritisation or security-based applications.

In a closed network that is dimensioned properly
congestion control may not be necessary. But the In-
ternet Engineering Taskforce (IETF) mandates the use
of congestion control in the Internet (as demonstrated
during the standardisation of the IPFIX protocol [20]).
The overhead of the transport protocol is a less important
criteria, since we usually would not have extremely short
messages. With SCTP reliability is tunable and inversely
proportional to overhead, but even when completely
unreliable SCTP still has more overhead than UDP.

Another issue is current deployment. UDP and TCP
are generally supported by every end host and network

device. SCTP is generally available on all end hosts
using common modern operating systems and supported
by many network devices. Table III classifies UDP, TCP,
and SCTP according to the criteria identified above on
the scale: −− (worst), −, +, ++ (best).

We selected SCTP as default transport protocol for
DIFFUSE v0.4 because it is very reliable, provides
timely message delivery, with SCTP-PR reliability and
overhead can be tuned, and it provides congestion control
even in unreliable mode. In situations where reliability
is not an issue or there is no packet loss and congestion
control is not an issue (closed well dimensioned net-
work), UDP may be used to provide a timely message
delivery with minimum overhead. TCP may be used if
reliability or congestion control are required and SCTP is
not available (backwards compatibility). Which transport
protocol is used can be controlled by the configuration
of CNs and ANs.

B. Protocol format

The protocol is designed to have minimum overhead
while still being flexible enough to allow further exten-
sion in the future. Flexibility is crucial, because although
we outlined some scenarios in which DIFFUSE could be
used, we think there are many other possible scenarios.

To avoid gratuitously reinventing a wheel, our protocol
is conceptually based on the IP Flow Information Export
(IPFIX) protocol [20], which was developed for very
similar requirements [21]. Our protocol uses the same
template-based approach and similar binary encoded
messages.6 However, the format of protocol headers and
fields is not identical to IPFIX.

1) Fixed header: Every message of the protocol has
a fixed header comprised of (see Figure 25):

• Version (16 bit)

6A binary-based encoding benefits DIFFUSE, since it is easy and
efficient to parse in C/C++ code (especially in C kernel code), and
has less network overhead compared to text-based encoding.

CAIA Technical Report 110704A July 2011 page 16 of 25



Table III
CRITERIA OF TRANSPORT PROTOCOLS

Protocol Reliability Timeliness Cong.
Control

Overhead Deployment

UDP − + − ++ ++
TCP + − + − ++

PR-SCTP − to ++ + + + to −− +

• Message length (16 bit)
• Sequence number (32 bit)
• Timestamp (32 bit)

Version specifies the protocol version. Message length
is the total length of the message in octets including
the fixed header. The sequence number numbers all
messages. It is required to determine the order of mes-
sages (in case UDP or unordered SCTP is used and
packets are reordered), can be used for retransmission of
information over UDP and also provides weak security
against insertion attacks with UDP, as packets with
sequence numbers out of the acceptable window will be
silently ignored.

The Timestamp contains the time the message was
generated (in seconds since Unix epoch). It allows the
Collector to determine when a message was sent by
the Exporter, i.e. how old the information is (assuming
clocks are roughly synchronised). The collector can use
this information to adjust timeouts or ignore outdated
information.

2) Templates and data sets: After the fixed header
each message contains a number of sets. Currently there
are three types of sets:

• Options template
• Flow rule template
• Option and flow rule data

Flow rule data sets are used to transmit flow rules. Option
data sets are used to transmit optional data. Optional data
can be transmitted with different frequencies, e.g. on a
per connection/association basis or on a per message
basis. Options and flow templates specify the types of
information elements (IEs) contained in options/flow
datasets.

Each dataset has a fixed header which contains the
following fields:

• Set ID (16 bit)
• Length of set (16 bit)

Set ID specifies whether the data is an options template
(set ID = 0), a flow rule template (set ID = 1) or data
(set ID ≥ 256). Length is the length of a template or
data set in octets including the set header.

An options or flow rule template set contains the
following fields:

• Template ID (16 bit)
• Flags/reserved (16 bit)
• A number of field definitions each consisting of an

IE ID (16 bit) and optionally the length of the data
in octets (16 bits)

The template ID specifies an ID for the particular tem-
plate that is then referenced in a dataset (values 256–
65535). The following 16 bits are reserved for future
use. Each IE ID specifies an information element, e.g.
the source IP address. The length defines the length of
the data in octets, e.g. length is 4 bytes for an IPV4
source address.

There are three types of IEs: fixed-length, variable-
length and dynamic-length. For fixed-length IEs the IE
ID also specifies the length (e.g. source IP address) and
the next field is another IE ID. For variable-length IEs
(e.g. a string) the length of the IE must be specified
in the template in the length field following the IE ID.
The length of dynamic-length IEs varies with each entry
in a dataset. The first octet of a dynamic-length field
in a dataset specifies the length of the field in octets
(including the length field).

Whenever possible fixed-length and variable-length
IEs should be used. Dynamic-length IEs should only be
used if the IE length is unknown in advance and can vary
significantly between entries in a data set. The highest
two bits of the IE ID specify the type. If set to 00 or
01 the IE is fixed-length, if set to 10 the IE is variable
length, and if set to 11 the IE is dynamic-length. This
means IDs 0–32767 are for fixed-length IEs, IDs 32768–
49151 are for variable-length IEs, and IDs 49152–65535
are for dynamic length IEs.

A dataset contains the data for all the IEs specified
in the template in exactly the same order as specified
in the template. Note that sets must aligned on 32-bit
boundaries. Padding octets must be added at the end of
sets as needed to ensure this.

One could reduce the overhead of the protocol by
using 8-bit integers instead of 16-bit integers for IDs.
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Figure 25. Fixed header of the DIFFUSE v0.4 control protocol

However, it has been shown many times that original
protocol designers severely underestimated the future
need for numbering space thus necessitating protocol
redesign or the use of bad hacks later on. Furthermore,
one could use loss-less compression to reduce the size
of the data on the wire, e.g. adaptive Huffman coding is
successfully used by First-person Shooter Games to re-
duce message sizes. However, compression increases the
complexity and requires extra computational resources at
the sender/receiver.

3) Template management: Depending on the transport
protocol there are two ways of handling templates:

• Transmit templates in every packet (UDP)
• Transmit templates only at the start of connec-

tions/associations (SCTP, TCP)
If UDP is used, templates are transmitted in each packet.
Packets are self-contained and loss of packets with
templates will never cause loss of data beyond the lost
packet (data that cannot be used because the template
is not known). No additional reliability is needed for
templates and there are no issues if an AN restarts.
Also, an AN does not need to store templates. However,
network protocol overhead is higher.

If TCP is used the Exporter only needs to transmit
templates once at the start of a connection, because
TCP provides ordered reliable transport. The Collector
must store the templates for the duration of the TCP
connection. However, if a connection is closed and re-
established, the Exporter must (re)send all templates at
the start of the new connection, because it cannot know
if only the connection was closed or the Collector had
to restart and may have lost templates. Transmitting the
templates only at the start reduces the overhead, but
requires ANs to store the templates.

If SCTP is used templates and data are transmitted
reliably in the same way as for TCP. If SCTP-PR is
used templates only need to be transmitted once at the
start, but they must be transmitted reliably using ordered
reliable SCTP. The receiver must store templates for
the duration of an association. Data may be transmit-
ted unreliably if reliable data transport is not needed.
Templates and data must be send over two different

SCTP streams, so there will be two streams per SCTP
association (templates are send over stream 0 and data
is send over stream 1).

4) Information elements (IEs): The following IEs are
defined (the numbers in parenthesis are the ID and the
size in octets or “V” for variable-length or “D” for
dynamic-length IEs):

• IPv4 Source Address (1, 4)
• IPv4 Destination Address (2, 4)
• Source Port (3, 2)
• Destination Port (4, 2)
• Protocol (5, 1)
• IPv6 Source Address (6, 16)
• IPv6 Destination Address (7, 16)
• IPv4 Type of Service (ToS) (8, 1)
• IPv6 Flow Label (9, 4)
• Class Label (10, 2)
• Match Direction (11, 1)
• Message Type (12, 1)
• Timeout Type (13, 1)
• Timeout (14, 4)
• Action Flags (15, 1)
• Action (32768, V)
• Action Parameters (32769, V)
• Classifier Name (32770, V)
• Export Name(32771, V)
• Class Tags (49152, D)

A number of IEs are fields taken from the IPv4 or IPv6
headers. Other IEs are explained briefly in the following
paragraphs. Class Label is the flow’s class assigned by
the classifier. Classifier Name specifies the classifier that
classified the flow. Match Direction indicates whether
matched flows are unidirectional or bidirectional. Mes-
sage Type specifies whether a message is an “add” or
“remove” message. Timeout Type specifies whether the
timeout is a flow timeout or a rule timeout. Timeout is
the timeout value in seconds.

Action Flags are used to indicate whether the AN
should apply actions to unidirectional or bidirectional
flows. Action is the action name and Action Parameters
specify the parameters of the action. Export Name is the
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name of the export that generated the flow rule. Class
Tags defines a list of classifier name and class tuples (if
flows were classified by multiple classifiers).

The current implementation uses a standard template
with the following fields: Export Name, Message Type,
IPv4 Source/Destination Address, Source/Destination
Port, Protocol, Class Tags, Timeout Type, Timeout, Ac-
tion Name, Action Flags and Action Parameters. With a
single class tag the size of one data entry is 54 bytes.
(Note that IPv6 is not fully supported yet.)

5) Keep-alive: To minimise the overhead of estab-
lishing and shutting down connections repeatedly, a TCP
connection or SCTP association between CN and AN is
kept open even if there is nothing to send for a while.
This keep-alive mechanism is based on the default SCTP
or TCP keep-alive mechanisms. UDP is connection-less
and there is no overhead, hence for UDP no keep-alive
mechanism is used.

C. Example

Figure 26 shows an example message consisting of
the fixed header, a template set defining the IEs for
template 256, and a flow rule data set for template 256
with multiple rules.

D. Security Considerations

We assume that often CNs and ANs are part of the
same trusted network, which includes being connected
via a secure Virtual Private Network (VPN). This pre-
vents alteration or eavesdropping attacks on messages
in flight. However, if CNs and ANs are connected via
an untrusted network the integrity of messages must be
protected against attackers by using digital signatures
or encryption. If messages contain sensitive information,
encryption must be used to preserve message confiden-
tiality.

An AN needs to authenticate messages; it must verify
that messages were created by a trusted CN. Otherwise,
attackers could send fake messages to ANs for various
purposes including but not limited to obtaining services
that they have not paid for (e.g. prioritisation of traffic)
or mounting Denial of Service (DoS) attacks by blocking
a victim’s legitimate flows.

A simple message authentication could be based on IP
addresses. An AN only accepts messages from specified
CN IP addresses on the specified ports using the specified
protocols. If IP spoofing can be prevented the system
will be reasonably secure in many cases. If IP spoofing
is possible the sequence numbers provide some protec-
tion against blind insertion attacks. However, if strong

protection against such attacks is required cryptographic
authentication of messages must be used.

Like IPFIX strong security for our protocol can be
provided by the Transport Layer Security (TLS) [22]
or Datagram Transport Layer Security (DTLS) [23]
protocols. For UDP and PR-SCTP DTLS must be used.
For TCP TLS must be used.

The current implementation does not support message
authentication or confidentiality.

VIII. MODEL CREATION & OFFLINE ANALYSIS

Since version 0.3 DIFFUSE also includes functionality
to perform offline analysis based on trace files. Most
importantly this allows extracting the feature statistics
from traffic traces that subsequently can be use for
training classification models. It also allows analysing
the classification performance depending on various pa-
rameters without time-consuming online experiments.
Often traffic datasets may cover many hours, and since
online experiments (e.g. replaying traffic across a real
network) have to be carried out in real-time, the resulting
experimental time would be enormous.7

Furthermore, DIFFUSE’s offline capabilities enable
developers to test the functionality and correctness
of feature and classifier module implementations in
userspace. Testing new modules in userspace is much
more convenient than testing them inside the kernel.
Also, for verification the output of DIFFUSE classifiers
can be directly compared to the output of ML algorithms
supported by WEKA.

DIFFUSE provides two tools for offline work. The
command ipfw_fstats allows extracting sub-flow
feature statistics from existing traffic traces in tcpdump
format.8 It uses the same feature modules and flow table
implementation as used for online classification. The
command ipfw_cltest uses a DIFFUSE model to
classify sub-flow instances provided as WEKA ARFF
file. It uses the same classifier modules implementation
as used for online classification.

Figure 27 shows how to use ipfw_fstats. The -d
switch specifies a tcpdump file. The -f switch specifies
a comma-separated list of feature statistics (the same
names that are used for the commands described in

7Even online experiments with only packet-length features must
be done in real-time, because packets are grouped into flows using
timeouts. Speeding up the traffic replay changes the flow structure
and alters results.

8Currently, only the tcpdump format is supported, but there exist
tools to convert other types of trace files into tcpdump format. For
example, trace files in Endace Record Format (ERF) can easily be
converted to tcpdump format.
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Figure 26. Example of DIFFUSE v0.4 control protocol message including a flow rule template and dataset

Section V). The -F option allows specifying tcpdump
filter strings (see man tcpdump); only traffic in the trace
file matching the filter string will be processed. By
default ipfw_fstats uses its own output format, but
specifying -W will generate WEKA ARFF files. The -q
switch silences some additional output.

The -o switch specifies a feature options file that
contains the feature configuration. The feature options
file is a text file with one line for each feature. Each line
starts with the feature module name followed by a list of
options specified in the same way as for a feature config
commands (see Section V-C). Figure 28 shows a small
example feature options file.

The output of ipfw_fstats is a header followed
by a table. Each row in the table contains the following
columns: flow ID, number of packets of the flow thus
far (starting with zero), protocol number (e.g. 6=TCP),
source IP, source port, destination IP, destination port,
and the feature statistics specified in the order they were
specified with -f. The header contains a definition of
all columns. The option -c will cause the specified class
name to be printed in the last column. Figure 29 shows
a small example of the output (with using -c or -W).
(If the option -n is used the output of the header is
suppressed.)

Instead of printing out all existing sub-flows the -p,
-P and -S switches make it possible to sample the data.
Either -S p is used to specify periodic sampling and
-P is used to specify the period, or -S r is used to

specify random sampling and -p is used to specify the
probability. (The -s switch can be used to specify the
random generator seed.)

The -r switch will cause ipfw_fstats to print a
second row for each (sampled) sub-flow, where the statis-
tics in forward and backward directions are reversed.
Effectively, this implements the Synthetic Sub-flow Pairs
(SSP) approach described in [24]. For unidirectional
features ipfw_fstats can do the reversal without
further input, but for bidirectional features the feature
statistics to be reversed must be explicitly specified
with the -R switch. This switch specifies a comma-
separated list of feature indices (starting with zero)
of the additionally-generated feature-reversed sub-flow
instance. For example, if there are two feature statistics,
the first in forward direction and the second in backward
direction, the command line option -R 1,0 means both
are reversed in the feature-reversed instance.

Figure 30 shows how to use ipfw_cltest. The
-a parameter defines the algorithm name, which is the
name of the classifier module to be used (see Section
V-F). The -c and -f options defines the index of the
class name and the indices of the feature statistics to
be used respectively (starting with zero). The indices
refer to the attribute number in the test file specified
with -T. The test file must be in WEKA ARFF format.
The -m switch specifies the classifier model created with
the modified WEKA. The -q switch silences additional
output. The output of ipfw_cltest is in the same
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ipfw_fstats -d dump-file -f feature-stat,... [-c class-name] [-F pcap-filter] [-o

options-file] [-p sample-probability] [-P sample-period] [-R reverse-idx-list] [-s seed]

[-S sample-strategy] [-nqrW]

Figure 27. DIFFUSE v0.4 feature statistics extractor (ipfw_fstats)

plen window 15 payload-len

iat window 20 accurate-time

Figure 28. Example feature options file

# flow-id, pkt-cnt, proto, src-ip, src-port, dst-ip, dst-port, fwd.min.plen, fwd.mean.plen,
fwd.max.plen
0, 0, 6, 10.0.0.1, 22, 10.0.0.2, 43282, 48, 48, 48
0, 1, 6, 10.0.0.1, 22, 10.0.0.2, 43282, 48, 48, 48

[...]

Figure 29. Example ipfw_fstats output

format as the output produced by WEKA, when used
from the command line to test an ARFF file with an
existing classifier model.

Figure 31 shows an example on how to use both com-
mands. It shows how to extract the sub-flow statistics,
build a DIFFUSE model and test the model with the
training data.9

IX. SELECTED ML TECHNIQUES

We leverage WEKA [17] to perform the initial training
data analysis and to build classifier models used for
classification. WEKA provides an easy to use GUI as
well as a command line interface to inspect the data,
experiment with different classification techniques and
build models from training data. After a classifier model
has been trained in WEKA it can be saved and used with
DIFFUSE v0.4.

WEKA provides access to many different ML algo-
rithms. We previously investigated the use of different
ML techniques for the classification of network traffic
and found that the better techniques provide similar
accuracy, but differ greatly regarding training time and
classification speed [25]. Our current implementation of
DIFFUSE supports C4.5 and Naïve Bayes.

We use the C4.5 decision tree classifier because it
provided good accuracy for network traffic classification
previously [25], the classification function is fast (tree
search) and relatively easy to implement (unlike other

9For training the model with WEKA we need to generate an ARFF
file with only the feature statistics. Note that for WEKA feature
indices start at one, but for ipfw_cltest feature indices start at
zero.

algorithms it does not require mathematical functions not
implemented in the FreeBSD kernel). Using a decision
tree algorithm has the advantage that a human can
interpret the resulting classifier (decision tree), although
with increasing size this becomes difficult.

Naïve Bayes also was previously used to classify
network traffic [25]. While the achieved accuracy of
Naïve Bayes was lower than for C4.5, the classification
function is fast and very easy to implement. Due its
simplicity Naïve Bayes is significantly quicker than C4.5
in building a classifier (training).

More ML algorithms could be supported in the future.
However, it may be difficult to implement some ML
classifiers in kernel space because of the lack of math-
ematical functions. Future work could also investigate
ways of diverting packets (or a list of features) to a
userspace application that performs the classification.

A. C4.5

C4.5 creates a classifier based on a tree structure
of nodes, branches and leaves [26]. Nodes in the tree
represent features, and branches represent value tests. A
series of nodes and branches is terminated by a leaf,
which represents the class. Determining the class of an
instance is simply a matter of tracing the path of nodes
and branches to a terminating leaf node.

C4.5, as other decision tree learners, uses the ‘divide
and conquer’ method to construct a tree from a set of
training instances S. If all cases in S belong to the same
class, the decision tree is a leaf labelled with that class.
Otherwise the algorithm will use tests to divide S into
several non-trivial partitions.
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ipfw_cltest -a algorithm-name -c class-index -f feature-index,... -m model-file -T test-file

[-q]

Figure 30. DIFFUSE classifier tester (ipfw_cltest)

ipfw_fstats -d traf1.dmp -f fwd.min.plen,fwd.max.plen -o fopt.txt -c class1 -qW > train.arff
ipfw_fstats -d traf2.dmp -f fwd.min.plen,fwd.max.plen -o fopt.txt -c class2 -nqW >> train.arff
java weka.filters.unsupervised.attribute.Remove -i train.arff -R 1,2,3,4,5,6,7 -o train_r.arff
java weka.classifiers.trees.J48 -B -t train_r.arff -y > model.c45.diffuse

ipfw_cltest -a c4.5 -c 9 -f 7,8 -m model.c45.diffuse -T train.arff

Figure 31. Example commands for extracting sub-flow features, training a model and testing the model with the training data

Each of the partitions becomes a child node of the
current node and the tests to separate S are assigned to
the branches. C4.5 uses two types of tests each involving
only a single attribute A. In case of discrete attributes
the test is A =? with one outcome for each value of A.
For real attributes the test is A ≤ θ where θ is a constant
threshold. To find the optimal partitions C4.5 relies on
greedy search and selects the test set that maximizes an
entropy-based gain ratio.

The divide and conquer approach partitions the data
until every leaf contains instances from only one class or
a further partition is not possible because two instances
have the same features but different class. If there are
no conflicting cases the tree will correctly classify all
training instances. This over-fitting leads to a decrease
of the prediction accuracy. C4.5 attempts to avoid over-
fitting by removing some structure from the tree after it
has been built (tree pruning).

Because C4.5 selects feature tests in order of max-
imising the entropy-based gain ratio it is not adversely
affected by unimportant or irrelevant features like other
techniques. The most useful features are always used at
the top of the tree and irrelevant features are ignored.
Feature pre-selection is not necessary, although some-
times it still improves accuracy slightly [25].

B. Naïve Bayes

Naïve-Bayes is based on the Bayesian theorem [25].
It estimates the likelihood that an instance belongs to a
class based on the probability that the instance belongs to
the class without taking any features into account (prior
probability), and the conditional probability derived for
the relationships between feature values and classes
(from the training data). The prior probability of a class
can be computed by simply counting how many times it
occurs in the training dataset. The conditional probability
cannot be directly computed, but under the assumption

that the features are independent it becomes the product
of the probabilities of each single feature.

The Bayes formula is only applicable if all features
are qualitative (nominal). A qualitative feature takes a
small number of values. Then the probabilities can be
estimated from the frequencies of the instances in the
training data set. Quantitative features can have a large
number of values (possible infinite) and the probabil-
ity cannot be estimated from the frequency distribu-
tion. Instead these features must be modelled by some
continuous probability distribution (often the Gaussian
distribution is used). An alternative approach is to use
discretisation, which transforms quantitative features into
qualitative features.

Since the true density is usually unknown for real-
world data, unsafe assumptions often occur when using
continuous probability density functions. Discretisation
circumvents this problem. On the other hand kernel
density estimation can be used instead of simple density
functions to model complex distributions.

In theory, a Naïve-Bayes prediction will only be
correct if all the features are statistically independent of
each other and the quantitative features behave according
to the probability density models. However, in practice
the algorithm often produces good results even when
these assumptions are violated [25].

C. Classifier Model File Format

WEKA saves classification models produced during
the training as Java serialised objects. This format is
relatively complicated and no reliable free open-source
C/C++ parsers exist. To use a model generated with
WEKA we have extended WEKA. A command line
switch (-y) was added that saves WEKA models in an
ASCII format, that is easily readable for DIFFUSE.

A new interface class Diffusable was added to WEKA
that needs to be used by all classifiers supported by DIF-
FUSE. For each classifier using the Diffusable interface
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we have implemented functions to export the classifier
model in ASCII format. We now describe the export
format using the same syntax as in Section V.

As shown in Figure 32 each model file first lists
the class names and feature/attribute names. The lines
following these lists are classifier algorithm specific.
(Spaces and newlines are explicitly indicated here by
SP and NL respectively.)

For C4.5 each line in the model file represents a
tree node and the associated test. The parameter node
specifies the name of the node (always n_X) and the
parameter feature specifies the name of the fea-
ture/attribute (always a_X), where X corresponds to the
numeric index of a feature in the feature list or the
number of the node in the tree (starting with zero). The
next parameter specifies if the feature is nominal or real.
The parameter missing-class specifies the resulting
class (always c_X) if the feature is undefined (missing),
where X corresponds to the numeric index of a class in
the class list (starting with zero). Then the feature test
is specified. There are three different cases:

• Nominal features with non-binary splits: a list of
pairs of values and class/node names. Each value
specifies a feature value and is followed by either
a class name or node name.

• Nominal features with binary splits: a value fol-
lowed by the class name or node name for equal
feature values and the class name or node name for
non-equal feature values.

• Real features: a real split value followed by the class
or node name for lesser equal feature values and the
class or node name for greater feature values.

For Naïve-Bayes the first line defines the prior prob-
abilities of each class. The following lines define the
conditional probabilities for feature value intervals (dis-
cretised features) or the parameters of the Normal dis-
tribution (non-discretised features). Naïve-Bayes with
kernel-density estimation is currently not supported.

For nominal features or discretised features there is
one line for each feature value (or feature value range).
For each real feature there are four lines specifying the
mean and standard deviation of the Normal distribution,
and the weight sum and precision of the feature for each
class.

As for C4.5 the parameter feature is the fea-
ture/attribute name (always a_X), where X corre-
sponds to the numeric index of a feature in the
feature list (starting with zero). The parameters
class-prior-prob and class-cond-prob are
the prior probabilities of classes and the conditional

probabilities of classes depending on the feature values.
The class-cond-value are the class values for the
different attributes of real features.

Figure 33 depicts an example of a C4.5 classifier
model generated for WEKA’s iris dataset [17]. Figure
34 shows the first part of a classifier model generated
by Naïve-Bayes for the same dataset [17].

X. CONCLUSIONS AND FUTURE WORK

This report presented the DIFFUSE v0.4 system, an
extension for the IPFW packet filter and shaper [5]
that provides ML-based traffic classification based on
statistical properties and decouples flow classification
and treatment (distributed firewalling). We described the
basic architecture and outlined the design of the software.
We also defined and explained the main interfaces of
the system: the extended ruleset language, the control
protocol, and the format of classifier model files.

This report is not a manual. Man pages and HOW-
TOs are provided as part of the DIFFUSE v0.4 open
source software release, which can be obtained from
http://caia.swin.edu.au/urp/diffuse.

In future work we will analyse the system’s classifica-
tion accuracy, performance and scalability. We also will
explore whether automatic (re)training of classifiers may
be practically achieved using live IP traffic going past
particular points inside an ISP network, and the degree
to which noise (packet loss and jitter) in the live traffic
negatively impacts on the system’s ability to recognise
the same class of traffic in the future.
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APPENDIX A: RELEASE FEATURES

This appendix lists the main software features that
appeared with each minor/major release (for more details
see ChangeLog.txt in the software distribution). DIF-
FUSE versions are numbered X.Y.Z, where X is the
major version number, Y is the minor version number,
and Z is the revision number (Z=0 for new major/minor
versions is omitted, hence 0.4.0 is called 0.4). No new
software features are added between different revisions,
so for example version 0.2.1 is functionally equivalent
to version 0.2.

Version 0.1 (first public release)

• DIFFUSE system: CN (kernel module, ipfw_exp)
and AN (ipfw_col)

• Initial feature modules: plen, iat, pcnt
• Initial classifier modules: c4.5, nbayes
• Initial classifier models: et_vs_other
• Initial offline analysis tools: ipfw_cltest

Version 0.2

• Added feature modules: skype
• Added classifier models: et_vs_other(updated),

fps_vs_other, skype
• Added offline analysis tools: ipfw_fstats, script for

building models

Version 0.3

• Added feature modules: plenbd, iatbd
• Added offline analysis tools: script for offline

training and testing (based on ipfw_fstats and
ipfw_cltest)

Version 0.4

• Added a number of features to offline analysis tools,
and a faster variant of the script for offline training
and testing where testing data is piped directly from
ipfw_fstats into ipfw_cltest

CAIA Technical Report 110704A July 2011 page 25 of 25

http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc4347.txt
http://www.ietf.org/rfc/rfc4347.txt

	Introduction
	Definitions
	Flows
	Features

	Choice of Firewall
	Functionality
	Portability
	Support
	Performance
	Usability
	Extensibility
	Decision

	System Description
	Architecture
	Classifier Node
	Action Node
	Ruleset operations
	Control protocol operations
	Example Scenarios

	Design of Command Set Extensions
	Notation
	Existing IPFW rules
	Configure, delete and show features
	Current features and their options
	Compute and use features for matching
	Use machine learning classifier
	Flow table
	Export flow rules to ANs
	Listen to remote CNs

	Design of Classifier and Action Node
	Classifier Node
	Overview
	Flow table
	Flow timeouts
	Feature computation
	Independent rules
	Classifier sampling
	Passive and active CN
	Locking

	Action Node
	Implementation Language(s)

	Design of Remote Actions Protocol 
	Transport Protocol
	Protocol format
	Fixed header
	Templates and data sets
	Template management
	Information elements (IEs)
	Keep-alive

	Example
	Security Considerations

	Model Creation & Offline Analysis
	Selected ML Techniques
	C4.5
	Naïve Bayes
	Classifier Model File Format

	Conclusions and Future Work
	References
	Appendices

