
Evaluating the FreeBSD 9.x Modular Congestion
Control Framework’s Performance Impact

David Hayes, Lawrence Stewart, Grenville Armitage
Centre for Advanced Internet Architectures, Technical Report 110228A

Swinburne University of Technology
Melbourne, Australia

dahayes@swin.edu.au, lastewart@swin.edu.au, garmitage@swin.edu.au

Abstract—Modular congestion control (modCC) is a
recently added feature to the FreeBSD kernel. The im-
plementation introduced a number of key changes to the
TCP stack with the potential to impact performance. We
test the relative performance of TCP before and after
these changes using the 215163 and 217806 Subversion
repository revisions of FreeBSD’s “head” (9.x) develop-
ment branch respectively. We find that the modCC changes
do not adversely impact performance on the whole, and in
fact slightly improve the nett performance of the FreeBSD
TCP stack.

I. INTRODUCTION

The FreeBSD kernel has recently been enhanced with
a modular congestion control (modCC) Kernel Program-
ming Interface (KPI) [1]. The KPI allows congestion
control algorithms to be implemented as loadable kernel
modules based on FreeBSD’s kld[2] facility, which can
then be dynamically added and removed at runtime.

The ongoing research and development centered
around congestion control, coupled with increasingly
diverse network path characteristics and application re-
quirements motivate the need for this work. Researchers
and developers can quickly and easily test ideas or
develop completely new algorithms in a real operat-
ing system network stack. Application developers and
system administrators can also use the feature to hone
the behaviour and performance of TCP connections or
the stack as a whole for their specific requirements.
The nett result is that the facility allows FreeBSD’s
TCP implementation to maintain stability, offer improved
user/developer friendliness and remain at the forefront of
advancements in this area.

The purpose of this report is to investigate the impact
of adding this facility to the kernel. We compare the per-
formance of the TCP stack using the default NewReno
congestion control algorithm between the 215163 (pre-
modCC) and 217806 (post-modCC) Subversion reposi-

tory revisions of FreeBSD’s “head” (9.x) development
branch.

The report proceeds with section II which summarises
the changes in the TCP stack between the pre- and post-
modCC test kernels, section III describes the test setup,
section IV presents the results of the comparative study,
and section V concludes.

II. CHANGES IN TCP
BETWEEN REVISIONS 215163 AND 217806

We use FreeBSD revision 215163 as the test kernel
for pre-modCC and revision 217806 as the test kernel
for post-modCC. The main changes to the TCP stack
between these revisions are:

1) Adding the modCC hooks into the TCP stack
2) Extracting NewReno from the existing stack into

modular form
3) Adding two helper hook [3] points into the TCP

stack
4) Increasing the scope of the “fast path” in

tcp input.c
The KPI was implemented by adding function pointer

hooks into the TCP stack at key locations which al-
gorithms can hook to manipulate congestion control
related state as required. The ack_received() hook
is called on the receipt of every acknowledgement (ack),
and therefore introduces the overhead of an indirect
function call for every received ack. It is expected that
this would have a small, negative impact on perfor-
mance. The remaining hooks used by the NewReno
module (after_idle(), cong_signal() and
post_recovery()) are called relatively infrequently
and are not expected to add measurable negative impact
compared to the pre-modCC stack.

The two helper hook points were added to the TCP
input and output paths respectively, but are only called if

CAIA Technical Report 110228A February 2011 page 1 of 5

mailto:dahayes@swin.edu.au
mailto:lastewart@swin.edu.au
mailto:garmitage@swin.edu.au

a Khelp [4] module has hooked them (currently only ap-
plicable when delay-based congestion control algorithm
modules are loaded). In the default case of NewReno
being the only module available, the hook points only
add the overhead of an if statement evaluation to the
stack and would therefore have no measurable impact on
performance.

Code segment 1 Pre-modCC fast path logic test
if (SEQ_GT(th->th_ack, tp->snd_una) &&

SEQ_LEQ(th->th_ack, tp->snd_max) &&
tp->snd_cwnd >= tp->snd_wnd &&
((!V_tcp_do_newreno &&

!(tp->t_flags & TF_SACK_PERMIT) &&
tp->t_dupacks < tcprexmtthresh) ||

((V_tcp_do_newreno ||
(tp->t_flags & TF_SACK_PERMIT)) &&

!IN_FASTRECOVERY(tp) &&
(to.to_flags & TOF_SACK) == 0 &&
TAILQ_EMPTY(&tp->snd_holes)))) {

Code segment 2 Post-modCC fast path logic test
if (SEQ_GT(th->th_ack, tp->snd_una) &&

SEQ_LEQ(th->th_ack, tp->snd_max) &&
!IN_RECOVERY(tp->t_flags) &&
(to.to_flags & TOF_SACK) == 0 &&
TAILQ_EMPTY(&tp->snd_holes)) {

The “fast path” decision logic pre- and post-modCC
is shown in code segments 1 and 2 respectively.
The modCC patch removed the V_tcp_do_newreno
variable and implicitly defaulted it to on (no func-
tional change as it was already explicitly on by
default), which removes the midsection logic com-
pletely. However the key change was the removal of
the tp->snd_cwnd >= tp->snd_wnd condition,
which was disallowing a significant proportion of regular
acks through the fast path. The removal thus slightly im-
proves the performance of ack processing and is expected
to have a small, positive impact on performance.

III. METHODOLOGY

The experimental testbed is shown in Figure 1. A
single TCP source sent through a Dummynet [5] router
to a TCP receiver (sink). TCP traffic was generated using
Netperf [6]. The TCP source and sink were connected
to the Dummynet router with 1 Gbps Ethernet.

5ms

5ms~10ms

Dummynet Router

(FreeBSD)

TCP SinkTCP Source

~10ms

Fig. 1. Experimental Testbed

Pre modular CC Post modular CC
tcp_do_segment (d) tcp_do_segment (d)

newreno_ack_received (a)
newreno_cong_signal (c)
newreno_post_recovery (r)

TABLE I
KERNEL FUNCTIONS OF INTEREST, PRE AND POST MODCC

A. Dummynet network emulation

Dummynet was set up to model a 5 ms propagation
delay in each direction. To provide TCP with enough
network buffering, the Dummynet queue size was set in
slots to be approximately 10 ms long, so that the network
queue size is roughly equal to the base RTT.

Dummynet operated at a kernel tick
rate of 20kHz, giving it a time resolution
of 50 µs. Dummynet pipes were set to
P = {15, 20, 25, 30, 40, 50, 63, 80, 100, 130, 160}Mbps
to emulate a network bottleneck link capacity of these
values.

B. Load measurements

Measurements of the kernel load were made with
pmcstat [7], which uses the facilities provided by
hwpmc [8]. Both test kernels were compiled with the
necessary kernel hooks to facilitate the measurements.
Using pmcstat would semi-regularly panic the kernel
due to a spin lock being held to long. To work around this
problem, we used the IPMI-based hardware watchdog
facility of our test clients and wrote our experimental
scripts to redo any trials which were interrupted by a
kernel panic.
Pmcstat gives a sampling-based statistical estimate

of the time spent running different functions in the
kernel over a measurement period. Table I lists the
functions of interest for the pre- and post-modCC ker-
nels. The modCC framework offloads different aspects of
the congestion control process onto dedicated functions
in addition to tcp_do_segment(). Comparing pre-
against post-modCC therefore requires the comparison
of cumulative time spent in all functions of interest.

CAIA Technical Report 110228A February 2011 page 2 of 5

The CPU_CLK_UNHALTED.THREAD_P system
mode hwpmc event specifier was used, which samples
the CPU’s instruction pointer every 65 536 events
by default. This event rate was found to produce a
sampling rate that was too low to give usable results at
the lower bit rates tested. To cater for this we used rates
of 24576, 32768, 40960 and 49152 events per sample
for the Dummynet pipe rates of 15, 20, 25 and 30 Mbps
respectively.

At each Dummynet pipe bottleneck bandwidth setting,
measurements were made of the load of the functions of
interest. Measurements start 10 s after the TCP source
starts sending and continue for a further 1003 s.

C. Congestion window measurements

Measurements of the congestion window evolution
were made using the Statistical Information for TCP
Research (SIFTR) kernel module [9].

IV. RESULTS

The following results are presented:
• The proportion, p, of hwpmc events that sample the

functions of interest versus the achieved throughput
(see equation (1)).

p =

{
d
T Pre-modCC
d+a+c+r

T Post-modCC
(1)

where T is the total number of hwpmc sampling
events and d, a, c, and r are the number of sampling
events that occur within the functions of interest
from Table I.

• A measure of the work done by the kernels to
transmit 1 GB of data (see equation (2)).

w =
p

g
(2)

where p is defined in equation (1), and g is the total
amount of data received (in GB) during the test.

• Sample congestion window versus time plots for
both pre- and post-modCC kernels.

The achieved throughput results are obtained from
Netperf, which reports layer 4 throughput. The Dum-
mynet bottleneck bandwidth is specified as a layer 3 bit
rate and therefore the reported throughput is generally
slightly less than the configured Dummynet bottleneck
bit rate because of protocol overheads.

Where appropriate, graphs show the 20th, 50th, and
80th percentiles (marker at the median, and error bars
spanning the 20th to 80th percentiles). Pre-modCC tests
were conducted using FreeBSD revision 215163, and
post-modCC with revision 217806.

10 100

0.01

Average throughput (Mbps)

P
ro

p
o

rt
io

n
 o

f
ti
m

e
 s

p
e

n
t

in
 t

h
e

 f
u

n
c
ti
o

n
s
 o

f
in

te
re

s
t

(p
)

0.02

Pre−modcc

Post−modcc

Fig. 2. Plot of proportion of time (as measured by sampled hwpmc
events), p, versus achieved bit rate for the different bottleneck rates.

A. Analysis

Figure 2 shows a plot of the median proportion of
time (as measured by sampled hwpmc events) spent in
the functions of interest during the test. Note that the load
increases almost linearly with the achieved throughput.
There is little absolute difference between the total func-
tion loads pre- and post-modCC. At high tested loads,
the post-modCC kernel performs slightly better than
the pre-modCC kernel. At the higher bottleneck rates,
tcp_do_segment() is mainly processing simple ac-
knowledgements, with longer times between congestion
events. The “fast path” modification is of most benefit
here, and is evident in the relative improvement in the
performance of the post-modCC kernel.

At low loads, there is also a significant relative dif-
ference between the pre- and post-modCC kernels. The
“fast path” modification does not provide significant
benefits, since the congestion window (cwnd) is smaller,
and congestion events are frequent. Investigating why
the difference exists uncovered a statistically significant
difference in the number of sampled events within the
tcp_sack_doack() function between the pre- and
post-modCC test results. The sample size is reasonable,
the results are consistent, the testbed and experiments
are identical for both cases.

This indicates that the pre- and post-modCC ker-
nels experience a different number of congestion events
which would partially explain the results. As there are
also no functional changes to tcp_sack_doack()
between the tested FreeBSD revisions, we suspect the

CAIA Technical Report 110228A February 2011 page 3 of 5

10 100
1

2

3

4

5

6

7
x 10

−3

Average throughput (Mbps)

W
o
rk

 p
e
r

G
B

 t
ra

n
s
m

it
te

d
 (

w
)

Pre−modcc

Post−modcc

Fig. 3. Plot of the kernel work, w, versus the achieved bit rate to
transmit 1 GB of data for the Pre and Post modCC kernels.

shape of the post-modCC sub-30Mbps plot data might
be an artifact of the hwpmc event cycles. Further inves-
tigation is beyond the scope of this report.

To give an indication of the relative kernel’s work
per GB of data transmitted, Figure 3 plots w (defined
in equation (2)) versus the achieved throughput for the
tested bottleneck link rates. The kernel work drops as
the throughput increases. Cwnd oscillates more quickly
at lower bottleneck rates than at higher rates, since
a smaller number of RTTs are required for cwnd to
increase to the point where packet loss occurs. At lower
bottleneck rates the more frequent congestion episodes
cause the kernel to work harder per unit of data trans-
mitted.

Figures 4 and 5 show that the evolution of cwnd
over the course of a connection is the same pre- and
post-modCC. They show that the cwnd evolution has
not changed at all with the addition of modCC. The
occasional downward spikes occur due to the current
operation of the TCP stack which causes the connection
to slow start after exiting fast recovery under certain
circumstances.

V. CONCLUSION

This study compares FreeBSD 9.x revisions 215163
and 217806 and finds that modifications to the FreeBSD
TCP stack which add support for modular congestion
control have no negative impact on the performance
of TCP in terms of CPU usage. Together with the

10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3
x 10

5

time (s)

c
w

n
d
 (

b
y
te

s
)

Pre−modCC

Fig. 4. Plot of cwnd operation for a bottleneck bit rate of 100 Mbps
pre-modCC.

10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3
x 10

5

time (s)

c
w

n
d
 (

b
y
te

s
)

Post−modCC

Fig. 5. Plot of cwnd operation for a bottleneck bit rate of 100 Mbps
post-modCC.

minor change to tcp_do_segment()’s fast path, the
changes have a nett small positive impact. Apart from
performance considerations, the features add significant
functionality to FreeBSD including:

• Allowing system administrators and application de-
velopers to choose the most appropriate congestion
control mechanism from an available range.

• Making it easier for researchers and developers to
implement and test potential improvements to TCP
congestion control using a real network stack.

ACKNOWLEDGEMENTS

This analysis was performed under sponsorship from
the FreeBSD Foundation.

REFERENCES

[1] D. Hayes and L. Stewart, “cc – modular congestion
control,” FreeBSD manual 9, Feb. 2011.

[2] D. Rabson, “kld – dynamic kernel linker facility,”
FreeBSD manual 4, Nov. 1998.

[3] D. Hayes and L. Stewart, “hhook – helper hook
framework,” FreeBSD manual 9, Feb. 2011.

CAIA Technical Report 110228A February 2011 page 4 of 5

[4] ——, “khelp – kernel helper framework,” FreeBSD
manual 9, Feb. 2011.

[5] M. Carbone and L. Rizzo, “Dummynet revisited,”
SIGCOMM Comput. Commun. Rev., vol. 40, pp.
12–20, April 2010. [Online]. Available: http:
//doi.acm.org/10.1145/1764873.1764876

[6] R. Jones, “Netperf homepage,” [Accessed 26 April
2010]. [Online]. Available: http://www.netperf.org/

[7] J. Koshy, “pmcstat – performance measurement with
performance monitoring hardware,” FreeBSD man-
ual 8, Sep. 2008.

[8] ——, “hwpmc – hardware performance monitoring
counter support,” FreeBSD manual 4, Sep. 2008.

[9] L. Stewart and J. Healy, “Characterising the
behaviour and performance of SIFTR v1.1.0,”

CAIA, Tech. Rep. 070824A, Aug. 2007. [Online].
Available: http://caia.swin.edu.au/reports/070824A/
CAIA-TR-070824A.pdf

APPENDIX

ORIGINAL MEASUREMENTS

Originally we attempted to measure the kernel load
by looking at the elapsed CPU time given by ps for the
kernel process. This gave consistent results for experi-
ments conducted at similar times, but varied quite widely
for experiments at other times – especially Sunday. We
suspect that this may be due to the poor ventilation in the
small testbed room, and the fact that the air conditioning
system does not run on Sundays. This requires further
investigation, but is beyond the scope of this report.

CAIA Technical Report 110228A February 2011 page 5 of 5

http://doi.acm.org/10.1145/1764873.1764876
http://doi.acm.org/10.1145/1764873.1764876
http://www.netperf.org/
http://caia.swin.edu.au/reports/070824A/CAIA-TR-070824A.pdf
http://caia.swin.edu.au/reports/070824A/CAIA-TR-070824A.pdf

	Introduction
	Changes in TCPbetween revisions 215163 and 217806
	Methodology
	Dummynet network emulation
	Load measurements
	Congestion window measurements

	Results
	Analysis

	Conclusion
	Appendix

