
Quake III Arena Game Structures
D. Stefyn∗, A.L. Cricenti, P.A. Branch

Centre for Advanced Internet Architectures, Technical Report 110209A
Swinburne University of Technology

Melbourne, Australia
4009134@swin.edu.au, tcricenti@swin.edu.au, pbranch@swin.edu.au

Abstract—This report presents results from the analysis
of the Quake III Arena source code in order to gain
insights into how the packets flowing between server and
client are constructed. The server to client packets contain
game state information that is based on the aggregation of
the changes in state of the individual game entities in the
vicinity of the player, whilst the client to server packets
contain information of the changes in the individual play-
ers’ state. Ultimately the information sent affects the size
of the packet and may be used as a basis for determining
network performance characteristics of the game or for
creating modifications to the source code. Quake III Arena
is seen to employ both delta states to incrementally updates
changes in the game from an initial baseline and Huffman
coding. These techniques have the effect of minimising
the size of packets, and so improving the networking
performance. Quake III Arena is programmed largely in
the C programming language and heavily employs the use
of “C structs” to store information on various items within
the game.

Keywords - Quake III Arena Source Code, FPS game
traffic.

I. INTRODUCTION

Quake III Arena (or Quake III) [1] is a game of the
First Person Shooter (FPS) genre, first released in 1999
and still remains very popular today. The name of this
game itself can be a point of confusion amongst readers.
Quake III Arena, Quake 3, Q3A all refer to the same
game which is analysed in this report. An expansion
named Quake III: Team Arena was later released, which
had a stronger focus on team play [2]. Many other
derivatives of this game have been created based on the
released source code, including the open source game
OpenArena [3].

The Quake III Arena source code has been released
under the open source GPL license since 2005 [4], pro-
viding a starting point for many amateur game develop-
ers. The current huge popularity of games, in particular

∗The author was an undergraduate engineering student while
writing this report

FPS games has spurned a lot of research into the network
traffic produced by these games.

A number of research projects have analysed the traffic
produced by Quake III Arena [5], [6] and some other
FPS games that are based on the same engine [7]. This
report aims to provide researchers with a quick orienta-
tion to the Quake III Arena source code, particularly as it
relates to the information that the game engine transmits
across the network. By having a structured introduction
to these game aspects, these characteristics can also
be extrapolated for comparing the network performance
of other FPS games, whether they are open or closed
source.

Quake III Arena was written at a time when dial
up modems were still popular and a lot of care was
taken to minimise network traffic so as to effectively
deal with issues such as congestion and latency[8].
With broadband connections being commonplace these
days, some of these factors are of lesser concern today.
However, latency is still an important factor in FPS
games and many optimisations have been continued
through the genre. A delay of half a second can be
catastrophic in a FPS and can effectively make or break
a game. Basic principles in minimising latency are still
the same and often are centred on the transmission of
frequent, but minimal, game updates between client and
server. Shorter packets keep latency down by minimising
serialisation delays, while frequent updates allow for
smoother animation of avatar activities (movements and
shooting).

A technique used in Quake III Arena to minimise
the size of the update packets is to make use of maps
with many small interconnected rooms. This feature still
keeps the gameplay interesting by ensuring that players
interact with each other often, but avoids having large
numbers of players on the screen and many simultaneous
animations, such as rocket blasts. This technique allows
the snapshot update packets to be kept as small as
possible, as well as minimising the amount of rendering

CAIA Technical Report 110209A February 2011 page 1 of 15

mailto:4009134@swin.edu.au
mailto:tcricenti@swin.edu.au
mailto:pbranch@swin.edu.au

required on the client side.
This analysis provides an introduction to the informa-

tion transmitted by the Quake III Arena game, as discov-
ered through the analysis of the game’s source code. It is
necessary to have some background knowledge on FPS
games, including the field of view of the player, which
comprises what is seen on the screen at a particular
time. The server and client have very different views
of the game for obvious reasons, the server needing
to track all aspects of the game and provide a control
mechanism, whereas the client is expected to know only
about its immediate surroundings. As such the server
components of the game are expected to be much more
complex. Client components need to process information
from the server and also to relay updates based on
the player’s actions. The server aggregates information
from all related clients, combines this with actions of
computer players known as bots and calculates the game
states from this information.

Given the dominant use of the C programming lan-
guage throughout the code and the very common use
of structs to represent objects within the game, some
analysis of these items will also be required.

The rest of the report is organized as follows. In
section II we briefly review the Quake III Arena FPS
game. In section III we discuss the overall design of
the Quake III Arena source code. In section IV we
present an overview of the packet exchange processes
between server and client. Section V presents an analysis
of the important “Structures” that are used in the game.
Sections VI to VIII presents a more detailed analysis of
the communication process and the composition of the
game state. In section X we present our conclusions.

II. QUAKE III ARENA

Quake III Arena is a First Person Shooter (FPS)
game that is based on the “id Tech 3” engine devel-
oped by id Software [1]. As this engine was initially
developed specifically for Quake III Arena , it is often
referred to as the “The Quake 3 Engine”. In addition
to Quake III Arena, other FPS games using this engine
include“Return to Castle Wolfenstein”, “Call of Duty”,
“Dark Salvation” and the recently released browser-
based game, “Quake Live”[9], [10]. The Quake III Arena
source code, which was released under the GPL in 2005,
forms the basis for the “ioquake3” project. The aims
of this project include a cleanup of the code base, bug
fixes, and feature enhancements. A number of free and
open source projects have been released on this modified

Figure 1. Family Tree of games based on Quake Engines (from
[13])

engine, and are available for free download from the
Internet[11], [12].

A family tree of games based on the various “Quake”
or “id Tech” engines is shown in Figure 1.

A. System Requirements

Quake III Arena incorporates many optimisation tech-
niques that deal with the limited computing power and
network access technologies which were available at the
time of its release. Many textures and rendering compo-
nents were able to be tweaked or disabled to improve the
amount of Frames Per Second (FPS) the client needs to
render. Many network optimisations were incorporated,
including the use of “deltas” to transmit only the changed
game information, compression techniques for reducing
packet size and the use of client side prediction to
improve the apparent responsiveness of the game during
network play [14] were also employed.

Whilst the hardware requirements for this game are
now outdated, the hardware specifications indicate the
type of system that Quake III Arena was designed to
be run on. As such, it is expected that with modern
equipment and broadband connections, the game should
perform very well. However, low ping times are still
desirable when playing over the Internet, latency should
definitely be considered as a factor when choosing a
server on which to play.

B. First Person Shooters

In Quake III Arena , as for other games based on
the FPS genre, the player has a first person view of the

CAIA Technical Report 110209A February 2011 page 2 of 15

Figure 2. Typical View of a Quake III Arena game (from [17])

virtual world, Typically the player holds some form of
weapon and navigates a map in the search of enemies to
fight. Combat is usually the central focus of the game and
most games award the winning score to the player with
the highest amount of kills (frags). A variety of weapons
and power-ups are available for collection. Power-ups
can increase the player’s advantage through increased
health and armour protection or allow ability to inflict
extra damage. This gameplay summarises the strategy
behind Quake III Arena , as can be seen in the screen-
shot Figure 2. A Heads Up Display (HUD), is applied
over the view of the player and shows statistics such as
the remaining ammunition and health [15], [16].

C. Interest Management and Field of View

Given the 3D nature of the game and specific style
of gameplay, a number of concepts are worth examining
before detailing the source code itself.

As humans, we navigate largely through the aid of our
vision. The angular extent of what a person sees at any
given moment is called the “field of view” (FOV) [18],
[19]. This field of view is determined by the direction
that the person faces and is approximately 180 degrees.
In an FPS game scenario, the visible area of the virtual
world is also referred to as the field of view or sometimes
the “aura of interest”, viewpoint and so forth. The game
state of a player in Quake III Arena is an aggregate
of the player’s current location and actions combined
with the focus (area being viewed) and nimbus (viewable
footprint) of each individual game entity, (other players,
bots etc.).

A visual representation may be better explain these
concepts, Figure 3 shows the focus and the nimbus of
each player in a game of “Hide and Seek”.

Figure 3. Focus and Nimbus as seen in "Hide and Seek" (from [20])

Figure 4. Changing the Field of View in Quake III Arena (from
[21])

In this situation the player auras are asymmetrical as
the Hider is able to see into the Seeker’s aura of interest,
whilst staying out of view of the Seeker.

The field of view in Quake III Arena is much more
symmetrically defined and the cone of vision experi-
enced by each player is largely the same. The FOV can
be adjusted either to increase or decrease the field of
vision of a player, as shown in Figure 4. This screen-shot
shows the difference experienced by the player when
changing the FOV variable within Quake III Arena .
The image on the left shows an extended FOV providing
110 degree vision. The image on the right shows the
default game FOV of 90 degree vision. As there was an
increase in the usage of wide-screen monitors at the time
that Quake III Arena was written, the FOV component
allowed for a better experience when utilising a wide-
screen monitor.

Due to the amount of extra vision experienced by
these players, a gameplay advantage is apparent as the
player can see peripheral detail they may otherwise miss.
Simply increasing the FOV does however also cause
a disadvantage in some cases. Distant objects have a
smaller screen footprint than they would for a player
using a larger field of view, increasing aiming difficulty.

The FOV can be changed within the game by opening
the console and issuing the command: "/cg_fov 120". The
example sets a FOV of 120 degrees. True 360 degree
vision is not however possible without modification to
the game code. Through experimentation, game FOV

CAIA Technical Report 110209A February 2011 page 3 of 15

appears to be effectively limited to a maximum of 160
degrees of vision.

FOV is also manipulated as part of gameplay when
zoom is used, or when the viewpoint is warped, as
happens when the Quake III Arena player is underwater.

An area mask is used to calculate what the player can
see based on their field of view and comprises the known
game state for that player. As the player moves about,
the area mask shifts and information from the new FOV
is communicated by the game server.

D. Quake III Arena Bots

Before describing the bulk of gameplay in detail, the
notion of a bot will be introduced.

Bots are computer players in Quake III Arena and the
name is taken from a shortened form of the word robot.
A bot has a degree of artificial intelligence, allowing it to
behave similarly to a human player within the game. In
this way, extra players are always available when needed
to populate extra multi-player game slots, or simply to
allow for game practice when no other human opponents
are available.

The Area Awareness System (AAS) provides a bot
with information about the game world. The Quake
series of games has had many modifications or ’mods’
contributed by the community of players. As such it is
important for a bot to possess as much intelligence of
its own, so that it can adequately navigate new maps,
although assistance is provided through the AAS.

Quake III Arena maps are distributed with the main
BSP map file and commonly with an AAS file. The
AAS is a pre-compiled representation of the map to
increase the efficiency of bots on that map. Pathfinding
and reachability information is provided for traversal
of the 3-dimensional map. Obstacles impeding standard
navigation are optimised and accounted for, such as gaps
in floors, swimming areas and teleport points. Fuzzy
logic is used to calculate the need to pick up a particular
power-up or to re-arm oneself with more ammunition,
whilst maintaining the key goal of winning the game
(kills, frags etc) [22], [23].

A comprehensive paper by van Waveren [24] on the
subject of Quake III Arena bots is provided in the
references section. This paper also addresses some aspect
of the main game, overlapping some of the content
provided n this report.

E. Rendering of Game Maps

Due to the intense visual nature of FPS games, a
large part of code is devoted to graphics rendering. This

Figure 5. BSP tree generation (from [25])

section is included to assist with concepts used later
in the report, such as game portals mentioned when
discussing viewable player states. Although little public
analysis has centred on the Quake III Arena game engine
or network code, the reverse can be said for map design.
Significant effort is spent on optimising maps and as
such many articles and tutorials are readily available for
level designers of this game. A portal is a viewable area
between two surfaces. By segmenting viewable game
sections into smaller portions, the entire map need not
be rendered, and only sections applicable to the player
need be presented.

Quake III Arena uses Binary Space Partitioning
(BSP)[25] to recursively subdivide spaces for perfor-
mance and viewing benefits. If there is no activity within
a viewable portal, it is essentially ignored until needed.

Referring to Figure 5 a quick depiction of BSP is
provided below.

1. A is the root of tree and comprises the entire
polygon .

2. A is divided into areas B and C
3. B is divided into areas D and E.
4. D is divided into areas F and G. These are convex

and therefore become leaves on the tree.
The end result is a series of leaves which can be

rendered. Part of the design process involves ensuring the
end result is a closed convex shape. As a leaf comprises
an area the player is able to view at any given time, a
line of vision from any two points in the leaf should be
unobstructed. This is the situation in the convex shape
in Figure 6. The concave shape can be seen to provide
an obstructed view, which alludes to the impossible
situation where a player could see around a corner, which
needs to be avoided.

Some acronyms will be heavily used when reading
further into BSP and map design. To make these refer-
ences easier, some key terms are included below[26].

• PVS - Potentially Viewable Set
• BSP - Binary Space Partitioning, a method for

CAIA Technical Report 110209A February 2011 page 4 of 15

� ������� ����	���

��������
�������� �	�����������	��������

Figure 6. Convex and Concave Leaves (from [26])

recursive subdivision of spaces into planes, for
improving rendering efficiency.

• Portals - Viewable areas between surfaces. These
limit the areas that need to be rendered at one time.
Segmented for small size viewpoints / interactions.

• Leafs – Convex rendering sections which may over-
lap each other to provide better fits between portals.

III. INITIAL SOURCE CODE ANALYSIS

A. About the Source code

Compilation of the source code requires possession of
a retail CD-ROM of the Quake III Arena game. Although
the game code was released under the open source GPL
license, a number of resources such as textures and maps
are required to be copied from the original game media if
the original Quake III Arena is to be built. However, the
in the case of Open Arena all the required components
are are available at the Open Arena website [3]. Not
much detail exists to aid in the analysis of the Quake
III Arena game engine or source code, however, some
starting points areincluded as references to this report.

B. File hierarchy and organisation

The Quake III Arena source code combines close
to 2000 separate files. For ease of management, it is
conveniently divided into separate directories. A brief
overview of the directory structure is provided in Table
I on page 5. The code is written predominantly in
the C programming language with a small number of
components also written in C++ or assembly language.
The GPL source code for the latest game version can
be downloaded from the id Software FTP site [4]. This
report was based on version 1.32b of the code. Once the

Table I
PROGRAM FILE LOCATIONS

Directory Description
\code\game Hierarchical root for much of the

game code.
\code\cgame Client side implementation of the

game code.
\code\qcommon Common definitions for both

client and server. Delta
read/writes,

Huffman coding and network
transmission undertaken here.

\code\client Client side files.
\code\server Server side files.

\code\(macosx|unix|win32) Operating System specific files.
Actual network frame

construction tends to happen here.
\code\renderer Various graphics rendering files.

project has been extracted, a number of directories are
evident, with the key ones shown in Table I.

The source code tends to use several general naming
conventions throughout. A prefix of ’s’ will generally
denote the server while a prefix of ’c’ generally denotes
the client.

Quake III Arena is implemented within a virtual
machine. This provides an abstraction layer to assist the
game in remaining platform independent. The code for
the virtual machine and for operating system specific
functions can mostly be ignored as it does not contribute
many additions of interest to this report. Some low level
functionality such as network driver interfacing takes
place within OS-specific files, these are not investigated
in this report. Differences in low level network func-
tionality are not expected to make much difference in
the size of network packets and are therefore left alone.
Assembly of data for network transmission takes place
at higher levels in the code structure and will be covered
in depth.

C. Relationships between game components

A large C software project is usually made up of many
smaller files to assist organisation and modularity of
the code. The “.c” files contain the bulk of the code,
whereas the “.h” files are header files which can be
included within another file to reference all the functions
defined within the header. By examining the header files
of the server and client portions of the code, references
to further centralised header files become apparent, as
shown in Figure 7.

Several common header files are referenced by both
server and client sides of the code. Of interest are

CAIA Technical Report 110209A February 2011 page 5 of 15

//// File: /code/server/server.h: (primary header for
server)
#include "../game/q_shared.h"
#include "../qcommon/qcommon.h"
#include "../game/g_public.h"
#include "../game/bg_public.h"
===
//// File: /code/client/client.h (primary header for client)
#include "../game/q_shared.h"
#include "../qcommon/qcommon.h"
#include "../renderer/tr_public.h"
#include "../ui/ui_public.h"
#include "../cgame/cg_public.h"
#include "../game/bg_public.h"

Figure 7. Header File References

Figure 8. Quake III Arena Program Structure

the ‘game’ and ‘qcommon’ header files respectively.
Analysis of other header files in the Quake III Arena
code yields similar results, Figure 8 on page 6 shows
the relationship between the various parts of the code.

An important aspect is the use of two separate game
states. The server maintains its own global representation
of the game state. The client also maintains a local
representation of the game, cgame. Communications are
over the network link and the two game states are
kept synchronised. Branching out from the cgame are
the various functions local to the user – functionality

specific to the operating system, graphics rendering, user
interface etc.

The structure of the code represented by Figure 8 is
not completely accurate in a technical sense, as there is
some function sharing between various portions of the
game’s code. One example of this is references from the
client system to a shared header belonging to game. The
file /code/game/bg_public.h contains shared definitions
for both server and client. This could theoretically be
segmented further to provide further separation of code,
however, the functions within are used by both server
and client. For the purposes of visual representation and
functionality, Figure 8 provides a good reference for
visualising the interaction of the various components of
the game code.

IV. SERVER / CLIENT COMMUNICATION

Quake III Arena’s communication model is based
on a client server architecture. The message exchange
processes between client and server occurs through the
definitions supplied in qcommon.h. Communication in
Quake III Arena is conducted primarily through the
exchange of delta states - game updates based on changes
in the game from the last acknowledged state. This is
a bandwidth saving measure that avoids the need to
send complete game state information with each update
communication.

A. Delta States

Player states in Quake III Arena are transmitted as
incremental updates to a prior game state. An initial
baseline state is transmitted when a new map is loaded.
Player statistics such as position, orientation and inven-
tory are then periodically transmitted to the server in
the form of delta updates. The server also periodically
updates the client with its own delta states, containing
the status of other players and entities. Since the entire
game state is not transmitted every update period, the
size of update packets remains comparatively small and
network traffic is reduced.

A new delta accounts for any differences in the game
from the last acknowledged delta state. In case of lost
packets during transmission, a small set of recent delta
states are buffered. This allows several game states to
be predicted until synchronisation can be re-established.
In this way, gameplay can still appear smooth to the
end user even when a small amount of packet loss is
experienced. If many packets are dropped, the size of
the delta update packets would be expected to increase.

CAIA Technical Report 110209A February 2011 page 6 of 15

/// File: /code/qcommon/qcommon.h
// server to client communication
//
enum svc_ops_e {

svc_bad,
svc_nop,
svc_gamestate,
svc_configstring, // [short] [string] only in

gamestate messages
svc_baseline, // only in gamestate messages
svc_serverCommand, // [string] to be executed by

client game module
svc_download, // [short] size [size bytes]
svc_snapshot,
svc_EOF

};

Figure 9. Command Sequences (Server to Client)

B. Huffman Coding

Delta states provide incremental updates to a previous
game snapshot. This is conducted primarily through the
qcommon library shared by server and client and is used
as the base library for network transmission.

The header file /code/qcommon/qcommon.h is respon-
sible for much of the network functionality between
server and client components. Delta states are generated
by individual server and client libraries, but are further
processed in qcommon. Delta states reduce the size
of network transmissions, however, these are further
compressed through the use of Huffman coding. The
same header file qcommon.h oversees this with the file
/code/qcommon/msg.c providing much of the lower level
functionality.

C. Server to Client Communication

The code fragment in Figure 9 on page 7 shows
the various commands for the communications from
the server to the client. SVC in this case indicates
communication from the server, which the client will
then process.

To gain further insight, inspection into another file is
needed. Searching the code base for the commands listed
in Figure 9 yields the following extra information see
Figure 10.

Most of the conditions are handled in the single
fragment (Figure 10). It is worth noting the first check is
for an error condition to counter corrupt packets. Further
conditions can be found elsewhere in the code. These are
subsets of the functions given in Figure 10.

Parsing sections of code such as depicted in Figure 11
allows the commands to be analysed individually. The
findings are summarised in Table II.

//// File: /code/client/cl_parse.c
switch (cmd){
default:

Com_Error (ERR_DROP,"CL_ParseServerMessage:
Illegible server message\n");

break;
case svc_nop:

break;
case svc_serverCommand:

CL_ParseCommandString(msg);
break;

case svc_gamestate:
CL_ParseGamestate(msg);
break;

case svc_snapshot:
CL_ParseSnapshot(msg);
break;

case svc_download:
CL_ParseDownload(msg);

break;

Figure 10. Breakdown of Commands (Server to Client)

if (cmd == svc_configstring) {
[...]
// append it to the gameState string buffer
cl.gameState.stringOffsets[i] =

cl.gameState.dataCount;
Com_Memcpy(cl.gameState.stringData +

cl.gameState.dataCount, s, len + 1);
cl.gameState.dataCount += len + 1;

} else if (cmd == svc_baseline) {
newnum = MSG_ReadBits(msg, GENTITYNUM_BITS);
if (newnum < 0 || newnum >= MAX_GENTITIES) {

Com_Error(ERR_DROP, "Baseline number out of
range: %i", newnum);

}
Com_Memset (&nullstate, 0, sizeof(nullstate));
es = &cl.entityBaselines[newnum];

MSG_ReadDeltaEntity(msg, &nullstate, es, newnum
);
} else {

Com_Error(ERR_DROP, "CL_ParseGamestate: bad
command byte");

}

Figure 11. - Network Command Sequences (Server to Client)

D. Client to Server Communication

A similar set of commands can be found for commu-
nication from the client to the server.

The main difference in commands here is the use of
much smaller data structures to transport information.
The client is mainly responsible for updating movement
and information about the current player as denoted
through usercmd_t. Client commands are also able to be
sent, these refer to game variables and server commands
that are further described in Section IX. Examples of
these commands are requesting a ping time or request-
ing a disconnect from the server. Issues with network
communication are also transmitted through the client
commands.

CAIA Technical Report 110209A February 2011 page 7 of 15

Table II
NETWORK COMMAND SEQUENCES (SERVER TO CLIENT)

Server command Action
svc_bad Corrupt message, discard
svc_nop Take no action

svc_gamestate A new gamestate has been
sent. Current gamestate to

be wiped, and a new
gamestate to be created

with given data. This can
happen when client delta

cache is too old, so a new
gamestate has to be resent,

or when starting a new
game.

svc_configstring Two sub-commands are
used to aid this result

svc_baseline Locate new commands
from server, for use by
cgame when needed.

Game variables can be
found here

svc_serverCommand Parse (short) download
message from server

svc_downloadsvc_snapshotsvc_EOF Standard end of file
indicator to stop parsing a

received message

//// File: /code/qcommon/qcommon.h
// client to server
enum clc_ops_e {

clc_bad,
clc_nop,
clc_move, // [[usercmd_t]
clc_moveNoDelta, // [[usercmd_t]
clc_clientCommand, // [string] message
clc_EOF

};

Figure 12. - Command Sequences (Client to Server)

V. KEY GAME STRUCTURES

C structs and enums store the vast majority of game
state information and as such are a very useful starting
point for analysing how the game works. An enum can
be used to define a custom data type, whereas a struct
is used to hold different variables, which may be of
different types. A struct may also hold other structs
within it and this is commonly done throughout the
Quake III Arena code. Many items are often subsets of
much larger sets of structures, therefore some recursion
is often required to find detail of a specific structure. The
variable naming conventions for most part throughout the
code are fairly descriptive and therefore easy to follow.

//// File: /code/qcommon/qcommon.h
typedef struct {

qboolean allowoverflow; // if false, do a
Com_Error

qboolean overflowed; // set to true if the
buffer size failed (with allowoverflow set)

qboolean oob; // set to true if the buffer size
failed (with allowoverflow set)

byte *data;
int maxsize;
int cursize;
int readcount;
int bit; // for bitwise reads and writes

} msg_t;

Figure 13. - Network Transport Mechanism (msg_t)

//// File: /code/game/q_shared.h
// usercmd_t is sent to the server each client frame
// It is used to communicate actions taken by the
player, thus used to create game deltas
typedef struct usercmd_s {

int serverTime;
int angles[3];
int buttons;
byte weapon; // weapon
signed char forwardmove, rightmove, upmove;

} usercmd_t;

Figure 14. - Transmission of user actions via usercmd_t

A. Examination of Structures

C structures are heavily used throughout game’s code
and several of the key data structures are identified here.

1) msg_t: Information for transmission over the net-
work from the server to the client is transported via the
msg_t struct. Refer to Figure 13.

2) usercmd_t: Commands from individual clients are
sent to the server through the usercmd_t structure. Refer
to Figure 14. The information contained within this struct
is minimal and consists mainly of user actions. The
server progressively updates the game state based on this
information.

3) snapshot_t: A snapshot is perhaps one of the most
important structures in the game and it comprises the
state of the game at a particular point in time. The client
maintains its own game snapshot which it can use for
prediction of game states in the case of lost packets.
Regular snapshot are sent from the server to update the
client with the view it should have of the game at that
point in time.

Worth noting from the snapshot structure in Figure
15 is that the current player state (playerState_t) is con-
tained in the variable ps, and the entity state is contained
in the array of entities. With the definition included in the
code fragment, MAX_ENTITIES_IN_SNAPSHOT can be
seen to limit the ability of the client to track a maximum
of 256 entities.

CAIA Technical Report 110209A February 2011 page 8 of 15

//// File: /code/client/client.h
// snapshots are a view of the server at a given
time
#define MAX_ENTITIES_IN_SNAPSHOT 256
// Snapshots are generated at regular time intervals
by the server,
// but they may not be sent if a client’s rate level
is exceeded, or
// they may be dropped by the network.
typedef struct {

int snapFlags; // SNAPFLAG_RATE_DELAYED,
etc

int ping;
int serverTime; // server time the

message is valid for (in msec)
byte areamask[MAX_MAP_AREA_BYTES]; // portalarea

visibility bits
playerState_t ps; // complete information

about the current player at this time
int numEntities; // all of the entities

that need to be presented
entityState_t entities[MAX_ENTITIES_IN_SNAPSHOT];

// at the time of this snapshot
int numServerCommands; // text based server

commands to execute when this
int serverCommandSequence; // snapshot becomes

current

} snapshot_t;

Figure 15. - Snapshot Data Structure

This structure can be seen to encapsulate the essential
information needed for the game state. As the map is
known by both server and client ahead of time, informa-
tion contained within this struct is simply overlaid on top
of the existing map and presented to the game player.

4) entityState_t : This encompasses the state of the
individual game entities (players, bots etc.) and it is one
of the most encompassing structures within the game
(see Figure 16). The previously mentioned playerState_t
is a superset of all entityState_t objects within the game
and holds the current state of all game action.

Looking at an individual entityState_t helps to provide
some grounding to reinforce this concept. As will be
seen, an entity may be virtually any actionable item in
the game: a player (such as a human or bot), missile
(rockets, bullets), or a mover (buttons, doors, platforms)

5) playerState_t : The structure that contains the most
detail after a snapshot is that of a player. Although ab-
breviated, the excerpt in Figure 17 on page 10 illustrates
some of the information stored within a player’s state.
The information stored in this structure contains the
necessary details to calculate the player’s view point and
direction, weapon and damage information, and whether
the player is is running or not.

B. Structures Summary

As these structures will be frequently referenced
throughout the game, it is worth including a summary

//// File: /code/game/q_shared.h
// entityState_t is the information conveyed from
the server
// in an update message about entities that the
client will
// need to render in some way
// Different eTypes may use the information in
different ways
// The messages are delta compressed, so it doesn’t
really matter if
// the structure size is fairly large
typedef struct entityState_s {

int number; // entity index
int eType; // entityType_t
int eFlags;

trajectory_t pos; // for calculating position
trajectory_t apos; // for calculating angles

int groundEntityNum; // -1 = in air
int constantLight; // r + (g<<8) + (b<<16) +

(intensity<<24)
int loopSound; // constantly loop this sound
int solid; // for client side prediction,

trap_linkentity sets this properly
int event; // impulse events -- muzzle flashes,

footsteps, etc
int eventParm;

// for players
int powerups; // bit flags int weapon; //

determines weapon and flash model, etc
int legsAnim; // mask off ANIM_TOGGLEBIT
int torsoAnim; // mask off ANIM_TOGGLEBIT
int generic1;

} entityState_t;

Figure 16. - Entity State data structure

Table III
STRUCTURES SUMMARY

Structure Description
msg_t Primary method for transporting

information from server to client
usercmd_t Client action updates from client

to server
snapshot_t A snapshot provides a view of

the game at a particular time. The
server regularly calculates the

game state the client should see
and relays it through this

mechanism for the client to
locally store

entityState_t Object for storing entity
information (Entity can be a
player, weapon, platform etc)

playerState_t A subset of an entity, player state
holds all information on a player

for later reference, see Table III.

VI. GAME STATE UPDATES

Now that key game structures have been identified,
these are able to be put into context for the rest of the
game.

On initiation of a game, the server establishes a base-

CAIA Technical Report 110209A February 2011 page 9 of 15

//// File: /code/game/q_shared.h
// playerState_t is the information needed by both the client and
server
// to predict player motion and actions
// playerState_t is a full superset of entityState_t as it is used by
players,
// so if a playerState_t is transmitted, the entityState_t can be
fully derived
// from it.
typedef struct playerState_s {

int commandTime; // cmd->serverTime of last executed command
int pm_type;
int bobCycle; // for view bobbing and footstep generation
int pm_flags; // ducked, jump_held, etc
int pm_time;

vec3_t origin; vec3_t velocity;
int weaponTime;
int gravity;
int speed;
int delta_angles[3]; // add to command angles to get view

direction
// changed by spawns, rotating objects, and teleporters

int groundEntityNum;// ENTITYNUM_NONE = in air
int legsTimer; // don’t change low priority animations until this

runs out
int legsAnim; // mask off ANIM_TOGGLEBIT
int torsoTimer; // don’t change low priority animations until this

runs out
int torsoAnim; // mask off ANIM_TOGGLEBIT
int movementDir; // a number 0 to 7 that represents the reletive

angle
// of movement to the view angle (axial and diagonals)
// when at rest, the value will remain unchanged
// used to twist the legs during strafing
vec3_t grapplePoint; // location of grapple to pull towards if
PMF_GRAPPLE_PULL

int eFlags; // copied to entityState_t->eFlags
int eventSequence; // pmove generated events int

events[MAX_PS_EVENTS];
int eventParms[MAX_PS_EVENTS];
int externalEvent; // events set on player from another source int

externalEventParm;
int externalEventTime;
int clientNum; // ranges from 0 to MAX_CLIENTS-1
int weapon; // copied to entityState_t->weapon
int weaponstate;

vec3_t viewangles; // for fixed views
int viewheight;

// damage feedback
int damageEvent; // when it changes, latch the other parms
int damageYaw;
int damagePitch;
int damageCount;

} playerState_t;

Figure 17. - Player State data Structure

line for player and game states. Periodically the server
calculates the global game state based on all received
deltas from each client. The server then constructs a
“snapshot” for each client by adding together informa-
tion about the change of state of game entities relevant to
that client. This snapshot is compressed and transmitted
to the respective clients, presenting them with actions of
other players and entities within their vicinity.

A. Client to Server Updates

Client to server updates are relatively simple and are
much easier to describe.

In Section IV-C communication methods were de-
scribed between the client and server portions of the
game. As noted earlier, commands sent from client
to server are much fewer and are mainly involved in
transmitting user actions such as movement information
and firing of weapons.

Figure 18. - Communication from Client to Server

The game subsystem described earlier contains the
server implementation of the game. It also contains
some libraries that are shared between game server
and client. These are defined in the header file
\code\game\bg_public.h. The PMOVE module, defined
in this library, is the main module for updating player
state information throughout a game. Inputs taken are
the current player state (player_state_t), and the re-
ceived user actions from the client (usercmd_t). A new
player_state_t is generated that represents the current
state of players in the game. To aid readability, this may
be presented visually as shown in Figure 18.

B. Server to Client Updates

Packets from the server to the client contain more
information than those in the reverse direction.The server
periodically creates game snapshots based on the point
of view of the client. All visible entities are aggregated
into a single snapshot of the player’s game view. This
snapshot is delta compressed and Huffman encoded and
sent to the client via msg_t.

This snapshot is received from the client and then de-
coded. The client will store a number of these snapshots
to assist with delta decoding, client side prediction and
so forth.

VII. SNAPSHOTS

Snapshots are an important part of the game as they
hold the state of the game as seen by the client. The
server keeps track of individual entities and players at
all times and will send snapshots to the client calculated
from the client’s field of view and detailing what the
client should see.

CAIA Technical Report 110209A February 2011 page 10 of 15

Figure 19. - Server to Client Communication

A. Snapshot Generation

To pass information back to a client, a snapshot_t is
sent to provide the server’s view at any particular point
in time. Relevant entities (those that are in sight) and
their entityState_t is sent together with an area mask, to
indicate the applicable area covered. The playerState_t of
the current player is often internally referenced as ’ps’.
This provides the server’s view of the current player’s
state. Due to use of local client prediction, dropped
frames etc, server and client views of the local player
may differ and may need to be overridden. To counteract
cheating and inconsistent game states, the server’s view
maintains authority over the game.

It is probably worthwhile at this point to include
the actual mechanism by which a client snapshot is
generated. The SV_BuildClientSnapshot function deter-
mines which other entities are visible to the client, and
copies the relevant player state and area mask bits for
transmission.

A relevant segment of condensed code is included
(Figure 20 on page 11) for illustrating this process.

Looking over this code, some reference points can be
found for extrapolation. ps is the current player state
based on the playerState_t struct which has been detailed
earlier. entityState_t is the state of other entities which
include bots, other players, power-ups etc. The current
player state is extracted and other entities and portals
within view are combined with the player’s view using
a logical OR operation. As mentioned earlier, a portal is

//// File: /code/server/sv_snapshot.c
// SV_BuildClientSnapshot
// Decides which entities are going to be visible to the client, and
// copies off the playerstate and areabits.
//
// For viewing through other player’s eyes, clent can be something
other than
// client->gentity
static void SV_BuildClientSnapshot(client_t *client) {

clientSnapshot_t *frame;
sharedEntity_t *ent;
entityState_t *state;
svEntity_t *svEnt;
sharedEntity_t *clent;
int clientNum;
playerState_t *ps;

// grab the current playerState_t
ps = SV_GameClientNum(client - svs.clients);
frame->ps = *ps;

// never send client’s own entity, because it can
// be regenerated from the playerstate
// find the client’s viewpoint

VectorCopy(ps->origin, org);
org[2] += ps->viewheight;

// add all the entities directly visible to the eye, which
// may include portal entities that merge other viewpoints

SV_AddEntitiesVisibleFromPoint(org, frame, &entityNumbers,
qfalse);
// now that all viewpoint’s areabits have been OR’d together, invert
// all of them to make it a mask vector, which is what the renderer
wants

for (i = 0 ; i < MAX_MAP_AREA_BYTES/4 ; i++) {
((int *)frame->areabits)[i] = ((int *)frame->areabits)[i] ^

-1;
}

// copy the entity states out

Figure 20. - Method for Snapshot Generation

not a teleport point, but is an element used to generate
a map area and more information see Section II-E. An
area mask is generated from the given information which
will be included in the transmission and applied by the
renderer to replicate the visible section of the map for
the player. The method of generating a server snapshot
can now be summarised.

• The current player’s field of view is calculated
• Visible entities and portals are added
• All visible elements are combined to form a com-

plete visible player state
• The snapshot state is saved for transmission
• The client game system presents this information to

the renderer for display
Of further interest is a comment section at the start of the
code block shown in Figure 20. An option is described
for allowing a client to view the game through the eyes
of another player. This routine provides the functionality
for a player to view the game in a spectator mode, where
they can follow other players.

B. Snapshot Processing

Delta updates are used to communicate changes in
game state. Deltas are created from the differences in
game snapshots. As such, it can be useful to look at how
a snapshot is processed and sent. The process is similar
on both the client and server sides, the difference being

CAIA Technical Report 110209A February 2011 page 11 of 15

//// File: code/client/client.h
// Game Snapshots are generated here:
// snapshots are a view of the server at a given
time
typedef struct {

qboolean valid; // cleared if delta parsing was
invalid

int messageNum; // copied from
netchan->incoming_sequence

int deltaNum; // messageNum the delta is from
byte areamask[MAX_MAP_AREA_BYTES]; // portalarea

visibility bits
int cmdNum; // the next cmdNum the server

is expecting
playerState_t ps; // complete information about

the current player at this time
int numEntities; // all of the entities that

need to be presented
int parseEntitiesNum; // at the time of this

snapshot
int serverCommandNum; // execute all commands up

to this before
// making the snapshot

current

} clSnapshot_t;

Figure 21. - Client Side Snapshot Generation

//// File: code/client/cl_clgame.c
CL_GetSnapshot()
(...)

snapshot->serverCommandSequence =
clSnap->serverCommandNum;

snapshot->ps = clSnap->ps;
snapshot->entities[i] =

cl.parseEntities[(

clSnap->parseEntitiesNum + i) &

(MAX_PARSE_ENTITIES-1)];

Figure 22. - Client Side Snapshot Reconstruction

that the server keeps track of the entire game rather than
just the entities in the local area. The components of a
snapshot as seen by the client are specified in the client
header file Figure 21.

Looking at this data structure, several components are
of interest:
areamask: Describes the area visible to the player
ps: The complete state of the current player,

based on playerState_t
numEntities:The number of entities requiring processing

The process of reconstructing a received snapshot
on the client side is handled by cl_clgame.c, shown
in Figure 22. This code fragment shows part of the
reconstruction method used by the client to process a
snapshot. The key steps are as follows:

• Snapshot is retrieved
• Server commands are processed
• Player state is processed
• Entities are enumerated and processed in turn

//// File: /code/client/client.h
typedef struct {

int timeoutcount; // it requres several frames
in a timeout condition

clSnapshot_t snap; // latest received from
server

gameState_t gameState; // configstrings
int parseEntitiesNum; // index (not anded off)

into cl_parse_entities[]
// cgame communicates a few values to the client
system

int cgameUserCmdValue; // current weapon to add
to usercmd_t

float cgameSensitivity;
// cmds[cmdNumber] is the predicted command,
[cmdNumber-1] is the last // properly generated
command

usercmd_t cmds[CMD_BACKUP]; // each mesage will
send several old cmds
// big stuff at end of structure so most offsets are
15 bits or less

clSnapshot_t snapshots[PACKET_BACKUP];
entityState_t entityBaselines[MAX_GENTITIES]; //

for delta compression when not in previous frame
entityState_t parseEntities[MAX_PARSE_ENTITIES];

} clientActive_t;

Figure 23. - Snapshot Buffer

This effectively summarises the information required by
the client for synchronization with the server state.

C. Storage of Snapshots

Although not essential for inclusion in this report, it
is worth noting that a buffer of snapshots is retained for
calculating delta states and also for local client prediction
(Figure 23 on page 12).

The maximum amount of snapshots and entity states
is governed through pre-defined variables in a central
header file. The default code allows for up to 32 client
snapshots to be stored.

VIII. SUB-TYPES OF A GAME ENTITY

The entityType_t structure was examined in sec-
tionV-A4, this structure holds a large number of variables
for any entity. This structure contains a sub-structure
inside of it, entityType_t, or eType. To illustrate the
sometimes recursive nature of how an entity manifests
itself from within the game code, several entity sub-
types are selected for further analysis. entityType_t acts
as the master structure for detailing further subtypes.
Every actionable item in the game is a type of entity.
A player entity contains slightly more information than
others, but for the sake of simplicity a weapon entity
will be examined. For example consider a weapon entity
that is on the ground awaiting pickup by a player, this
case will be examined further in the following sections.

CAIA Technical Report 110209A February 2011 page 12 of 15

//// File: /code/game/bg_public.h
// entityState_t->eType
//
typedef enum {

ET_GENERAL,
ET_PLAYER,
ET_ITEM,
ET_MISSILE,
ET_MOVER,
ET_BEAM,
ET_PORTAL,
(...)

} entityType_t;

Figure 24. - Definition of Individual Entity Types through entity-
Type_t (eType)

//// File: /code/game/bg_public.h
typedef struct gitem_s {

char *classname; // spawning name
char *icon;
int quantity; // for ammo how much, or duration

of powerup
itemType_t giType; // IT_* flags

} gitem_t;

Figure 25. - Structure for abstracting an item, gitem_t

A. entityType_t

Looking into this enum provides a list of different
entity types defined within. A few of these are listed in
Figure 24.

entityType_t can be seen to denote any actionable item
within the game. Players are defined, items (ie. weapons,
ammo and armor), missiles (ie. bullets and rockets) and
movers (ie. doors and buttons). Further definitions are
present, but have been removed for brevity.

B. gitem_t

The entities are further broken down further in indi-
vidual structs as shown in Figure 25. Skipping ahead,
an abstraction for general item types may be examined.
It can be seen that gitem_t references another enum,
itemType_t, which further expands on these properties.
Using the method of recursion, more information can be
obtained for the next structure.

C. itemType_t

Items are now seen to be defined further. Each item
type can be defined with an individual set of properties,
actions and behaviours as illustrated in Figure 26.

Further properties and behaviours of the entity are
then forked out into separate files. For example, item
behaviours and attributes such as respawning, pickups
etc are contained within g_items.c (Figure 27).

//// File: /code/game/bg_public.h
// gitem_t->type
typedef enum {

IT_BAD,
IT_WEAPON, // EFX: rotate + upscale + minlight
IT_AMMO, // EFX: rotate
IT_ARMOR, // EFX: rotate + minlight
IT_HEALTH, // EFX: static external sphere +

rotating internal
IT_POWERUP, // instant on, timer based

} itemType_t;

Figure 26. - Definition of Individual Item Types through itemType_t

//// File: /code/game/g_items.c
// call the item-specific pickup function

switch(ent->item->giType) {
case IT_WEAPON:

respawn = Pickup_Weapon(ent, other);
// predict = qfalse;

break;

Figure 27. - Function for Dealing with an Encountered Weapon
Object

It can be seen that Pickup_Weapon() is then called to
deal with the case of IT_WEAPON being encountered.
This is displayed in Figure 28 on page 13.

The function returns an integer indicating
the delay until the weapon next respawns,
g_weaponRespawn.integer. Two game entities are
taken as arguments, the weapon entity (ent) and a
player entity (other). Further sections of code have been
omitted that code details actions taken during weapon
pickup, such as adding the weapon to the inventory
as well as the ammo contained within it. Although it
may seem logical that an item is divided into sub-types,
it can be useful to show just how prevalent they are
throughout the Quake III Arena code.

The entity can be seen as a set of sub-components,

//// File: /game/g_items.c
int Pickup_Weapon (gentity_t *ent, gentity_t *other)
{

int quantity;
if (ent->count < 0) {

quantity = 0; // None for you, sir!
} else {

if (ent->count) {
quantity = ent->count;

} else {
quantity = ent->item->quantity;

}
// add the weapon

other->client->ps.stats[STAT_WEAPONS] |= (1 <<
ent->item->giTag);

Add_Ammo(other, ent->item->giTag, quantity);
return g_weaponRespawn.integer;

}

Figure 28. - Code block for handling weapon pickups

CAIA Technical Report 110209A February 2011 page 13 of 15

Figure 29. - Code block for handling weapon pickups

each of which can be referenced through individual
functions for dealing with that level of the structure.
Functions aimed at an entity will be more global in
scope, perhaps to deal with snapshot generation, whereas
functions aimed at a weapon would more likely deal with
actions such as the amount of ammo contained within
or the time before respawning after it is picked up by a
player.

IX. CONSOLE COMMANDS

A. Gameplay Flags Affecting Packet Size

Commands may be entered through the console in-
clude those able to affect the size of network packets or
to allow a better adjustment of network performance set-
tings. These are of particular interest to anyone wishing
to expand on points within this report.
/sv_nopredict 0 disable client-side prediction
/showpackets 0 enable network packet info display
/cl_nodelta 1 disable delta compression (default is 0)
By disabling delta compression, game states can be
viewed directly within packets captured over the net-
work. As the Huffman coding is disabled with this mech-
anism, network performance is obviously not optimised,
however, this flag can be useful for reverse engineering
packet structures and testing hypothesised changes to
game code.

Certain opportunities also exist for receiving more
than the normal amount information of information on
other players from the server. When playing in team
modes, a console command may be issued for allowing
the server to send data on player states of other players.
This can be initiated by using the console command:
/cg_drawTeamOverlay 1 overlay states of other players
onto map. Default is 0 (disabled)

In these cases, the playerTeamState_t struct is then
used for conveying this information.

X. CONCLUSION

Quake III Arena is based on the “id Tech 3 Game
Engine” and has been used by many other game titles
since publication. Since the source code was made freely
available, many modifications have been made to Quake
III Arena, including complete remakes such as Open
Arena.

Through the open nature of the Quake III Arena
source code, an analysis of composition of structures for
network communication was possible. This information
can be used as a known constant when analysing other
games of the FPS genre, where the source code may not
be available.

The use of delta states was found to be a key identifier
of the game. A baseline is established upon game initia-
tion and client updates are sent at regular intervals to the
server. The server maintains a global state of all entities
within the game and periodically sends game snapshots
to the client which describe the game view that the player
should see. Game snapshots are sent as delta states which
are based on changes to the game state since the last
update. Delta states significantly reduce the size of the
data needing to be sent as only a subset of information
is required and Huffman coding is used to further reduce
the size of these updates. When playing over lossy
connections, the size of delta states may build up as
packets are lost and remain unacknowledged, requiring
them to be resent. Delta states can therefore be used to
minimise network traffic, provided the connection loss is
not too high. The server to client packets contain game
state information that is based on the aggregation of the
changes in state of the individual game entities in the
vicinity of the player, whilst the client to server packets
contain information of the changes in the individual
player’s state.

XI. GLOSSARY

AAS: Area Awareness System used to assist bots
in navigating a map.

Bot: Computer player used in Quake III Arena
and most FPS games.

BSP: Binary Space Partitioning, a method for re-
cursive subdivision of spaces into planes, for
improving rendering efficiency.

Enum: An enumerated type is a data type used in
programming, consisting of custom declared
data types that are usually specific just to the
defined enum.

FOV: Field of View, the angle of the visual field
(in degrees). 180 degrees is the standard

CAIA Technical Report 110209A February 2011 page 14 of 15

field of vision for humans.
Focus: Area within a field of view which defines

the visible information a player can see.
FPS: First Person Shooter.
HUD: Heads up Display.
Leaf: Convex rendering section for representing a

space between two portals. It may overlap
with other leaves as a principle of design.

Mod: A set of modifications to the game com-
monly to change the look and feel of the
game, such as through custom characters,
different maps and so forth.

Nimbus: Area within a field of view which defines
the visible information about a player.

Portals: Viewable areas between surfaces. These
limit the areas that need to be rendered at
one time. Segmented for small size view-
points / interactions.

PVS: Potentially Viewable Set.
Struct: A C struct is a data structure that aggregates

a number of data types into a single unit.
The data types may be items such as integers
or enums, and are not required to be of the
same type.

REFERENCES

[1] “id Software: Quake III,” [Online],
http://www.idsoftware.com/games/quake/quake3-arena/,
accessed 7/10/2010.

[2] “Quake 3 and Quake 3 Team Arena,” [Online], available:
http://www.computerhope.com/games/games/q3.htm, accessed
26/11/2010.

[3] “Open Arena,” [Online], available:
http://openarena.ws/smfnews.php, accessed 10/11/2010.

[4] “Quake 3 Source Code,” [Online], avail-
able:http://www.idsoftware.com/, accessed 26/11/2010.

[5] T. Lang, P. Branch, and G. Armitage, “A synthetic traffic
model for Quake3,” in ACE ’04: Proceedings of the 2004 ACM
SIGCHI International Conference on Advances in computer
entertainment technology. New York, NY, USA: ACM, 2004,
pp. 233–238.

[6] H. Park, T. Kim, and S. Kim, “Network traffic analysis and
modeling for games,” in Internet and Network Economics, ser.
Lecture Notes in Computer Science, X. Deng and Y. Ye, Eds.
Springer Berlin / Heidelberg, 2005, vol. 3828, pp. 1056–1065.

[7] Z. S. Bussiere J.A., “Enemy Territory traffic analysis,” Swin-
burne University of Technology, Melbourne, Australia, Tech.
Rep., 2006.

[8] G. Armitage, “An experimental estimation of latency sensitivity
in multiplayer quake 3,” in 11th IEEE International Conference
on Networks (ICON 2003), Sydney, Australia, 28-1 September
2003, pp. 137–141. [Online]. Available: http://dx.doi.org/10.
1109/ICON.2003.1266180

[9] “id tech 3 (video game concept),” [Online], available:
http://www.moddb.com/engines/id-tech-3, accessed 26/11/2010.

[10] “Id tech,” [Online], http://en.wikipedia.org/wiki/Id_Tech, ac-
cessed 26/11/2010.

[11] “ioquake3,” [Online], Available: http://ioquake3.org/, accessed
7/10/2010.

[12] “id tech 3,” [Online], available:
http://en.wikipedia.org/wiki/Id_Tech_3, accessed 7/10/2010.

[13] Tei, “File:quake - family tree.svg,” [Online], August
2010, available: http://en.wikipedia.org/wiki/File:Quake_-
_family_tree.svg, accessed 10/11/2010.

[14] G. Armitage, M. Claypool, and P. Branch, Networking and
Online Games - Understanding and Engineering Multiplayer
Internet Games. UK: John Wiley & Sons, 2006.

[15] D. Tabor, “The guide - first-person shooters,” [Online],
available: http://www.bluesnews.com/guide/fps.htm, accessed
10/11/2010.

[16] M. H. Brian Healy, “A beginner’s guide to pc gam-
ing: First person shooters (fps games) - half-life, crysis,
far cry & more,” [Online], http://www.brighthub.com/video-
games/pc/articles/840.aspx, accessed 10/11/2010.

[17] “Quake 3 excellent award screenshot,” [Online], available:
http://www.freakygaming.com/gallery/action_games/quake_3/
excellent_award, accessed 26/11/2010.

[18] J. P. Costella, “A Beginner’s Guide to the Hu-
man Field of View,” [Online], November 1995,
http://www.assassinationscience.com/johncostella/physics/A
beginners guide to the human field of view.pdf, accessed
26/11/2010.

[19] G. Alexander, “Space odysseys: Glossary,” [Online],
http://archive.artgallery.nsw.gov.au/sub/spaceodysseys/glossary.html,
accessed 18/11/2010.

[20] H. H. Jouni Smed, Timo Kaukoranta, “A review on networking
and multiplayer computer games,” Turku Centre for Computer
Science, Tech. Rep. 454, April 2002. [Online]. Available:
http://staff.cs.utu.fi/~jounsmed/papers/TR454.pdf

[21] “Tweaking Q3 Arena Engine,” [Online], January 2004,
available: http://kpush.tripod.com/tweaking/id4.html, accessed
10/11/2010.

[22] A. Champandard, “Analyzing the AI bot library from
the Quake 3 source code,” [Online], January 2008,
http://aigamedev.com/open/highlights/quake3-engine/, accessed
4/11/2010.

[23] Mr Elusive, “GtkRadiant Editor Man-
ual: Appendix C,” [Online], January 2000,
https://zerowing.idsoftware.com/svn/radiant.gamepacks
/Q3Rad_Manual/trunk/appndx/appn_c.htm, accessed
17/11/2010.

[24] J. van Waveren, “The Quake III Arena Bot
(1st Rev.),” [Online], June 2001, available:
http://dev.johnstevenson.co.uk/bots/20585341-The-Quake-
III-Arena-Bot.pdf, accessed 17/11/2010.

[25] “Binary space partitioning,” [Online], October 2010,
http://en.wikipedia.org/wiki/Binary_space_partitioning,
accessed 4/11/2010.

[26] “Quark glossary,” [Online], July 2009, available:
http://quark.sourceforge.net/infobase/glossary.html, accessed
25/11/2010.

CAIA Technical Report 110209A February 2011 page 15 of 15

http://dx.doi.org/10.1109/ICON.2003.1266180
http://dx.doi.org/10.1109/ICON.2003.1266180
http://staff.cs.utu.fi/~jounsmed/papers/TR454.pdf

	Introduction
	Quake III Arena
	System Requirements
	First Person Shooters
	Interest Management and Field of View
	Quake III Arena Bots
	Rendering of Game Maps

	Initial Source Code Analysis
	About the Source code
	File hierarchy and organisation
	Relationships between game components

	Server / Client Communication
	Delta States
	Huffman Coding
	Server to Client Communication
	Client to Server Communication

	Key Game Structures
	Examination of Structures
	msg_t
	usercmd_t
	snapshot_t
	entityState_t
	playerState_t

	Structures Summary

	Game State Updates
	Client to Server Updates
	Server to Client Updates

	Snapshots
	Snapshot Generation
	Snapshot Processing
	Storage of Snapshots

	Sub-Types of a Game Entity
	entityType_t
	gitem_t
	itemType_t

	Console Commands
	Gameplay Flags Affecting Packet Size

	Conclusion
	Glossary
	References

