
Design of DIFFUSE v0.1 – DIstributed Firewall
and Flow-shaper Using Statistical Evidence

Sebastian Zander, Grenville Armitage
Centre for Advanced Internet Architectures, Technical Report 101223A

Swinburne University of Technology
Melbourne, Australia

szander@swin.edu.au, garmitage@swin.edu.au

Abstract—In recent years a growing number of re-
searchers investigated the performance of machine learn-
ing based traffic classification using statistical properties
– classification techniques that do not require packet
payload inspection. Such techniques assist Internet Service
Providers to work within any legal or technical limitations
on direct payload inspection. Potential new applications
include automated ‘market research’, automated traffic
prioritisation, and Lawful Interception. For many of these
new applications a de-coupling between the flow classifi-
cation and subsequent flow treatment, such as blocking
or shaping, is highly desirable. In the DIFFUSE project
we are developing extensions for an existing packet filter
that provide ML-based traffic classification based on
statistical properties and de-couple flow classification from
flow treatment. This report describes the selection of the
existing packet filter extended, the design of the overall
architecture and key components, as well as the machine
learning techniques supported.

Index Terms—Statistical Flow Classification, Machine
Learning, Quality of Service, Traffic Prioritisation

I. INTRODUCTION

During recent years a body of research emerged
around the identification and classification of traffic flows
based on statistical properties (features) and in particular
the application of Machine Learning (ML) techniques
to generate such classifiers [1]. Statistical properties,
such as distributions of packet sizes or inter-packet
arrival times, can be calculated without accessing packet
payloads (payload inspection). Such techniques assist
Internet Service Providers (ISPs) to work within any le-
gal or technical limitations on direct payload inspection.
Potential new applications include automated ‘market
research’, characterising traffic for Lawful Interception
[2], or automated prioritisation of real-time traffic [3].

For many of these new applications a de-coupling be-
tween flow classification and subsequent flow treatment
(the actions performed on flows), such as blocking or

shaping, is highly desirable. For example, a single high
performance classifier near the core of an ISP network
may control multiple low-power nodes near the network
edge (perhaps embedded within Asynchronous Digital
Subscriber Line or Cable modem gateways) so that
centralised traffic classification can automatically modify
the Quality of Service (QoS) treatment experienced by
packets at the network edge. This de-coupling also
enables potentially computationally intensive per-flow
statistics calculations to be offloaded from the packet
forwarding path.

Common open-source packet filters that combine fire-
wall and traffic shaping (such as IPFW [4], PF [5],
Netfilter [6] and others) currently do not use traffic
statistics, instead relying on direct inspection of packets
passing through the filtering node’s local interfaces.
Furthermore, these filters couple the flow classification
and treatment tightly, i.e. the actions are executed locally
immediately after the flow classification.

In the DIFFUSE project [7] we are designing and
developing extensions for an existing packet filter that
provide ML-based traffic classification based on statis-
tical properties and de-couple flow classification and
treatment. In our architecture there are classifier nodes
that classify traffic flows and then instruct action nodes
via a control protocol to carry out actions for the
classified flows. In this report we describe the design of
the system and its key components. To avoid ‘reinventing
the wheel’ our system will be based on an existing packet
filter. As main development platform we selected the
FreeBSD operating system since it is often used for
building firewalls and/or traffic shapers, and a number
of existing packet filters run on FreeBSD.

The report is organised as follows. First we define
fundamental terms and concepts in Section II. In Section
III we compare existing FreeBSD packet filters and
choose the most suitable as basis for our new system.

CAIA Technical Report 101223A December 2010 page 1 of 22

mailto:szander@swin.edu.au
mailto:garmitage@swin.edu.au

In Section IV we describe the overall architecture of
the system and its key components, and show example
scenarios illustrating how the system could be used.

In the remaining sections we describe the design
of the system components in more detail. In Section
VI we describe the extended command language that
enables the configuration of classifier and action nodes.
In Section VII we describe the design of the control
protocol used to exchange data between classifier and
action nodes.

In Section VIII we describe the initial choice of ML
techniques supported. Since our system is designed to be
flexible other ML techniques can be added in the future.
In Section V we outline the software design of DIFFUSE
v0.1. Section IX concludes the report.

II. DEFINITIONS

First we define some fundamental terms and concepts
used throughout the report.

A. Flows

A flow is a number of consecutive packets that have
the same values for a defined set of packet header fields
within a certain time frame. The set of packet header
fields is usually the commonly used 5-tuple (source and
destination IP addresses, source and destination ports,
protocol), but it could be a different set of fields (such
as only the source and destination IP addresses).

For connection-oriented protocols (like TCP) the flow
start and end is usually marked by the establishment and
teardown of a connection. For non connection-oriented
protocols (like UDP) the first packet seen marks the
start and no packets arriving for a certain duration (flow
timeout) marks the end of the flow.

A unidirectional flow is a flow where packets flow
only in one direction (e.g. only packets matching a 5-
tuple), whereas a bidirectional flow is packets flowing in
both directions (e.g. all packet matching a 5-tuple and
the same 5-tuple with source/destination addresses and
ports reversed).

A subflow is part of a flow. For our purposes a subflow
is a sliding window of n consecutive packets within a
unidirectional flow (as in [8]).

Bidirectional flows have two directions which we refer
to as forward and backward. For connection-oriented
protocols (and if the initial handshake can be observed)
packets from the originator of the connection are going
in the forward direction, and packets from the other end
are going in the backward direction. For connection-less

protocols or when the handshake could not be observed
the first packet defines the forward direction.

If a rule defines a source or a destination (by speci-
fying a match pattern, e.g. matching against the source
IP address), packets matching the pattern are considered
to flow forward, whereas packets that are going in the
reverse direction are considered to flow backward.

B. Features

Previous work usually used the two level hierarchy of
features and feature sets, where a feature is a characteris-
tic of a flow or subflow (such as the mean packet length)
and a feature set is a number of different features. For the
DIFFUSE v0.1 architecture we extended this hierarchy.
Feature statistics are statistics of a series of feature
values (such as the minimum, mean or maximum),
features are characteristics of flows, subflows or packets
(such as packet length or inter-arrival times) and feature
sets are a number of features (as before).

The main reason for this three-level hierarchy is that
DIFFUSE v0.1 supports different independent feature
modules, but for performance reasons different statistics
of the same feature are part of the same module.

III. CHOICE OF FIREWALL

Here we discuss our choice of the existing packet filter
we extended. Since DIFFUSE v0.1 is based on FreeBSD
we have a choice between three packet filters: IP Firewall
(IPFW) [4], IPFilter (IPF) [9], [10] and Packet Filter (PF)
[5]. We compare these based on a number of criteria.

A. Functionality

All three packet filters support the basic functions of
filtering based on network and transport layer informa-
tion, network address translation, logging etc. IPFW and
PF can tag packets for implementing policy-based rules
and have interfaces to traffic shapers that can queue and
prioritise packets. IPFW mostly uses Dummynet [11] but
also has an interface to ALTQ [12], whereas PF uses
ALTQ. IPFW/Dummynet can also be used to emulate
certain network link conditions by limiting link capacity,
emulating delay and packet loss etc.

PF has more advanced functionality than IPFW and
IPF, most notably the ability to implement redundant
firewalls (state transfer and failover protocol [5]), load-
balancing, logging to tcpdump files, and filtering on
operating system fingerprints. However, IPFW now also
supports tables and in-kernel NAT and has reduced the
functionality gap to PF.

CAIA Technical Report 101223A December 2010 page 2 of 22

DIFFUSE needs packet queuing and prioritising sup-
port, which rules out IPF. While the advanced functions
of PF are nice they are not really required for DIFFUSE.

B. Portability

IPFW has been developed and used in FreeBSD over
many years, is the network firewall in MacOSX, and has
recently been ported to Linux and Windows [13]. IPF
runs on the BSD family (FreeBSD, OpenBSD, NetBSD)
as well as on Solaris, HP-UX, IRIX and Linux. PF is
the main firewall of OpenBSD, and it has been ported
to FreeBSD and NetBSD.

As far as portability is concerned IPFW and IPF are
the best options for DIFFUSE. PF falls behind as the
number of operating systems it runs on is very limited.

C. Support

IPFW is the FreeBSD sponsored firewall; it is au-
thored and maintained by FreeBSD volunteer staff mem-
bers. IPF was the main packet filter of OpenBSD, before
it was replaced by PF in 2001. Given that we have chosen
FreeBSD as development platform in terms of future
support IPFW is most promising. The PF firewall comes
second being OpenBSD’s official firewall and given that
it is part of the FreeBSD source tree. IPF is also part of
the FreeBSD source tree.

However, the PF sources part of FreeBSD are al-
ways lagging behind the latest OpenBSD version. For
example, the PF version in FreeBSD-9.0-current checked
out in July 2010 are the PF sources from March 2007.
Similarly, the IPF sources in FreeBSD lack one major
version behind the latest release. For example, the IPF
version in FreeBSD-9.0-current checked out in July 2010
are the IPF sources from October 2007 (version 4.1)
and much older than the latest release from May 2010
(version 5.1). For IPF this is less of a problem because
the IPF sources are released independently of FreeBSD
and should compile on all supported operating systems.

All three packet filters are actively maintained and
used. For DIFFUSE IPFW and PF have a slight edge as
they are the main packet filters of FreeBSD/OpenBSD.

D. Performance

Measuring the performance of packet filters is not
straightforward, as the performance depends heavily on
the scenario, i.e. the actual firewall rules and network
traffic. Nevertheless, one can compare different packet
filters in particular scenarios. Previous work compared
IPF, PF and Linux Netfilter [14], [15]. According to
these studies PF performs similar to IPF and whether

they performs better or worse than Netfilter depends on
the scenario. We were unable to find a study of IPFW or
a recent performance comparisons of all three firewalls.

The performance of the packet filter should be rea-
sonably good, but this criteria is not of very high
importance for DIFFUSE. Since IPFW, IPF, and PF are
are all deployed we believe they all provide sufficient
performance in practice.

E. Usability

The rule set language of PF is better designed than the
languages of IPF and IPFW, which both look somewhat
organically grown. The structure of PF and IPF rulesets
differs from IPFW (and Linux Netfilter). By default for
IPF and PF the last rule that matches determines the
action, whereas for IPFW (and Netfilter) the first rule
that matches determines the action. This makes it more
difficult to convert IPF and PF rulesets to IPFW rulesets
and vice versa.

While the rule language of PF is better designed, the
languages of IPF and IPFW are still logical, easy to
read and use. As far as usability is concerned all three
firewalls are adequate for DIFFUSE.

F. Extensibility

IPFW, IPF and PF have nicely written user docu-
mentation, but for all three there is not much devel-
oper documentation. None of them has a fully modular
framework that can be extended easily. However, IPFW’s
Dummynet now has a modular framework for adding
schedulers. All three packet filters have nicely written
code, but IPFW stands out because it also has a lot of
useful comments inside the code, whereas comments in
IPF and PF code are rather sparse. Furthermore, here at
CAIA we have some in-house expertise for extending
IPFW. Hence, IPFW wins this category.

G. Decision

IPF does not have functions for packet queuing and
prioritisation and hence cannot be used. We chose IPFW
over PF because IPFW supports the three arguably most
popular operating systems (FreeBSD, Linux, Windows)
and it appeared to be easier to extend than the others due
to well documented code, relatively modular structure
and existing in-house expertise.

IV. SYSTEM DESCRIPTION

A. Architecture

In order to provide ML-based traffic classification and
de-couple the classification from the subsequent action
our system has several key components:

CAIA Technical Report 101223A December 2010 page 3 of 22

• A Classifier Node (CN) computes statistical features
from flows identified by their 5-tuple and classifies
them based on local machine-learning rules.

• An Action Node (AN) performs configured actions
(block, redirect, rate shape, etc.) on packets belong-
ing to flows that have been classified by a local or
remote CN.

• An IP-layer Control Protocol (CP) between CNs
and ANs to enable real-time coordination, such
as alerting ANs when to start and stop acting on
identified flows.

• An extended set of Packet Filter Rules (PFRs) to
express ML-based traffic matching based on statis-
tical attributes at CNs and specify the actions to be
taken by nominated ANs.

A CN records flow identification information (5-tuple)
and computes flow characteristics, such as packet length
and inter-arrival time statistics. A CN continuously com-
pares the statistics of observed flows to a configured set
of rules and uses this information to generate traditional
header-only inspection rules for ANs. When a flow (flow
X) matches a statistical rule, the CN passes the flow’s 5-
tuple and class to AN(s) to actually instantiate the flow
class’ associated action. The action is then applied to
all subsequent packets belonging to flow X . The rule is
removed from the AN(s) once flow X has stopped.

CNs and ANs automatically establish IP based control
links via a CP to share information as matching flows
come and go. CNs and ANs are different logical entities,
but they can be co-located on the same physical network
device. For example, a traditional packet filter combines
them in a single device. If CN and AN are instantiated
on the same host, equivalent to a traditional packet filter,
this control link is inside the host.

Small networks with a few CNs and ANs can be con-
figured manually by creating and distributing rulesets. In
large networks comprising many CNs and ANs it is de-
sirable to have a management system that automatically
translates network policies into rulesets and distributes
these rulesets to CNs and ANs. Such a management
system is out of scope of this project, but it can be
designed and build on top of our developed system in
future work.

B. Classifier Node

A CN consists of an extended packet Filter/Classifier
in kernel space and an userspace daemon process (called
Exporter) that exports the flow specification (5-tuple),
class and (optionally) an action to the AN(s) via the CP
(see Figure 1). We call this information flow rules.

��������	

����

���������

���	�
 ��

����
������

��

����
�
��������

�����
�� ��

��
����	
��
�
���
���

Figure 1. Classifier node and action node components, and control
protocol

The extended packet filter computes statistical features
for packet flows. These features can be used directly as
patterns for matching packets or as input for an ML-
based classifier that assigns classes to packets based on
these features.

The feature computation and classification is done
on a per-packet basis inside the kernel to maximise
performance. The sending of flow rules to remote ANs
is done by a userspace daemon, because this task is less
performance critical1 and a userspace daemon is easier to
develop, test, and port to other operating systems (OSs).
Also it has access to a much larger set of functionality
via libraries.

The Exporter needs access to flow information gener-
ated by the classifier. Since the IPFW control interface
(based on socket options) does not allow unsolicited
messages from kernel to userspace and frequent polling
of the in-kernel classifier is impractical, a separate inter-
face (UDP socket) is used to convey the flow information
from classifier to Exporter (see Section V).

C. Action Node

The AN consists of an userspace daemon (called
Collector) that listens for flow information from CNs
and configures the packet filter and traffic shaper ac-
cordingly using the existing configuration interface(s).
The Collector consists of a frontend and a backend. The
frontend handles the control protocol communication
and manages the addition/removal of flow rules stored
in an internal database. The backend is responsible for
generating packet filter or traffic shaper specific rules
based on the flow rules in the database.

The advantage of a userspace daemon is that no kernel
code needs to be modified, again easing development,
testing, porting to other OS and access to userspace li-
braries. Furthermore, different firewalls or traffic shapers

1We assume the number of simultaneous active flows that trigger
remote actions is typically only a few thousand and there is a limit
on how often actions are updated.

CAIA Technical Report 101223A December 2010 page 4 of 22

can be supported by modifying or extending the backend
of the Collector. Besides packet filter or traffic shaper
specific actions, other actions could be implemented,
such as logging of classified traffic in a database.

D. Ruleset operations

On the CN the rule language of the packet filter needs
to be extended to allow the specification of features to be
computed, use of feature values in match patterns, use of
ML classifiers, and the configuration of remote ANs (see
Section VI). On the AN only the existing packet filter
and traffic shaping functionality is used and no rule set
language modifications are required.

However, in addition to the extended rule set language
we need new commands to configure the Exporter and
Collector (see Section VI).

E. Control protocol operations

CNs send “add rule” messages to ANs (see Figure 3),
which contain (partial) rules that have a match part (flow
specification), one or more class tags, and optionally an
action part. Our notion of “add rule” messages includes
the updating of existing rules. If a CN sends an “add
rule” message to an AN with the same flow specification
but different action as a rule sent previously, the AN must
replace the previous rule with the new rule.

If a CN is configured such that it does not send actions
in “add rule” messages, the receiving AN(s) must be
configured so that they have a list of flow classes and
associated actions. In this case the AN(s) will determine
the actions based on the classes identified by the CN.
If the AN(s) are configured with such action lists, the
configured actions always overrule any actions specified
in “add rule” messages.

Rules can have a timeout which will cause the AN
to remove rules after a specified duration has elapsed
since the rule became active (rule timeout), or when no
packets have matched the rule for the specified duration
(flow timeout). This is shown in Figure 2. If rule timeouts
are used CNs need to periodically refresh rules (so that
long running flows are properly handled).

CNs can also send explicit “remove rule” messages to
ANs (see Figure 3). An AN will remove all rules that
match the rule specification in the message. If the rule
specification is broad, e.g. only the protocol is specified,
this may trigger the removal of many rules. If one wants
to remove exactly one rule, the flow specification in the
“remove rule” message must be specified exactly as in
the “add rule” message.

����������	
���
�����	
���

��������

���������� �������� ��������� �������������

�

��	
���
��

���

��

���
 ������

��	
�����	�� ��	
�����	��

Figure 2. Rule creation and timeout based rule removal

����������	
���
�����	
���

��������

���������� �������� ��������� �������������

�

��	
���
�	��

��	
������

���
 ���

��
	�������

��	
���
�	��

���
 �������

Figure 3. Rule creation and explicit rule removal messages

The use of flow timeouts has advantages over ex-
plicit “remove rule” messages. Firstly, they save network
capacity as the number of messages can be reduced.
Secondly, they can also prevent control loops that may
occur otherwise because actions like blocking or shaping
affect packet flows and their characteristics and hence the
decisions of CNs.

Imagine the following scenario. A CN identifies a flow
to block, triggers an AN, and the AN blocks the flow.
The flow times out at the CN triggering a rule removal
from the AN, which unblocks the flow. The CN identifies
the flow again and so on. If the AN does the flow timeout
locally (using a timeout provided by the CN), the rule
will be active as long as packets are matching and then
it will timeout. This approach presupposes that the flow
times out at the AN before it does time out at the CN, but
the CN can ensure this by controlling the AN’s timeout
value. This approach also covers the case when the rule
is (prematurely) removed due to resource constraints at
the AN.

However, flow timeouts may not be available every-
where (they may not be efficient to implement on all

CAIA Technical Report 101223A December 2010 page 5 of 22

devices) and then “remove rule” messages must be used.
But the delivery of “remove rule” messages cannot be
guaranteed in all cases, e.g. a CN may crash. To avoid
rules living forever in the AN, the AN purges old rules
based on last recently used information (flow timeout).
Should the AN run out of memory it is up to the AN
to decide what to do, i.e. what rules to purge, unless it
was advised by the CN what to do. For example, if the
CN attached priorities to rules, then the AN must purge
rules according to their priority.

In our prototype implementation by default the CN
uses explicit “remove rule” messages, and the AN uses
flow timeouts to time out rules. Explicit “remove rule”
messages can be turned off, then both the CN and AN
use flow timeouts.

The CN classifies flows all the time (in the extreme
case for each packet arriving), but the CN will only
notify AN(s) for new flows or changed flows (same flow
specification but different class or action). Note, that a
new flow may have the same flow specification as a
previous flow if the previous flow has ended before the
new flow started. Furthermore, there are options to limit
the sending of rules even further, see Section VI-H. The
protocol developed for communication between classifier
nodes and action nodes is described in Section VII.

F. Example Scenarios

We illustrate the DIFFUSE v0.1 architecture in an
example scenario, where the ISP differentiates a cus-
tomer’s traffic into real-time and non-real-time traffic and
subsequently uses this information to prioritise the real-
time traffic. Figure 4 shows the customer and the ISP
network. A CN with a rule database is located on or
connected to an edge router inside the ISP’s network.
Two ANs are located on the ISP’s edge router and
customer’s router.

During operation the system does the following. The
CN continuously classifies traffic flowing between the
customer and ISP networks based on statistical charac-
teristics and stored rules. For each new real-time flow
detected, the CN sends the flow’s 5-tuple, class and
action to the ANs. The ANs then create a new rule for
the real-time flow that will prioritise its traffic over non-
real-time flows. After the real-time flow has stopped, the
rule is removed from the ANs.

V. SOFTWARE DESIGN

Now we briefly describe the software design of DIF-
FUSE v0.1. Figure 5 shows the main building blocks
of the CN. Inside the kernel there is a new DIFFUSE

module. At load time the DIFFUSE module registers a
new raw socket option which is used to configure feature,
classifier and export instances, as well as for showing and
deleting them using the raw socket interface. This is the
same interface used by IPFW and Dummynet.

The DIFFUSE module also registers itself with the
IPFW module (which must be loaded before DIFFUSE
can be loaded). After DIFFUSE has registered the IPFW
module will call DIFFUSE hooks every time an IPFW
rule is added or removed with an action or option
unknown to IPFW. This allows the DIFFUSE module
to handle the instantiation and removal of new rule
actions and options, such as the mlclass action or the
match-if-class option.

The IPFW module also calls a DIFFUSE hook for
every packet that is checked when there are rule actions
and options unknown to IPFW. This allows the DIFFUSE
module to process the new actions or options, and decide
whether a packet matches or not.

The raw socket interface is a pull interface only.
Unsolicited messages from kernel to userspace are not
possible. However, for exporting flow information, a
push interface is needed. The DIFFUSE module exports
flow information via the control protocol over a UDP
socket, if there are any rules with export actions. The Ex-
porter receives the flow information and forwards them
to ANs, possibly using different transport protocols, such
as SCTP or TCP.

Users use DIFFUSE specific config, show and delete
commands as well as new rule actions and options via
an extended ipfw userspace tool. A modified version
of WEKA is used to generate classifier models based
on previously collected and labelled traffic data. The
extended ipfw userspace application parses the model
files and sends the data to the DIFFUSE kernel module
as part of the classifier instance configuration.

Figure 6 shows the internals of the DIFFUSE module
(dashed lines indicate relations between objects and solid
lines indicate message flows). DIFFUSE feature and
classifier algorithms are separate modules. The config
commands create configured instances of these algo-
rithms, which are kept in linked lists. Configured export
instances are also stored in a linked list. DIFFUSE
actions and options in IPFW rules point to the instances.

Flow information, such as 5-tuples, flow state (e.g.
TCP state, timeouts), computed features and flow classes
are stored in a flow table, which is realised as hash table
with last recently used sorting of the bucket lists. Export
rules create flow rules that are stored in a first in first out
(FIFO) list and later exported via the control protocol.

CAIA Technical Report 101223A December 2010 page 6 of 22

��������	
������
��	
������

�

� �

� ����������
���

� ������
��� ������		
�����

	
���
��
�����������
��

�������������		
����������	
������
��	
������������		
��
��
��
�

��
��

Figure 4. Using the DIFFUSE architecture for distributed traffic prioritisation

����

���������
���	�

���
���
���
����� ��	���
�����

�������

��������	
���
��
�

����	�
�

��������	

�����
��

����
����

���	

�����������

�����

��������
�

������
�

��
������
�

������������

�������

Figure 5. Classifier node design, main building blocks

Figure 7 shows the main building blocks of the AN.
The Collector receives classified flows from CNs and
stores them in an internal database (hash table). For new
flows the collector creates according IPFW/Dummynet
rules via command line (ipfw add command). Flow
information is deleted based on rule removal mes-
sages or timeouts. When rules are removed from the
database the Collector also removes the corresponding
IPFW/Dummynet rules using the ipfw delete command.
On the AN an unmodified IPFW/Dummynet can be used
(without DIFFUSE extensions).

The kernel part of DIFFUSE must be implemented
using the C programming language. To be able to share
code between userspace and kernel and achieve high per-
formance we decided to also implement the Exporter and
Collector using C/C++. Since WEKA is implemented in
Java, our WEKA extension is also implemented in Java.

VI. DESIGN OF COMMAND SET EXTENSIONS

Here we describe the extended IPFW command set
used to configure CN and AN.

A. Notation

We use the following notation based on ABNF
[16]. Bold typewriter font identifies parameter
names (terminal symbols) and italic typewriter
font identifies parameter values chosen by the user
(non-terminal symbols that do not contain spaces). Sym-
bols in double quotes “” are also terminal symbols.
Normal typewriter font identifies non-

terminal symbols that are broken down into parameter
names and values at a later point. Parameters and values
in square brackets [] are optional, a slash / defines
alternatives, and round brackets () are used for grouping.

A preceding n*m means a symbol or group is repeated
a minimum n and a maximum m times. If n is zero it is
omitted, and if m is infinity it is omitted as well. This
allows shortforms such as * for 0–infinity or 1* for 1–
infinity.

B. Existing IPFW rules

First we define existing IPFW rules and a number of
symbols for parts of existing IPFW rules that we later use

CAIA Technical Report 101223A December 2010 page 7 of 22

��������
�	
����
��

�������

�	����������

���������

�����
���
�� �����	��

���������

�	���������

���	
���

�����	���

�������������������

����

��������������
��	���

�������

�	����������
������	����
��	�

�
�� �
��� ��

�	���
!�"	�

�	���������

�������

�����	���
#���

��������
�	
����
�������������

�����	���

Figure 6. Classifier node design, DIFFUSE module

����

���������
���	�

��	
�����������
���������
��������	
���
��
�

�������� �����	��
�����
��

��
	

����	
���
���

�������

Figure 7. Action node design

in the definitions of extended rules (see Figure 8). The
symbol ipfw-rule-id is the optional rule number,
the rule set number and it also includes IPFW’s match
probability. The symbol ipfw-log-altq-tag com-
prises the log, ALTQ and tag options. ipfw-action
is one of the actions executed when the pattern part
of the rule matches (note that ... is a placeholder for
the other actions not shown here [4]). The symbol
ipfw-patterns describes the patterns that are used
to match a packet and options describes all possible
options, such as keep-state, tagged [4].

C. Configure, delete and show features

Figure 9 shows the command to configure a feature.
The argument feature-name is an user-defined name

for the feature. The argument module-name is the
name of the feature as defined in the feature’s imple-
mentation (basically an implemented feature module is
the class and a configured feature is an instance of the
class). The feature’s kernel module must be available,
i.e. loaded into the kernel.

The symbol options stands for further options
provided by the feature module. Each option is either
a flag (enabling or disabling a property of a feature)
or a parameter name followed by an argument. Our
prototype implementation creates default instances for
all existing features with feature-name equal to
module-name. When a feature has no options or the

CAIA Technical Report 101223A December 2010 page 8 of 22

ipfw-rule = ipfw-rule-id ipfw-action ipfw-log-altq-tag ipfw-patterns

ipfw-rule-id = [rule-number] [set set-number] [prob probability]
ipfw-log-altq-tag = [log [logamount number]] [altq queue] [(tag / untag) number]
ipfw-action = (allow / deny / count / ...)
ipfw-patterns = proto from source to destination [ipfw-options]

ipfw-options = (keep-state / tagged tag-list / ...)

Figure 8. Existing IPFW rules

ipfw feature feature-name config module module-name [options]
options = *((option-flag / (option-name option-value)))

ipfw feature (delete / show) feature-name

Figure 9. Configure, delete and show features

default options are deemed acceptable the default feature
instances can be used straight-away.

A feature can be viewed or deleted with the commands
shown in Figure 9. The reserved feature name all can
be used to show or delete all defined features.

D. Current feature options

There are two types of features: unidirectional and
bidirectional. Unidirectional features compute statistics
for unidirectional flows. For bidirectional flows these
are computed separately for each direction. Bidirectional
features compute statistics over both directions of bidi-
rectional flows (or only one direction of unidirectional
flows).

The initial protype has the features shown in Table I.
All of our initially implemented features provide the

window and partial-window options. The option
window defines the window in packets over which
a feature is computed. By default features are only
computed for full windows, unless partial-window
is set. Any match for a feature statistic that has not been
computed yet due to a partial window will fail. Note
that a feature does not necessarily need to be computed
over windows of packets, i.e. there could be features
computed for single packets only.

By default the packet length computed by “plen” is the
packet length of an IP packet including the IP header.
If the option ipdata-len is used, the packet length
computed is the length of an IP packet excluding the IP
header. If the option payload-len is used the length
computed is the payload length (UDP or TCP data).

The “iat” (inter-packet arrival time) feature has an op-
tion accurate-time. If set the computed timestamps
are more accurate, at the cost of more processing time.

Figure 10 shows examples how features are defined.

E. Compute and use features for matching

Features are computed and used for matching as
shown in Figure 11. Such rules compute the specified
features for all subflows that match ipfw_patterns.
Once the feature statistics are available they can be used
for matching and when all IPFW patterns and feature
patterns match the rule’s action will be executed.

A feature-list is a comma-separated list of one
or more feature names, specifying the features to be
computed. Note that if one or more feature-test
are present all features used in the tests will be implic-
itly added to feature-list if not already present.
This means that normally one does not need to specify
feature-list.

By default (without unidirectional) unidirec-
tional features are computed separately for both di-
rections of bidirectional subflows and feature tests
can be used with an optional direction attribute. If
unidirectional is specified, features are computed
for unidirectional subflows and hence a rule matches
unidirectional subflows (“fwd” or “bck” are not used
in feature matches). Bidirectional features are computed
over both directions of bidirectional flows and hence
“fwd” or “bck” are also not used in feature matches.

If feature matches are used but features is not
specified an implicit features is generated, listing
all features used in the tests and producing bidirectional
flows. Note that if unidirectional is not set rules
match against features computed in both directions and
if a rules matches the action will be executed for packets
in both directions as well. With unidirectional a
rule’s action is only applied to unidirectional flows.

CAIA Technical Report 101223A December 2010 page 9 of 22

Table I
FEATURES AND THEIR OPTIONS

Feature Type Options
plen uni window size, partial-window, payload-len, ipdata-len
iat uni window size, partial-window, accurate-time

pcnt bidir window size, partial-window

ipfw feature myplen config plen window 10

ipfw feature myiat config iat window 20 accurate-time

Figure 10. Feature configuration examples

ipfw add ipfw-rule-id ipfw-action ipfw-log-altq-tag ipfw-patterns [features feature-list]
[1*feature-test] [unidirectional] [every / once / sample packets]
feature-list = feature-name[*(”,”feature_name)]

feature-test = [(fwd / bck)”.”]feature-statistic”.”feature-name(<=/</=/>/>=)value

Figure 11. Matching with features

Features are often computed for subflows and not for
separate packets. Hence the matching is usually more
on a per-flow basis rather than on the basis of separate
packets. Mutually-exclusive options exist for controlling
how often rules are re-evaluated. By default and if
every is used a rule is evaluated for every packet. If
once is specified a rule is evaluated only once (when
all feature statistics have been computed for the first
time). With sample a rule is evaluated every packets
packets.

If a rule uses these options and based on them rules are
not evaluated for a packet, the checking for the packet
terminates immediately and the packet will be treated the
same as the last packet for which the complete checking
was performed. Note that these parameters only limit
how often rules are evaluated, features are still computed
for each and every packet.

The ipfw commands delete, flush, list, show,
zero and resetlog work with feature-enabled rules
as before. Figure 12 shows example commands for using
feature matches.

F. Use machine learning classifier

An ML classifier takes a set of features of a subflow F
(n = |F |) as input and returns a classification c, where c
is exactly one class out of the set of classes C (m = |C|).
A classifier is configured as shown in Figure 13.

The argument classifier-name is the name of
the classifier. The argument algorithm-name defines
the classification algorithm to use (e.g. C4.5, see Section
VIII) and must be a name of a classifier module present
(loaded into the kernel). The argument of model defines

the classifier model to use for the classification. The
model file is a text file created by a modified version
of WEKA [17] (see Section VIII-C). The model file is
parsed and the resulting classifier is setup in the kernel.

The model file contains the list of statistics needed, but
the names may not be valid DIFFUSE names. Hence the
parameter use-feature-stats allows to specify the
list of features statistics the classifier uses for classifying
flows. This parameter is also handy if one wants to
use the same classifier model with differently generated
feature statistics, for example the same statistics but gen-
erated over different window sizes. If used this parameter
always overrules the statistics listed in the model file.

The argument of use-feature-stats must list
the same number of feature statistics in exactly the
same order they were used when building the classifier.
Feature statistics are listed in the same format as for
feature matches explained above. As for feature matches,
for unidirectional features and bidirectional flows the
direction is assumed to be forward (fwd) if not specified.

The parameter class-names can be used to over-
write the class names specified in the model file. The
class names are used to match packets based on their
class (see below).

Classification results can be used to match packets
as shown in Figure 14. One can either use rules with
the new mlclass action and use IPFW tags, or use
rules with the new match-if-class option, or a
combination of both.

For rules with mlclass action or match-if-
class option(s) feature lists are generated implicitly

CAIA Technical Report 101223A December 2010 page 10 of 22

ipfw feature myplen config plen window 25
ipfw add deny udp from any to any features myplen min.myplen<100 bidirectional

ipfw add deny udp from any to any fwd.min.myplen<100 # same as above rule

Figure 12. Feature matching examples

ipfw mlclass classifier-name config algorithm algorithm-name model file-name
[use-feature-stats feature-stat(n-1)*(“,”feature-stat)] [class-names name(m-1)*(“,”name)]
feature-stat = [(fwd / bck)”.”]feature-statistic”.”feature-name

ipfw mlclass (delete / show) feature-name

Figure 13. Configure, delete show classifier

ipfw add ipfw-rule-id (mlclass classifier-name / ...) ipfw-log-altq-tag ipfw-patterns
[class-tags tag(m-1)*(“,”tag)] [match-if-class class-name:class[*(m-1)(“,”class)]] [every
/ once / sample packets]

class = (name / “#”number)

Figure 14. Classes-based matching

in the same way as for feature matches (see previous
sub section). For bidirectional flows actions of matching
rules will be applied to both directions of flows.

The parameter classifier_name references
a classifier configured previously. The parameter
class-tags defines a list of IPFW tags, where each
tag is associated to one class in C. As the result of
the classification each packet is tagged with the tag
configured for the class it matches. The tags can be used
in subsequent rules for matching (with the tagged
option of IPFW).

The new match-if-class parameter specifies
a classifier name and a list of class names or in-
dices that make a rule match. A preceding hash sym-
bol “#” differentiates between class names and class
numbers (see Figure 14). If the current class of a
packet or subflow matches any of the classes listed the
match_if_class option matches.

The optional every/once/sample was discussed
in Section VI-E. A classifier can be viewed or deleted
with the commands shown in Figure 13. The reserved
classifier name all can be used to show or delete all
defined classifiers. Note that classifier models are only
shown for single classifiers, but not when all is used.

Without IPFW tags one can write rules that use an
ML-based classifier as shown in Figure 15. If IPFW tags
are used one can write rules as shown in Figure 16.

Flows can be classified by multiple classifiers.
Hence multiple match-if-class with different
class-name can be used in one rule. The standard

IPFW options can be used to select what type of flows
are classified. For example, if one wants to classify only
UDP flows the “ip” in the example rules can be replaced
by a “udp”.

Note that classification is only performed once all
feature statistics needed are available. For example, if
one or more of the statistics have not been computed yet
because windows are only filled partially, the flow will
not be classified. (In future work some of the classifiers
may be extended to handle missing features.)

Besides recording a flow’s class for each classifier that
classified the flow, our prototype implementation also
keeps track of the number of consistent consecutive clas-
sifications. This allows adding hysteresis to the export
of rules and prevents flapping. For example, “rule add”
messages are only send after a flow was classified as
class X for the n-th time.

G. Flow table
State for all flows for which features are computed is

stored in a flow table. The flow table can be displayed
with the show command (see Figure 17). This command
shows information for all flows, such as the rule that
generated the flow, packet and byte counters, the 5-tuple,
a list of all computed features and their current values
and a list of all class labels. By default only active flows
are shown, but if the expired parameter is specified
expired flows are also shown. (Expired flows are no
longer active but their state is still in the table. State
is not immediately deleted when flows expire, but only
when more space is needed for adding new flows.)

CAIA Technical Report 101223A December 2010 page 11 of 22

ipfw mlclass myclass config algorithm c4.5 model /etc/ipfw/realtime.model use-feature-stats
fwd.min.myplen,fwd.mean.myplen,fwd.max.myplen,bck.min.myplen,bck.mean.myplen,bck.max.myplen
class-names rt,nonrt
ipfw add pipe 1 ip from any to any match-if-class myclass:rt

ipfw add pipe 2 ip from any to any match-if-class myclass:nonrt

Figure 15. Matching using the new match-if-class option

ipfw mlclass myclass config algorithm c4.5 model /etc/ipfw/realtime.model use-feature-stats
fwd.min.myplen,fwd.mean.myplen,fwd.max.myplen,bck.min.myplen,bck.mean.myplen,bck.max.myplen
class-names rt,nonrt
ipfw mlclass myclass ip from any to any class-tags 1,2
ipfw add pipe 1 ip from any to any tagged 1

ipfw add pipe 2 ip from any to any tagged 2

Figure 16. Matching using IPFW tags

ipfw flowtable show [expired]

ipfw flowtable (zero / flush)

Figure 17. Flow table commands

All entries in the flow table can be removed (flushed)
or the packet and byte counters can be zeroed by using
the flush or zero commands (see Figure 17).

H. Export flow rules to ANs

On the CN we need to configure rules that decide
what information the classifier sends to the Exporter or
to remote AN(s).

Firstly, an export target needs to be configured as
shown in Figure 18. The argument export-name is
the name of the new export target instance. The argument
of target is the destination of the flow rules. The
protocol must be UDP, host is the fully qualified host
name (or IP address), and port is the port number the
target is listening on. The arguments action-name
and action-params-val are the action name and
parameters that are send for matching flows. Note that
action name and parameters must specify valid IPFW
actions2. Note that the receiving AN(s) may overrule
these with locally specified actions.

The argument of min-batch is the minimum num-
ber of flow rules exported in one batch. Similarly, the
argument of max-batch is the maximum number of
flow rules exported in one batch (must be equal or larger
than min-batch). Note that increasing min-batch
also increases the delay for delivering flow rules.

The argument of max-delay specifies a maximum
delay between the generation of flow rules and their

2In the initial prototype implementation these are opaque values
that are not checked.

export. Note that if max-delay is set (value larger than
zero) the minimum batch size is still enforced, but the
maximum batch size can now be exceeded (if at the time
of exporting more rules are over the maximum delay than
the size of the maximum batch).

The argument of confirm specifies how many times
a flow has to be consecutively classified as the same
class before flow information is exported. For example,
if confirm is set to 2, information is only exported
if the class was confirmed twice (three consecutive
classifications resulting in the same class).

By default ANs treat flows as bidirectional, i.e. apply
actions to both directions of a flow, or not. Setting
unidirectional instructs ANs to treat flows as
unidirectional, but only if they were unidirectional at
the CN as well. However, based on local configuration
the receiving AN(s) may still decide to treat flows
differently.

Secondly, we need to define the rules that, if they
match, will send flow rules to the configured AN(s) as
shown in Figure 18. A rule with the new export target
will export flow rules according to the configured ex-
porter export-name for all flows that match the rule.
Figure 19 shows an example where all flows classified
as real-time are exported to localhost.

The classifier in the kernel can only export information
via the UDP transport protocol. If UDP is sufficient the
classifier can send rules to ANs directly. However, in
many cases UDP will not be appropriate, for example
if reliable transport is required (see Section VII). In

CAIA Technical Report 101223A December 2010 page 12 of 22

ipfw export export-name config target udp://host:port [action action-name] [action-params
action-params-val] [min-batch number] [max-batch number] [max-delay delay] [confirm number]
[unidirectional]

ipfw add ipfw-rule-id (export export-name / ...) ipfw-log-altq-tag ipfw-patterns

diffuse-patterns

Figure 18. Configure export target and trigger export of rules

ipfw export myexp config target udp://localhost min-batch 1 max-batch 5

ipfw add export myexp ip from any to any match-if-class myclass:rt

Figure 19. Export flow rules example

this case the classifier needs to send the information to
the userspace Exporter via UDP, which then forwards
the information to the Collector via SCTP or TCP (see
Section VII).

The Exporter is configured as shown in Figure 20.
By default the Exporter listens for flow rules from any
(kernel) classifier on the default port 3191. The -c
switch can be used to specify a particular classifier
host and change the default port number3. The flow
information is forwarded to a number of ANs specified
as list of URLs with the -a switch. The -q switch turns
off any output to stdout.

Note that not only the 5-tuple describing the flow, the
class tags and the action is exported to ANs. A number
of other data is sent as well, such as a bidirectional
flag that specifies if actions should be executed for both
directions of bidirectional flows, rule timeouts etc. (see
Section VII).

I. Listen to remote CN

On the AN we need to configure the Collector to
listen to remote Exporter(s) as shown in Figure 21. The
parameters -s, -t and -u specify on which SCTP, TCP,
UDP ports the Collector is listening (at least one of
these must be specified). The -n switch turns off the
IPFW rule generation (useful for testing as non-root).
The -q switch turns off any output to stdout. The -r
switch specifies the IPFW rule number space used by
rules generated by the Collector (default 1000–2000).
The Collector will create as many IPFW rules as fit
into this space. Note that it is the users responsibility
to ensure that the range specified is available.

The -c switch defines a file that defines a mapping
between classes and actions (actions file). If flow rules
are received with one of the classes specified in the

3Typically the Exporter runs on the same host as the kernel
classifier, but it could run on a different host.

actions file, the specified actions will always overrule
any actions given by the CN. The syntax of the actions
file is shown in Figure 22. Figure 23 shows an example
actions file.

The Collector is independent of the firewall or traffic
shaper used to treat flows. However, the initial version
of the Collector can only be used with IPFW. Note that
in the first version of the prototype action names and
parameters are opaque values, which are not checked by
the Collector.

The Collector has its own dynamic flow table. For
each rule received from a CN via an “add rule” command
the Collector checks if the rule is already present in
the table. If a flow rule is present with same flow
specification and action, the collector only updates the
timeouts (if any). If a flow rule is present with the same
flow specification but different action and there is no
actions file, the Collector replaces the old rule with the
new rule and updates timeouts (if any). If no rule is
present with the same flow specification the collector
inserts the new rule into the table.

If a new rule was inserted or an existing rule was
updated the Collector will create a new IPFW rule
or update an existing IPFW rule by using the IPFW
command line interface. Removal of rules occurs upon
timeout or explicit request (“remove rule” messages).
In both cases the Collector removes the rule from its
internal database and then removes the IPFW rule via
IPFW’s command line interface.

Figure 24 shows an example for configuring an Ex-
porter and Collector.

VII. DESIGN OF REMOTE ACTIONS PROTOCOL

We first discuss requirements on the transport protocol
and message encoding. Then we describe the design of
the protocol used to transmit flow rules from CNs to
ANs.

CAIA Technical Report 101223A December 2010 page 13 of 22

ipfw_exp [-c host:port] [-a list-of-urls] [-q]
list-of-urls = url*(“,”url)

url = (udp / tcp / sctp)”://”host”:”port

Figure 20. Userspace exporter configuration

ipfw_col [-c actions-file] [-r min-rule-no[“-”max-rule-no]] [-s sctp-port] [-t tcp-port] [-u

udp-port][-nq]

Figure 21. Collector configuration

actions-file = 1*line

line = (# comment / default / classifier-name:class_number) action [action_parameters]

Figure 22. Actions file syntax

class 0 is rt and class 1 is non-rt
default queue 2
myclass:0 queue 1

myclass:1 queue 2

Figure 23. Actions file example

A. Transport Protocol

UDP and TCP are the main transport protocols cur-
rently used in IP networks. UDP is a connectionless
protocol providing unreliable data transport without flow
and congestion control. Due to its simplicity the over-
head (both in terms of network capacity and CPU
utilisation) is lower than for TCP. Furthermore, it allows
more precise timing of messages by the sender.

TCP on the other hand is a connection-oriented proto-
col and provides flow and congestion control as well as
reliable transport of data at the cost of higher overhead
and less control for the sender. TCP overhead can
be somewhat reduced by measures such as persistent
connections (e.g. used between web browsers and web
servers).

SCTP is a newer transport protocol that provides a
number of advanced features that are very useful for
DIFFUSE v0.1. SCTP is more reliable than TCP, as it
has a stronger checksum, and supports transparent fail-
over a) over different network interfaces of one host
and b) over different hosts due to its multi-homing
capability. SCTP allows out of order delivery of data
which prevents the head of the line blocking problem
inherent in TCP. Furthermore, SCTP allows to bundle
different independent data transfers (called streams) into
one connection (called association), so only a single
socket is needed. PR-SCTP is an extension of SCTP that

also provides timely unreliable data transport (avoiding
unnecessary retransmissions) with congestion control.

By default SCTP will use multiple network interfaces
for one association, so it provides fail-over in case
an interface on either side of an association becomes
(temporarily) unusable. Furthermore, SCTP allows one-
to-many socket associations, which can be used by a CN
to transmit the same message to multiple ANs simultane-
ously. One-to-many socket associations can also be used
to provide fail-over, e.g. if there are redundant ANs.

Our main criteria for the transport protocol are re-
liability, timeliness of message reception, congestion
control and overhead (network and computational at
the sender/receiver). We now discuss our requirements
on the transport protocol taking into account different
scenarios.

For traffic prioritisation one might not need maxi-
mum reliability, but it depends on the business case.
If customers pay money for an improved QoS then it
should be a very reliable service. For security-based
applications often very high reliability is required. For
market research high reliability is probably not needed.
Very importantly a timely message delivery is needed
for traffic prioritisation or security-based applications.

In a closed network which is dimensioned properly
congestion control may not be necessary. But the In-
ternet Engineering Taskforce (IETF) mandates the use
of congestion control in the Internet (as demonstrated

CAIA Technical Report 101223A December 2010 page 14 of 22

ipfw_exp -c localhost -a sctp://action1.node:5000 -q

ipfw_col -c class_actions.txt -r 10000-20000 -s 5000 -t 5000 -q

Figure 24. Exporter and Collector configuration example

during the standardisation of the IPFIX protocol [18]).
The overhead of the transport protocol is a less important
criteria, since we usually would not have extremely short
messages. With SCTP reliability is tunable and inverse
proportional to overhead, but even when completely
unreliable SCTP still has more overhead than UDP.

Another issue is current deployment. UDP and TCP
are generally supported by every end host and network
device. SCTP is generally available on all end hosts
using common modern operating systems and supported
by many network devices [19]. Table II classifies UDP,
TCP, and SCTP according to the criteria identified above
on the scale: −− (worst), −, +, ++ (best).

In conclusion we select SCTP as default transport
protocol for DIFFUSE v0.1 because it is very reliable,
provides timely message delivery, with SCTP-PR re-
liability and overhead can be tuned, and it provides
congestion control even in unreliable mode. In situations
where reliability is not an issue or there is no packet
loss and congestion control is not an issue (closed well
dimensioned network), UDP may be used to provide
a timely message delivery with minimum overhead.
TCP may be used if reliability or congestion control
are required and SCTP is not available (backwards
compatibility). Which transport protocol is used can be
controlled by the configuration of CNs and ANs.

B. Message encoding

Text-based protocols are easier to read and debug,
easier to extend with new commands or fields and easier
to handle with high-level script languages, which are
often used to develop prototypes. While they facilitate
quick prototyping they are likely less efficient in terms
of processing time. Binary encoding on the other hand
has less overhead and is more efficient to parse with
low-level programming languages (like C) that generate
more efficient code than script languages.

Since we decided to use C/C++ for implementing
DIFFUSE (see Section V), we decided to use binary
encoding because with C/C++ binary protocols can
be handled more easily and efficiently than text-based
protocols. Also since many data fields are stored as
binary numbers inside the kernel classifier, a text-based
protocol would require a large number of binary to text
conversions and vice versa.

Furthermore, binary encoding has significantly less
network overhead compared to text-based encoding. To
minimise overhead but still have a flexible and extensible
protocol we decided to use a template-based encoding,
where templates define the fields present in datasets and
datasets only contain the actual data.

C. Protocol format

The protocol is designed to have minimum overhead
while still being flexible enough to allow further exten-
sion in the future. Flexibility is crucial, because although
we outlined some scenarios for which the DIFFUSE
architecture could be used, we think there are many other
possible scenarios.

To avoid gratuitously reinventing a wheel, our protocol
is conceptually based on the IP Flow Information Export
(IPFIX) protocol [18], which was developed for very
similar requirements [20]. Our protocol uses the same
template-based approach and similar binary encoded
messages. However, the format of protocol headers and
fields is not identical to IPFIX.

1) Fixed header: Every message of the protocol has
a fixed header comprised of (see Figure 25):

• Version (16 bit)
• Message length (16 bit)
• Sequence number (32 bit)
• Timestamp (32 bit)

Version specifies the protocol version. Message length
is the total length of the message in octets including the
fixed header. The sequence number numbers all mes-
sages. It is required to determine the order of messages
(in case UDP or unordered SCTP is used and packets are
reordered), can be used for retransmission of information
over UDP and also provides weak security against inser-
tion attacks with UDP as packets with sequence numbers
out of the acceptable window will be silently ignored.

The Timestamp contains the time the message was
generated (in seconds since Unix epoch). It allows the
Collector to determine when a message was sent by
the Exporter, i.e. how old the information is (assuming
clocks are synchronised). The collector can use this
information to adjust timeouts or ignore outdated infor-
mation.

CAIA Technical Report 101223A December 2010 page 15 of 22

Table II
CRITERIA OF TRANSPORT PROTOCOLS

Protocol Reliability Timeliness Cong.
Control

Overhead Deployment

UDP − + − ++ ++
TCP + − + − ++

PR-SCTP − to ++ + + + to −− +

������� ���	
�
��
������������

�����
���
��
������� ��
����	
��

������
���������� ���	�
�������� �� �������
 ��

! " �� �# $�

�����%�
��� �����%�
����������

��
��������� ��
����	
��
�&�'��"'!'� �&�'��"'!'�

���� �

�&�'��"'!'$ �&�'��"'!'�

���� �

Figure 25. Fixed header of the DIFFUSE v0.1 control protocol

2) Templates and data sets: After the fixed header
each message contains a number of sets. Currently there
are three types of sets:

• Options template
• Flow rule template
• Option and flow rule data

Flow rule data sets are used to transmit flow rules. Option
data sets are used to transmit optional data. Optional data
can be transmitted with different frequencies, e.g. on a
per connection/association basis or on a per message
basis. Options and flow templates specify the types of
information elements (IEs) contained in options/flow
datasets.

Each dataset has a fixed header which contains the
following fields:

• Set ID (16 bit)
• Length of set (16 bit)

Set ID specifies whether the data is an options template
(set ID = 0), a flow rule template (set ID = 1) or data
(set ID ≥ 256). Length is the length of a template or
data set in octets including the set header.

An options or flow rule template set contains the
following fields:

• Template ID (16 bit)
• Flags/reserved (16 bit)
• A number of field definitions each consisting of an

IE ID (16 bit) and optionally the length of the data
in octets (16 bits)

The template ID specifies an ID for the particular tem-
plate that is then referenced in a dataset (values 256–
65535). The following 16 bits are reserved for future
use. Each IE ID specifies an information element, e.g.
the source IP address. The length defines the length of

the data in octets, e.g. length is 4 bytes for an IPV4
source address.

There are three types of IEs: fixed-length, variable-
length and dynamic-length. For fixed-length IEs the IE
ID also specifies the length (e.g. source IP address) and
the next field is another IE ID. For variable-length IEs
(e.g. a string) the length of the IE must be specified
in the template in the length field following the IE ID.
The length of dynamic-length IEs varies with each entry
in a dataset. The first octet of a dynamic-length field
in a dataset specifies the length of the field in octets
(including the length field).

Whenever possible fixed-length and variable-length
IEs should be used. Dynamic-length IEs should only be
used if the IE length is unknown in advance and can vary
significantly between entries in a data set. The highest
two bits of the IE ID specify the type. If set to 00 or
01 the IE is fixed-length, if set to 10 the IE is variable
length, and if set to 11 the IE is dynamic-length. This
means IDs 0–32767 are for fixed-length IEs, IDs 32768–
49151 are for variable-length IEs, and IDs 49152–65535
are for dynamic length IEs.

A dataset contains the data for all the IEs specified
in the template in exactly the same order as specified
in the template. Note that sets must aligned on 32-bit
boundaries. Padding octets must be added at the end of
sets as needed to ensure this.

One could reduce the overhead of the protocol by
using 8-bit integers instead of 16-bit integers for IDs.
However, it has been shown many times that original
protocol designers severely underestimated the future
need for numbering space thus necessitating protocol
redesign or the use of bad hacks later on. Instead of
trying very hard to optimise the overhead by reducing

CAIA Technical Report 101223A December 2010 page 16 of 22

the size of fields one could use lossless compression to
reduce the size of the data on the wire, e.g. adaptive
Huffman coding is successfully used by First-person
Shooter Games to reduce message sizes. However, com-
pression increases the complexity and requires extra
computational resources at the sender/receiver.

3) Template management: Depending on the transport
protocol there are two ways of handling templates:

• Transmit templates in every packet (UDP)
• Transmit templates only at the start of connections

(SCTP, TCP)
If UDP is used, templates are transmitted in each packet.
Packets are self-contained and loss of packets with
templates will never cause loss of data beyond the lost
packet (data that cannot be used because the template
is not known). No additional reliability is needed for
templates and there are no issues if an AN restarts.
Also, an AN does not need to store templates. However,
network protocol overhead is higher.

If TCP is used the Exporter only needs to transmit
templates once at the start of a connection, because
TCP provides ordered reliable transport. The Collector
must store the templates for the duration of the TCP
connection. However, if a connection is closed and re-
established, the Exporter must send all templates at the
start of the new connection again, because it cannot know
if only the connection was closed or the Collector had
to restart and may have lost templates. Transmitting the
templates only at the start reduces the overhead, but
requires ANs to store the templates.

If SCTP is used templates and data are transmitted
reliably as for TCP. If SCTP-PR is used templates only
need to be transmitted once at the start, but they must
be transmitted reliably using ordered reliable SCTP.
The receiver must store templates for the duration of
an association. Data may be transmitted unreliably if
reliable data transport is not needed. Templates and data
must be send over two different SCTP streams, so there
will be two streams per SCTP association (templates are
send over stream 0 and data is send over stream 1).

4) Information elements (IEs): The following IEs are
defined (the numbers in parenthesis are the ID and the
size in octets or “V” for variable-length or “D” for
dynamic-length IEs):

• IPv4 source address (1, 4)
• IPv4 destination address (2, 4)
• Source port (3, 2)
• Destination port (4, 2)
• Protocol (5, 1)

• IPv6 source address (6, 16)
• IPv6 destination address (7, 16)
• IPv4 Type of Service (ToS) (8, 1)
• IPv6 flow label (9, 4)
• Class label (10, 2)
• Match direction (11, 1)
• Message type (12, 1)
• Timeout type (13, 1)
• Timeout (14, 4)
• Action flags (15, 1)
• Action (32768, V)
• Action parameters (32769, V)
• Classifier name (32770, V)
• Export name(32771, V)
• Class tags (49152, D)

A number of IEs are fields taken straight from the
IPv4 or IPv6 headers. Other IEs are explained briefly
in the following paragraphs. Class label is the flow’s
class assigned by the classifier. Classifier name specifies
the classifier that classified the flow. Match direction
indicates whether matched flows are unidirectional or
bidirectional. Message type specifies whether a message
is an “add” or “remove” message. Timeout type specifies
whether the timeout is a flow timeout or a rule timeout.
Timeout is the timeout value in seconds.

Action flags are used to indicate whether the AN
should apply actions to unidirectional or bidirectional
flows. Action is the action name and action parameters
specify the parameters of the action. Export name is the
name of the export that generated the flow rule. Class
tags defines a list of classifier name and class tuples (if
flows were classified by multiple classifiers).

The prototype implementation uses a standard tem-
plate with the following fields: export name, message
type, IPv4 source and destination address, source and
destination port, protocol, list of classes, timeout type
and value, action name, flags and parameters. With a
single class tag the size of one entry is 54 bytes. (Note
that IPv6 is not fully suppported yet.)

5) Keep-alive: To minimise the overhead of estab-
lishing and shutting down connections repeatedly, a
connection between CN and AN is kept open even if
there is nothing to send for a while. If PR-SCTP or TCP
is used this keep-alive mechanism is based on the SCTP
association or TCP connection keep-alive mechanism.
UDP is connection-less and there is no overhead, hence
no keep-alive mechanism is used in the case of UDP.

CAIA Technical Report 101223A December 2010 page 17 of 22

D. Example

Figure 26 shows an example message consisting of
the fixed header, a template set defining the IEs for
template 256, and a flow rule data set for template 256
with multiple rules.

E. Security Considerations

We assume that often CNs and ANs are part of the
same trusted network, which includes being connected
via a secure Virtual Private Network (VPN). This pre-
vents alteration or eavesdropping attacks on messages
in flight. However, if CNs and ANs are connected via
an untrusted network the integrity of messages must be
protected against attackers by using digital signatures
or encryption. If messages contain sensitive information
encryption must be used to preserve message confiden-
tiality.

An AN needs to authenticate messages; it must verify
that messages were created by a trusted CN. Otherwise,
attackers could send fake messages to ANs for various
purposes including but not limited to obtaining services
that they have not paid for (e.g. prioritisation of traffic)
or mounting Denial of Service (DoS) attacks by blocking
a victim’s legitimate flows.

In the first version of our prototype message au-
thentication is based on IP addresses. An AN only
accepts messages from specified CN IP addresses on
the specified ports using the specified protocols. If IP
spoofing can be prevented the system will be reasonably
secure. If IP spoofing is possible the sequence numbers
provide some protection against blind insertion attacks.
However, if strong protection against such attacks is
required cryptographic authentication of messages must
be used.

Like IPFIX strong security for our protocol can be
provided by the Transport Layer Security (TLS) [21]
or Datagram Transport Layer Security (DTLS) [22]
protocols. For UDP and PR-SCTP DTLS must be used.
For TCP TLS must be used.

VIII. SELECTED ML TECHNIQUE

We leverage the Waikato Environment for Knowledge
Analysis (WEKA) [17] to perform the initial data analy-
sis and to build classifier models used for classification.
WEKA provides an easy to use GUI as well as a com-
mand line interface to inspect the data, experiment with
different classification techniques and build models from
training data. After a classifier model has been trained
in WEKA it can be saved and used with DIFFUSE v0.1.

WEKA provides access to many different classifica-
tion techniques, but our first prototype only supports two
algorithms because of the effort required for implement-
ing them. Not only must we port WEKA’s classification
functions, but we must do this working around the
restrictions imposed on kernel modules, such as the
absence of floating point arithmetic and mathematical
functions in the kernel. For each classifier we must also
implement functions to parse and output a model.

There are many different ML algorithms [1]. Previous
research showed that for classification of network traffic
the better techniques provide similar accuracy, but differ
greatly regarding training time and classification speed
[23]. Our initial implementation supports the C4.5 and
Naïve Bayes techniques.

We use the C4.5 decision tree classifier [24] because it
provided good accuracy for network traffic classification
previously [23], the classification function is fast (tree
search) and relatively easy to implement (unlike other
algorithms it does not require mathematical functions not
implemented in the FreeBSD kernel). Using a decision
tree algorithm has the advantage that a human can inter-
pret the resulting classifier (classification tree), although
with increasing size this becomes difficult.

The Naïve Bayes technique also was previously used
to classify network traffic [23]. While the achieved
accuracy of Naïve Bayes was lower than for C4.5, the
classification function is fast and very easy to implement.
Due its simplicity Naïve Bayes is significantly quicker
than C4.5 in building a classifier (training).

It may be hard to implement more complex classifiers
in kernel because of the lack of mathematical functions.
Future work could investigate ways of diverting packets
(or a list of features) to a userspace application that
performs the classification.

A. C4.5

C4.5 creates a classifier based on a tree structure
of nodes, branches and leaves [24]. Nodes in the tree
represent features, and branches represent value tests. A
series of nodes and branches is terminated by a leaf,
which represents the class. Determining the class of an
instance is simply a matter of tracing the path of nodes
and branches to a terminating leaf node.

C4.5, as other decision tree learners, uses the ‘divide
and conquer’ method to construct a tree from a set of
training instances S. If all cases in S belong to the same
class, the decision tree is a leaf labelled with that class.
Otherwise the algorithm will use tests to divide S into
several non-trivial partitions.

CAIA Technical Report 101223A December 2010 page 18 of 22

������� ���	
�
��
������������

�����
���
��
������� ��
����	
��

������
���������� ���	�
�������� �� �������
 ��

! " �� �# $�

�����%�����&��� �����%����

��
��������� ��
����	
��
�'�(��"(!(� �'�(��"(!(�

�)����� �

�'�(��"(!($ �'�(��"(!(�

�)����� �

Figure 26. Example of DIFFUSE v0.1 control protocol message including a flow rule template and dataset

Each of the partitions becomes a child node of the
current node and the tests to separate S are assigned to
the branches. C4.5 uses two types of tests each involving
only a single attribute A. In case of discrete attributes
the test is A =? with one outcome for each value of A.
For real attributes the test is A ≤ θ where θ is a constant
threshold. To find the optimal partitions C4.5 relies on
greedy search and selects the test set that maximizes an
entropy-based gain ratio [24].

The divide and conquer approach partitions the data
until every leaf contains instances from only one class or
a further partition is not possible because two instances
have the same features but different class. If there are
no conflicting cases the tree will correctly classify all
training instances. This over-fitting leads to a decrease
of the prediction accuracy. C4.5 attempts to avoid over-
fitting by removing some structure from the tree after it
has been built (tree pruning) [24].

Because C4.5 selects feature tests in order of max-
imising the entropy-based gain ratio it is not adversely
affected by unimportant or irrelevant features like other
techniques. The most useful features are always used at
the top of the tree and irrelevant features are ignored.
Feature pre-selection is not necessary, although some-
times it still improves accuracy slightly [23].

B. Naïve Bayes

Naïve-Bayes is based on the Bayesian theorem [23].
It analyses the relationship between each feature and the

class for each instance to derive a conditional proba-
bility for the relationships between feature values and
class. During training, the probability of each class is
computed by counting how many times it occurs in the
training dataset (called the prior probability). The prior
probability is the probability that an instance belongs to
a class without taking any features into account.

In addition the algorithm also computes the proba-
bility for an instance given its features and class. This
probability cannot be directly computed but under the
assumption that the features are independent it becomes
the product of the probabilities of each single feature.
The probability that an instance belongs to a certain class
can then be computed by combining the prior probability
and the probability from the density function for each
class using the Bayes formula [23].

The Bayes formula is only applicable if all features
are qualitative (nominal). A qualitative feature takes a
small number of values. Then the probabilities can be
estimated from the frequencies of the instances in the
training data set. Quantitative features can have a large
number of values (possible infinite) and the probabil-
ity cannot be estimated from the frequency distribu-
tion. Instead these features must be modelled by some
continuous probability distribution (often the Gaussian
distribution is used). An alternative approach is to use
discretisation, which transforms quantitative features into
qualitative features.

CAIA Technical Report 101223A December 2010 page 19 of 22

Since the true density is usually unknown for real-
world data, unsafe assumptions often occur when using
continuous probability density functions. Discretisation
circumvents this problem. On the other hand kernel
density estimation can be used instead of simple density
functions to model complex distributions.

In theory, a Naïve-Bayes prediction will only be
correct if all the features are statistically independent of
each other and the quantitative features behave according
to the probability density models. However, in practice
the algorithm often produces good results even when
these assumptions are violated [23].

C. Classifier Model File Format

WEKA saves classification models produced during
the training as Java serialised objects. This format is
relatively complicated and no C/C++ parsers exist. To
use a model generated with WEKA in DIFFUSE v0.1
we have extended WEKA. A command line switch (-y)
was added that saves WEKA models in an ASCII format,
that is easily readable for C/C++ applications.

A new interface class Diffusable was added to WEKA
that needs to be used by all classifiers supported by DIF-
FUSE. For each classifier using the Diffusable interface
we have implemented functions to export a classifier
model in ASCII format. We now describe the export
format using the same syntax as in Section VI.

As shown in Figure 27 each model file first lists
the class names and feature/attribute names. The lines
following these lists are classifier algorithm specific.
(Spaces are explicitly indicated here by SP.)

For C4.5 each line in the model file represents a tree
node and associate tests. The parameter node specifies
the name of the node (always n_X) and the parameter
feature specifies the name of the feature/attribute
(always a_X), where X corresponds to the numeric index
of a feature in the feature list or the number of the
node in the tree (starting with zero). The next parameter
specifies if the feature is nominal or real. The parameter
missing-class specifies the resulting class (always
c_X) if the feature is undefined (missing), where X
corresponds to the numeric index of a class in the class
list (starting with zero). Then the feature test is specified.
There are three different cases:

• Nominal features with non-binary splits: a list of
pairs of values and class/node names. Each value
specifies a feature value and is followed by either
a class name or node name.

• Nominal features with binary splits: a value fol-
lowed by the class name or node name for equal

feature values and the class name or node name for
non-equal feature values.

• Real features: a real split value followed by the class
or node name for lesser equal feature values and the
class or node name for greater feature values.

For Naïve-Bayes the first line defines the prior prob-
abilities of each class. The following lines define the
conditional probabilities for feature value intervals (dis-
cretised features) or the parameters of the Normal dis-
tribution (non-discretised features). Naïve-Bayes with
kernel-density estimation is currently not supported.

For nominal features or discretised features there is
one line for each feature value (or feature value range).
For each real feature there are four lines specifying the
mean and standard deviation of the Normal distribution,
and the weight sum and precision of the feature for each
class.

As for C4.5 feature is the feature/attribute
name (always a_X), where X corresponds to the nu-
meric index of a feature in the feature list (start-
ing with zero). The parameters class-prior-prob
and class-cond-prob are the prior probabil-
ities of classes and the conditional probabilities
of classes depending on the feature values. The
class-cond-value are the class values for the dif-
ferent attributes of real features.

Figure 28 depicts an example of a C4.5 classifier
model generated for WEKA’s iris dataset [17]. Figure
29 shows the first part of a classifier model generated
by Naïve-Bayes for the same dataset [17].

IX. CONCLUSIONS AND FUTURE WORK

This report presented the DIFFUSE v0.1 system, an
extension for the IPFW packet filter and shaper [4]
that provides ML-based traffic classification based on
statistical properties and de-couples flow classification
and treatment (distributed firewalling). We described the
basic architecture and outlined the design of the software.
We also defined and explained the main interfaces of
the system: the extended ruleset language, the control
protocol, and the format of classifier model files.

This report is not a manual. Man pages and HOW-
TOs are provided as part of the DIFFUSE v0.1 open
source software release, which can be obtained from
http://caia.swin.edu.au/urp/diffuse.

In future work we will analyse the system’s classifica-
tion accuracy, performance and scalability. We also will
explore whether automatic (re)training of classifiers may
be practically achieved using live IP traffic going past
particular points inside an ISP network, and the degree

CAIA Technical Report 101223A December 2010 page 20 of 22

classes 1*(class-name SP)
attributes 1*(attribute-name SP)
(c45-model / nbayes-model)
c45-model = 1*(node feature (n / r) missing-class 1*(value (class / node) SP) /
1*(split-value (le_class / le_node) (gt_class / gt_node) SP) / 1*(value (match_class /
match_node) (no_match_class / no_match_node) SP))
nbayes-model =
prior 1*(class-prior-prob SP)

1*(feature (feature-value 1*(class-cond-prob SP)) / ((mean / stddev / weightsum / precision)

1*(class-cond-value SP)))

Figure 27. Model file format

classes Iris-setosa Iris-versicolor Iris-virginica
attributes sepallength sepalwidth petallength petalwidth
n_0 a_3 r c_0 0.6 c_0 n_1
n_1 a_3 r c_1 1.7 n_2 c_2
n_2 a_2 r c_1 4.9 c_1 n_3

n_3 a_3 r c_2 1.5 c_2 c_1

Figure 28. Example C4.5 model

classes Iris-setosa Iris-versicolor Iris-virginica
attributes sepallength sepalwidth petallength petalwidth
prior 0.33333 0.33333 0.33333
a_0 -inf-5.55 0.90566 0.22642 0.03774
a_0 5.55-6.15 0.07547 0.45283 0.20755
a_0 6.15-inf 0.01887 0.32075 0.75472
a_1 -inf-2.95 0.0566 0.66038 0.41509
a_1 2.95-3.35 0.35849 0.30189 0.4717
a_1 3.35-inf 0.58491 0.03774 0.11321

...

Figure 29. Example Naïve Bayes model

to which noise (packet loss and jitter) in the live traffic
negatively impacts on the system’s ability to recognise
the same class of traffic in the future.

ACKNOWLEDGEMENTS

This project has been made possible in part by a grant
from the Cisco University Research Program Fund at
Community Foundation Silicon Valley for a project titled
“Exploring the efficacy of distributed statistical traffic
classification using modified open source packet filters”.

REFERENCES

[1] T. Nguyen, G. Armitage, “A Survey of Techniques for Internet
Traffic Classification using Machine Learning,” IEEE Commu-
nications Surveys & Tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[2] P. Branch, “Lawful Interception of the Internet,” The Interna-
tional Journal of Emerging Technologies and Society, Spring
2003.

[3] J. But, N. Williams, S. Zander, L. Stewart, G. Armitage,
“Automated Network Games Enhancment Layer - A Proposed
Architecture,” in Proceedings of 5th Workshop on Network &
System Support for Games (NetGames) 2006, October 2006.

[4] The FreeBSD Documentation Project, “FreeBSD Handbook,
Section 30.6 IPFW.” http://www.freebsd.org/doc/en/books/
handbook/firewalls-ipfw.html.

[5] The OpenBSD Project, “PF: The OpenBSD Packet Filter.” http:
//www.openbsd.org/faq/pf/.

[6] The netfilter.org Project, “Netfilter – Firewalling, NAT and
Packet Mangling for Linux.” http://www.netfilter.org/.

[7] S. Zander, G. Armitage, “DIstributed Firewall and Flow-shaper
Using Statistical Evidence (DIFFUSE).” http://caia.swin.edu.
au/urp/diffuse/.

[8] T.T.T. Nguyen, G. Armitage, “Training on Multiple Sub-flows
to Optimise the Use of Machine Learning Classifiers in Real-
world IP Networks,” in Proceedings of 31st IEEE Conference
on Local Computer Networks, November 2008.

[9] D. Reed, “IP Filter.” http://coombs.anu.edu.au/ipfilter/.
[10] P. Dibowitz, “IPF FAQ.” http://www.phildev.net/ipf/index.html.
[11] L. Rizzo, “Dummynet.” http://www.iet.unipi.it/~luigi/ip_

dummynet/.
[12] The FreeBSD Documentation Project, “FreeBSD Handbook,

Section 30.4.6 Enabling ALTQ.” http://www.freebsd.org/doc/
en/books/handbook/firewalls-pf.html.

[13] Wikipedia, “IPFW – ipfirewall.” http://en.wikipedia.org/w/
index.php?title=Ipfirewall.

CAIA Technical Report 101223A December 2010 page 21 of 22

http://www.freebsd.org/doc/en/books/handbook/firewalls-ipfw.html
http://www.freebsd.org/doc/en/books/handbook/firewalls-ipfw.html
http://www.openbsd.org/faq/pf/
http://www.openbsd.org/faq/pf/
http://www.netfilter.org/
http://caia.swin.edu.au/urp/diffuse/
http://caia.swin.edu.au/urp/diffuse/
http://coombs.anu.edu.au/ipfilter/
http://www.phildev.net/ipf/index.html
http://www.iet.unipi.it/~luigi/ip_dummynet/
http://www.iet.unipi.it/~luigi/ip_dummynet/
http://www.freebsd.org/doc/en/books/handbook/firewalls-pf.html
http://www.freebsd.org/doc/en/books/handbook/firewalls-pf.html
http://en.wikipedia.org/w/index.php?title=Ipfirewall
http://en.wikipedia.org/w/index.php?title=Ipfirewall

[14] D. Hartmeier, “Design and Performance of the OpenBSD
Stateful Packet Filter (pf),” 2002. http://www.benzedrine.cx/
pf-paper.html.

[15] M. Adamo, M. Tablò, “Linux vs OpenBSD – A Firewall
Performance Test,” ;LOGIN:, vol. 30, pp. 35–42, December
2005.

[16] D. Crocker, Ed., and P. Overell, “Augmented BNF for Syntax
Specifications: ABNF,” RFC 5234, IETF, Janauary 2008. http:
//www.ietf.org/rfc/rfc5234.txt.

[17] I. H. Witten, Eibe Frank, "Data Mining: Practical Machine
Learning Tools and Techniques – 2nd Edition. Morgan Kauf-
mann, San Francisco, 2005.

[18] B. Claise, Ed., “Specification of the IP Flow Information
Export (IPFIX) Protocol for the Exchange of IP Traffic Flow
Information,” RFC 5101, IETF, Janauary 2008. http://www.ietf.
org/rfc/rfc5101.txt.

[19] Wikipedia, “Stream Control Transmission Protocol.” http://en.
wikipedia.org/wiki/Stream_Control_Transmission_Protocol.

[20] J. Quittek, T. Zseby, B. Claise, and S. Zander, “Requirements
for IP Flow Information Export (IPFIX),” RFC 3917, IETF, Oct.
2004. http://www.ietf.org/rfc/rfc3917.txt.

[21] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” RFC 5246, IETF, August 2008. http:
//www.ietf.org/rfc/rfc5246.txt.

[22] E. Rescorla and N. Modadugu, “Datagram Transport Layer
Security,” RFC 4347, IETF, August 2006. http://www.ietf.org/
rfc/rfc4347.txt.

[23] N. Williams, S. Zander, G. Armitage, “A Preliminary Perfor-
mance Comparison of Five Machine Learning Algorithms for
Practical IP Traffic Flow Classification,” SIGCOMM Computer
Communication Review, vol. 36, October 2006.

[24] R. Kohavi, J. R. Quinlan, Decision-tree Discovery, ch. 16.1.3,
pp. 267–276. Oxford University Press, 2002.

CAIA Technical Report 101223A December 2010 page 22 of 22

http://www.benzedrine.cx/pf-paper.html
http://www.benzedrine.cx/pf-paper.html
http://www.ietf.org/rfc/rfc5234.txt
http://www.ietf.org/rfc/rfc5234.txt
http://www.ietf.org/rfc/rfc5101.txt
http://www.ietf.org/rfc/rfc5101.txt
http://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol
http://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol
http://www.ietf.org/rfc/rfc3917.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc4347.txt
http://www.ietf.org/rfc/rfc4347.txt

	Introduction
	Definitions
	Flows
	Features

	Choice of Firewall
	Functionality
	Portability
	Support
	Performance
	Usability
	Extensibility
	Decision

	System Description
	Architecture
	Classifier Node
	Action Node
	Ruleset operations
	Control protocol operations
	Example Scenarios

	Software Design
	Design of Command Set Extensions
	Notation
	Existing IPFW rules
	Configure, delete and show features
	Current feature options
	Compute and use features for matching
	Use machine learning classifier
	Flow table
	Export flow rules to ANs
	Listen to remote CN

	Design of Remote Actions Protocol
	Transport Protocol
	Message encoding
	Protocol format
	Fixed header
	Templates and data sets
	Template management
	Information elements (IEs)
	Keep-alive

	Example
	Security Considerations

	Selected ML Technique
	C4.5
	Naïve Bayes
	Classifier Model File Format

	Conclusions and Future Work
	References

