
Monitoring of the Local Transmission Control
Protocol’s State Variables Using L3DGEWorld

Michael Allwright∗, Grenville Armitage
Centre for Advanced Internet Architectures, Technical Report 100820C

Swinburne University of Technology
Melbourne, Australia

5704634@student.swin.edu.au, garmitage@swin.edu.au

Abstract—The monitoring of the Transmission Control
Protocol (TCP) state variables can provide an understand-
ing of how various traffic flows on a network interact. As
discussed in previous work [1] the rate and diversity of
the raw information available is incomprehensible in real
time, considering human cognitive processing limitations.
In the technical report we will demonstrate a solution to
the problem of monitoring the attributes of TCP flows by
projecting them as orthogonal visual characteristics on 3D
entities displayed inside a modified game engine, known
as L3DGEWorld.

Index Terms—L3DGEWorld, TCP, Network Monitor-
ing, SIFTR, Visualisation, Game Engine

I. INTRODUCTION

The interactions between network traffic directly ef-
fects the end users experience of the network. This
particularly holds true for the Internet, where latency
and bandwidth limitations due to network loading and
the underlying infrastructure, can adversely effect the
quality of a Voice over Internet Protocol (VoIP) call,
an online multiplayer game or a remote desktop con-
nection. To solve this problem, many implementations
based around the concept of Quality of Service (QoS)
provide scheduling and prioritisation for specific traffic
which is sensitive to certain network conditions. One
challenge which arises from this solution is monitoring
the performance of QoS and it’s various implementations
and configurations.

Whether or not QoS is enabled, the monitoring of
network traffic is a non-trivial task. For example, the
Transmission Control Protocol (TCP) implementation’s
state machine in FreeBSD has more than 20 different
variables which describe the performance of a given
outbound transfer. Some of these parameters are updated

∗Author is currently an engineering student at Swinburne Univer-
sity of Technology. This report was written during the author’s winter
internship at CAIA in 2010

on a packet-to-packet basis, and when multiplexed with
other outbound flows moving thousands of packets per
second, as found on a file server, the shear volume of
raw data obtainable is incomprehensible in real time.
Solutions to similar problems regarding network security
are outlined in [1]. This paper looks at various existing
methods for administrating networks from a security
perspective, and proposes the use of a modified 3D game
engine to make presence of hackers attacking a network
visually available in real-time.

In this technical report, the concept of using game
engines to represent large amounts of data has been
utilised to monitor TCP traffic flows as a proof of
concept that aims to illustrate a more detailed under-
standing of the interactions of various network traffic
on a macroscopic scale and furthermore, the impact of
various QoS implementations and configurations.

This technical report is organised as follows: Sec-
tion II provides background information about TCP,
and an introduction to SIFTR [2], a FreeBSD ker-
nel module which logs information about inbound and
outbound TCP packets. Section III discusses the chal-
lenges of data visualisation and provides an introduction
to L3DGEWorld [3]. Section IV details the structure
of the application LTCPMON which provides a proof
of concept by creating an interface between the raw
TCP data generated by SIFTR and forwarding it into
L3DGEWorld. Section V details future work and po-
tential improvements, while Section VI concludes this
technical report.

II. TRANSPORT LAYER PROTOCOLS AND SIFTR

A. The Transmission Control Protocol

Almost all communication over the Internet is pro-
vided by two transport layer protocols. These are the
Transmission Control Protocol (TCP) and the User Data-
gram Protocol (UDP), which provide different features

CAIA Technical Report 100820C August 2010 page 1 of 8

mailto:5704634@student.swin.edu.au
mailto:garmitage@swin.edu.au

Desktop (PCBSD)

NTTCP used to transmit
8MB

Bridge (FreeBSD)

Dummynet used to
induce artificial latency

Desktop (FreeBSD)

NTTCP set in receive
mode

Data Data

Acknowledgement Acknowledgement

Fig. 1. Test bed to induce artificial latency

and are utilised by applications accordingly. UDP pro-
vides applications with connectionless communication
and multiplexing. This means that while UDP can not
guarantee the reliable transfer of data, it is lightweight
and well suited to applications like online gaming and
Voice over IP (VoIP). Meanwhile TCP provides mecha-
nisms that guarantee reliable transfer of data and conges-
tion avoidance. The reliable transfer of data makes TCP
ideal for browsing the web, sending and receiving email
and file-sharing. One potential drawback of TCP is that
the connection throughput will fluctuate over time, this
is because TCP probes the network’s capacity in order
to maximise throughput.

B. Macroscopic Impact of Multiple Traffic Flows

On a typical corporate or home network, there is
bound to be both TCP and UDP flows present. And
on these networks there is often a finite amount of
bandwidth and routing resources which must be shared
by both of these transport layer protocols. It is the
interaction of network traffic from both these protocols
that adversely affects performance at the application
level. This holds true not only for the interaction of TCP
and UDP flows, but also for the effect of a TCP flow on
other TCP flows.

One characteristic of TCP which is often of interest is
the Congestion Window (CWND). The CWND defines
the amount of in-flight data that is allowed to be sent
before an acknowledgement is received. TCP will grow
the CWND every time an acknowledgement is received.
If an acknowledgement for a piece of data is not received
within a given time, TCP will enter a recovery mode
before setting CWND to the slow start threshold value
(typically half of CWND). This behaviour of probing the
network to maximise throughput and backing off when
packet loss is detected is TCP’s congestion avoidance

mechanism.
TCP is designed to operate on networks where the

loading can vary with time. This can be observed by
monitoring the throughput during a connection, where
depending on network loading and infrastructure, the
performance will decrease with the introduction of addi-
tional latency and bandwidth constraints. To demonstrate
this, the test bench in Figure 1 was used to artificially
induce latency via the use of Dummynet [4], a FreeBSD
kernel module which emulates static network conditions
though the use of virtual pipes.

Figure 2 shows the effect of increasing latency on
CWND. As shown in the Figures, CWND’s rate of
growth is proportional to the latency of the underlying
network (or in this case, the Dummynet pipe). This pro-
portionality comes about as TCP is typically designed to
only grow CWND for every acknowledgement received.
Contrasting the duration to transfer a fixed amount of
data in Figures 2(a) and 2(c), it is seen that excessive
latency on a link can result in a heavy performance
penalty.

C. Measuring TCP Performance with SIFTR

SIFTR, Statistical Information for TCP Research [2],
is a FreeBSD kernel module developed and maintained
by CAIA [5]. The kernel module works by connecting
to the FreeBSD packet filter interface [6], which allows
SIFTR to take a snapshot of the TCP state machine on
every inbound and outbound packet traversing through
the TCP/IP stack.

Once SIFTR is compiled, two kernel modules, alq.ko
and siftr.ko, must be loaded into the kernel in order
to use SIFTR. However the loading of siftr.ko will
automatically result in the loading of alq.ko. In FreeBSD
these modules can be installed into the /boot/modules
directory and loaded dynamically using the command:

CAIA Technical Report 100820C August 2010 page 2 of 8

0

10000

20000

30000

40000

50000

60000

70000

80000

0 5 10 15

5mbps throughput with no delay

Time (seconds)

C
on

ge
st

io
n

W
in

do
w

 S
iz

e
(b

yt
es

)

(a) No added latency

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 2 4 6 8 10 12 14 16 18

5mbps throughput with 20ms delay

Time (seconds)

C
on

ge
st

io
n

W
in

do
w

 S
iz

e
(b

yt
es

)

(b) Symmetric Latency of 20ms added

0

20000

40000

60000

80000

100000

120000

140000

0 5 10 15 20 25

5mbps throughput with 100ms delay

Time (seconds)

C
on

ge
st

io
n

W
in

do
w

 S
iz

e
(b

yt
es

)

(c) Symmetric Latency of 100ms added

Fig. 2. Using Dummynet to induce artificial latency

root@mallwright# sysctl net.inet.siftr
net.inet.siftr.enabled: 0
net.inet.siftr.logfile: /var/log/siftr.log
net.inet.siftr.ppl: 1
net.inet.siftr.genhashes: 0

Fig. 3. SIFTR’s sysctl configuration interface with default value set

kldload module_name.ko

Once the kernel module for SIFTR is loaded, the
module can be enabled and configured dynamically by
the sysctl interface [7]. As shown in Figure 3, the
interface allows the configuration of the path to the
log file (net.inet.siftr.logfile), the option to define how
many packets must be detected before the log file is
appended to (net.inet.siftr.ppl), and whether or not to
generate the hashes for the packets which caused the
snapshot (net.inet.siftr.genhashes). These values can be
set with appropriate privileges using the command:

sysctl name=value

Once SIFTR is enabled (following setting the
net.inet.siftr.enabled parameter to 1) - an ASCII for-
matted CSV log file will be generated and appended to
with details about the state variables for every inbound
and outbound packet (or as set by the net.inet.siftr.ppl
variable). The CSV log file contains 25 comma separated
values. Amongst the state variables, these also include
the time-stamp and information about the packet which
triggered the snapshot. Detailed information about these
values can be found in the SIFTR manpage included in
the tarball on the CAIA website [2].

III. UTILISATION OF GAME ENGINES TO VISUALISE

NETWORK PERFORMANCE

The use of modified game engines to present dynamic
data has been an active area of research. This section
will give a short review of the previous work [1], [8]
researched at CAIA.

Figure 4 shows the output of several common network
analysis tools which are installed or readily available
under the FreeBSD operating system. Although these
tools provide different perspectives of network condi-
tions, one thing that these tools share in common is
ASCII formatted output (with the exception of tcpdump
which can also output binary data in pcap format).

Depending on the formatting present on the standard
output, this data can be more or less difficult to read. A
further reality to this is that in a typical scenario, there
will be multiple traffic flows multiplexed together, and

CAIA Technical Report 100820C August 2010 page 3 of 8

SIFTR - Statistical Information For TCP Research

root@host# head siftr.log
enable_time_secs=1278293075 enable_time_usecs=869497 siftrver=1.2.2 hz=1000
tcp_rtt_scale=32 sysname=FreeBSD sysver=800107 ipmode=4
o,0x9bc4e9ae,1278293075.871738,192.168.0.3,22,192.168.0.1,13845,1073725440,3801,6144...
o,0x1ff83e09,1278293075.871893,192.168.0.3,22,192.168.0.1,11927,1073725440,3577...
i,0x385b7fcb,1278293075.936369,136.186.229.102,5037,136.186.229.98,20928,1073725440...

tcpdump

root@host# tcpdump -n
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on em0, link-type EN10MB (Ethernet), capture size 96 bytes
17:32:23.137718 IP 136.186.229.98.22 > 136.186.229.103.49596: Flags [P.], ack...
17:32:23.137731 IP 136.186.229.98.22 > 136.186.229.103.49596: Flags [P.], ack 1...
17:32:23.138090 IP 136.186.229.103.49596 > 136.186.229.98.22: Flags [.], ack 116...

SPP - Synthetic Packet Pair

root@host# head spp.log
1 1278292405.310012 0.007890 0.000024
2 1278292405.322705 0.006496 0.000051
3 1278292405.330009 0.007897 0.000023

Ping

root@host# ping -i0.1 136.186.20.9
PING 136.186.20.9 (136.186.20.9): 56 data bytes
64 bytes from 136.186.20.9: icmp_seq=0 ttl=63 time=0.293 ms
64 bytes from 136.186.20.9: icmp_seq=1 ttl=63 time=0.192 ms
64 bytes from 136.186.20.9: icmp_seq=2 ttl=63 time=0.192 ms

Fig. 4. ACSII output of various network monitoring tools

all printed to the same standard output. This leaves the
task of separating flows to the network administrator,
and considering the volume of traffic that is flowing in
and out of a home network, let alone a corporate one,
the task of visually identifying a single parameter from
a single flow in real time, is nearly impossible.

A. Conventional Graphing Techniques

As discussed previously, it is an unrealistic expecta-
tion that network administrators will be able to make
productive decisions based purely on a blur of high
speed ASCII log messages appearing at their terminal.
To solve this problem, software packages like Scilab
[9] and R [10] have been used to graph this flow of
incomprehensible data into a visual format. However
conventional graphing techniques have some limitations.
The TCP state machine contains more than 20 different
variables, most of which are changing on a packet-to-
packet basis. Using conventional graphing techniques,
we can plot three of these variables in an area where the

distances between the orthogonal components X, Y and
Z and the origin, could each represent a single variable or
metric. In this space, a point for each TCP flow could be
plotted, and furthermore this plot could then be animated
by allowing the points to move with time, creating a
real-time representation of the network traffic. However,
given the number of packets and the number of flows
to which these packets belong, the representation would
be familiar to that of an blurred electron cloud, which is
only a marginal improvement over the ASCII text blur.
There is however another solution. If the points were re-
placed with objects, where instead of spatial positioning,
orthogonal visual characteristics were used to represent
the underlying metrics of interest, it is possible that this
visualisation would be far more intuitive in real-time.
To do this, a new software package would have to be
developed to provide a 3D area in which these objects
or entities could exist, or alternatively an existing genre
of software platforms may already provide most of this
required functionality.

CAIA Technical Report 100820C August 2010 page 4 of 8

Fig. 5. LCMON - L3DGEWorld Clusternode Monitor

B. 3D Game Engines for Visualisation

The adoption of game engines for visualisation is a
concept which been gaining momentum over the past
years. 3D game engines support an attractive set of off
the shelf features such as:

• Inbuilt multi-user interaction including chat
• Simple physics
• Support for entities with many orthogonal visual

characteristics (avoids ambiguous interpretation)
• Native server-client infrastructure for viewing at

remote locations
One example of this is is L3DGEWorld [3], which has

been developed by CAIA.

C. L3DGEWorld

L3DGEWorld is a data visualisation utility based on
Open Arena, a GPL’d game that makes use of the
Quake III Arena (Q3A) game engine. The software
contains various modifications which allow entities to
be controlled via a UDP based API. The entities in the
virtual world can be set to bounce, spin, change colour
and even change positions with time. L3DGEWorld has
been previously used in the monitoring of the Swinburne
Supercomputer ‘The Green Machine’ [11], and the Swin-
burne Uninterruptible Power Supply (UPS) Network
[12]. As shown in Figures 5 and 6, various underlying
parameters from both systems have been mapped to
visual metrics inside the L3DGEWorld application.

L3DGEWorld allows network administrators to import
data from multiple sources and map particular values
inside this data to orthogonal visual characteristics on
the displayed entities in the virtual world. L3DGEWorld
comes with L3DGEComms [13], a C library which can

Fig. 6. LupsMON - L3DGEWorld Uninterruptible Power Supply
Monitor

be used to provide a simple interface to L3DGEWorld.
The library handles trivial tasks like establishing connec-
tions and authentication, sending messages and finalising
connections. L3DGEWorld also provides output mecha-
nisms to gain control over (or to modify) the underly-
ing network, this functionality has not been utilised in
LTCPMON.

IV. LTCPMON

LTCPMON (L3DGEWorld Transmission Control Pro-
tocol Monitoring) demonstrates the use of combining
L3DGEWorld with SIFTR to provide a qualitative in-
sight into how multiple outbound TCP flows interact
on the FreeBSD TCP/IP stack. LTCPMON is a C++
console application which has been built following object
orientated principles to promote software reuse by ensur-
ing that high cohesion and low coupling exists between
all objects. This means that many parts of the software
can be easily reused in other applications working with
SIFTR or L3DGEWorld.

A. Input Files

When LTCPMON starts, it parses the command line,
making the assumption that the last three given argu-
ments are the input files to the program. These files must
be provided and must be in order, following the syntax
message shown in Figure 7. Each of these files has a
parser class which is used to import the ASCII formatted
data into the Standard Template Library (STL) container
classes.

As shown in Figure 8, the first file defines mappings
between state variables and orthogonal visual charac-
teristics via a given statistics function. This means that
for every update LTCPMON sends to L3DGEWorld, the
selected statistic function will calculate its value from

CAIA Technical Report 100820C August 2010 page 5 of 8

LTCPMON - SIFTR to L3DGEWorld Interface Utility
usage: ltcpmon [options] <map_file> <entity_file> <siftr_logfile>

options:
[-s <time>] - visualisation start time offset since beginning of the SIFTR log
[-d <duration>] - duration of visualisation
[-u <period>] - period at which updates are sent to L3DGEWorld
[-r <ratio>] - real:visualisation time ratio
[-a <ip address>] - IP address of the L3DGEWorld Server
[-p <port>] - Communication port of the L3DGEWorld Server
[-v] - Enable verbose mode

files:
<map_file> - contains mappings of TCP parameters to visualisation metrics
<entity_file> - contains a list of entities available in the server map
<siftr_logfile> - contains the SIFTR data to be visualised

Fig. 7. Command Line Syntax Message for LTCPMON

the dataset containing the selected state variable’s values
since the last update. The output value to statistic func-
tion is then dynamically scaled and sent to L3DGEWorld
via L3DGEComms.

The second file defines what entities are available on
the map. This file is typically known as l3dgehosts.conf
or <mapname>.conf and must be the same file in
use on the server. The file contains three space sepa-
rated strings which respectively define the entity’s name,
it’s unique identification number and it’s administrative
weight. The entity name can be set to be any string
(without spaces), while the unique identification number
should represent the entities on the map (this is done
by using the same file for server, as is loaded into
LTCPMON). The administrative weight is for a unused
feature in L3DGEWorld, where the player’s interactions
would influence the underlying network configuration.
The administrative weight is not used in LTCPMON and
discarded during parsing.

The final input file, as previously mentioned, is the
CSV formatted SIFTR log file. As shown previously
(Figure 4), this file is the output of the SIFTR kernel
module. It contains 25 fields which provide the values
of the TCP state variables, alongside information about
the packet which triggered the log message. For details
of the fields, see the README file for SIFTR [2].

B. Program Flow

As mentioned in the previous section, when LTCP-
MON starts it parses the command line to find the
required files and any additional command line switches.
These command line switches are shown in Figure 7 and

are optionally used to configure the location and port of
L3DGEWorld server (by default 127.0.0.1 on 27960), the
playback speed, the start time offset and the duration of
playback as desired.

The application sets up it’s environment using the
optional command line switches before parsing the pro-
vided files. This gives LTCPMON a complete con-
figuration. LTCPMON then creates a connection with
L3DGEWorld Server and enters it’s main loop. Inside
the main loop the program parses a variable number lines
of the SIFTR log file. The number of lines parsed is
dependant on how much traffic was flowing in and out
of the TCP/IP stack over a given interval. This is because
LTCPMON looks at the timestamps inside the log file
to determine when a finite amount of time has expired.
Once this time has expired the application waits for an
update timer to expire, before calculating the statistics on
the data. Hence, the playback ratio switch controls the
speed at which the log file data is parsed and displayed,
while the update period switch controls the resolution of
the updates.

LTCPMON will terminate once it has reached the end
of the log file, or in case of a pipe, when it has consumed
it’s buffer. This flow is illustrated in Figure 9.

C. Design Challenges

One of the most significant challenges faced during
the development of LTCPMON was designing the ap-
plication in away that it could run in real time, i.e.
run concurrently while data was being obtained. This
presents an interesting challenge of scaling the attributes
from the output statistics, due to the infrastructure and

CAIA Technical Report 100820C August 2010 page 6 of 8

Example mappings file
format follows variable:statistic_mode:visualisation_parameter

Map the median congestion window size to scale
map currentCongestionWindow:median:scale

Map the standard devation of inflight data to spin rate
map inflightBytes:stddev:spinRate

Map the median rttEstimate to the colour of the object
map rttEstimate:median:colour

Fig. 8. Contents of mapping file for LTCPMON

Parse Data

Read lines in the SIFTR Log
File until timestamp exceeds

playback time

Generate Statistics

Calculate the required
statistics for the visual metrics

More data
in SIFTR

Log?

Exit

Initialise

Load SIFTR Log File
Load Mappings File

Load Entity Information File

Start

Calibrate and Scale

Calibrate and scale the
statistics data to match visual

metric bounds

Send updates to L3DGEWorld

Uses L3DGEComms to send
out a series of messages

Fig. 9. Overview of LTCPMON’s program flow

capacity of the underlying network being indeterminate
at run time. Given this, it is not sufficient to statically
scale the TCP state variables into the orthogonal vi-
sual characteristics displayed by L3DGEWorld, as static
scaling would require making assumptions about the
underlying network infrastructure and capacity.

To overcome this challenge, a dynamic scaling mod-
ule was implemented. The dynamic scaling module in
LTCPMON scans through the current dataset and detects
maximum and minimum values of a statistic of a given
TCP state machine parameter. The scaling starts by set-
ting the maximum and minimum values to a uninitialised
state, and then calibrating these values as new data is
obtained. However this method does have the following
drawbacks.

• Dynamic scaling causes the quantitative aspect of
a particular visual metric, such as size or spin
rate, to have a varying meaning over time, this
can be ambiguous with actual changes in network

conditions
• The current configuration of the dynamic scaling

mode, is to take the maximum and minimum values
outputted by the statistics module. This is very
sensitive to noise.

V. FUTURE WORK

As of this Technical Report, LTCPMON is in it’s
first alpha release. While the application is functional,
significant testing is required to determine if various
components are working correctly. There are a few
known bugs in the application as follows:

1) Update time resolution is limited to an integral
amount of seconds, this is caused as the time()
function in time.h returns an integer representing
the number of seconds since the 1st of January,
1970 (Unix Epoch).

2) Dynamic scaling is sensitive to noise. An im-
provement to this will be mapping the lower fifth
and upper ninety fifth percentiles of the statistics
module output to the maximum and minimum
values of the visualisation metric rates, truncating
the outliers beyond this range.

3) Reset logic of entities is currently ineffective. This
functionality is crucial and must be debugged
before the beta release.

The tarball available on the CAIA/LTCPMON web-
site, contains the latest snapshot of the source code.
Throughout the source code, comments have been added
to highlight potential weaknesses. These are planned to
be fixed before the beta release.

VI. CONCLUSION

In this Technical Report we have seen that the produc-
tive monitoring of network traffic is a non-trivial task.
One potential solution to this problem is to use game

CAIA Technical Report 100820C August 2010 page 7 of 8

engines to move away from conventional graphing tech-
niques, and start representing various network metrics
as visually orthogonal characteristics projected on to 3D
objects inside a virtual world. This technical report also
introduces LTCPMON, an example of how a modified
game engine like L3DGEWorld can be controlled by
a third party application. LTCPMON is responsible for
relaying data onto the entities inside the virtual world,
projecting a configurable set of TCP state variables on
to visually orthogonal characteristics.

REFERENCES

[1] W. Harrop and G. Armitage, “Real-Time Collaborative
Network Monitoring and Control Using 3D Game Engines
for Representation and Interaction,” in VizSEC’06 Workshop
on Visualization for Computer Security, Virginia, USA,
03 November 2006, pp. 31–40. [Online]. Available: http:
//doi.acm.org/10.1145/1179576.1179583

[2] “NewTCP project tools,” Aug. 2010, accessed 3 August
2010. [Online]. Available: http://caia.swin.edu.au/urp/newtcp/
tools.html

[3] “L3DGEWorld,” Aug. 2010, accessed 6 August 2010. [Online].
Available: http://caia.swin.edu.au/urp/l3dge/tools/l3dgeworld/

[4] M. Carbone and L. Rizzo, “Dummynet revisited,” ACM SIG-
COMM Computer Communication Review, vol. 40, no. 2, pp.
12–20, 2010.

[5] “CAIA - Centre for Advanced Internet Architectures,”
Aug. 2010, accessed 15 August 2010. [Online]. Available:
http://caia.swin.edu.au/

[6] PFIL FreeBSD Kernel Developer’s Manual, Aug. 2010,
accessed 5 August 2010. [Online]. Available: www.freebsd.
org/cgi/man.cgi?query=pfil

[7] sysctl - FreeBSD Kernel Developer’s Manual, Aug. 2010,
accessed 6 August 2010. [Online]. Available: www.freebsd.
org/cgi/man.cgi?query=sysctl

[8] W. Harrop and G. Armitage, “Intuitive Real-Time Network
Monitoring Using Visually Orthogonal 3D Metaphors,” in
Australian Telecommunications Networks & Applications
Conference 2004 (ATNAC 2004), Sydney, Australia, 8-10
December 2004, pp. 276–282. [Online]. Available: http://caia.
swin.edu.au/pubs/ATNAC04/harrop-armitage-ATNAC2004.pdf

[9] “Scilab - The Free Platform for Numerical Computation,”
Aug. 2010, accessed 8 August 2010. [Online]. Available:
http://http://www.scilab.org/

[10] “The R Project for Statistical Computing,” Aug. 2010, accessed
8 August 2010. [Online]. Available: http://www.r-project.org/

[11] “LCMON - L3DGEWorld Cluster-node Monitoring,” Aug.
2010, accessed 6 August 2010. [Online]. Available: http:
//caia.swin.edu.au/urp/l3dge/tools/lcmon/index.html

[12] “LupsMon - L3DGEWorld Uninterruptible Power Supply
Monitoring,” Aug. 2010, accessed 6 August 2010.
[Online]. Available: http://caia.swin.edu.au/urp/l3dge/tools/
lupsmon/index.html

[13] L. Parry, “L3DGEWorld 2.3 Input & Output Specifications,”
Centre for Advanced Internet Architectures, Swinburne
University of Technology, Melbourne, Australia, Tech. Rep.
080222C, 22 February 2008. [Online]. Available: http:
//caia.swin.edu.au/reports/080222C/CAIA-TR-080222C.pdf

CAIA Technical Report 100820C August 2010 page 8 of 8

http://doi.acm.org/10.1145/1179576.1179583
http://doi.acm.org/10.1145/1179576.1179583
http://caia.swin.edu.au/urp/newtcp/tools.html
http://caia.swin.edu.au/urp/newtcp/tools.html
http://caia.swin.edu.au/urp/l3dge/tools/l3dgeworld/
http://caia.swin.edu.au/
www.freebsd.org/cgi/man.cgi?query=pfil
www.freebsd.org/cgi/man.cgi?query=pfil
www.freebsd.org/cgi/man.cgi?query=sysctl
www.freebsd.org/cgi/man.cgi?query=sysctl
http://caia.swin.edu.au/pubs/ATNAC04/harrop-armitage-ATNAC2004.pdf
http://caia.swin.edu.au/pubs/ATNAC04/harrop-armitage-ATNAC2004.pdf
http://http://www.scilab.org/
http://www.r-project.org/
http://caia.swin.edu.au/urp/l3dge/tools/lcmon/index.html
http://caia.swin.edu.au/urp/l3dge/tools/lcmon/index.html
http://caia.swin.edu.au/urp/l3dge/tools/lupsmon/index.html
http://caia.swin.edu.au/urp/l3dge/tools/lupsmon/index.html
http://caia.swin.edu.au/reports/080222C/CAIA-TR-080222C.pdf
http://caia.swin.edu.au/reports/080222C/CAIA-TR-080222C.pdf

	Introduction
	Transport Layer Protocols and SIFTR
	The Transmission Control Protocol
	Macroscopic Impact of Multiple Traffic Flows
	Measuring TCP Performance with SIFTR

	Utilisation of Game Engines to Visualise Network Performance
	Conventional Graphing Techniques
	3D Game Engines for Visualisation
	L3DGEWorld

	LTCPMON
	Input Files
	Program Flow
	Design Challenges

	Future Work
	Conclusion
	References

