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Abstract-This report describes a bug in the fragmentation code 

of the Madwifi driver for the Atheros chipset under the Linux 
kernel.  The bug is due to incorrect locking of a data structure.  
Techniques for Linux kernel debugging are described, and a fix 
for the bug is presented. 

I.    INTRODUCTION 
Wireless local area networks (WLANs) are 

increasingly popular, leading to increasing demands on 
wireless resources.  CAIA

�
s MAGIC project is 

investigating modifications to the medium access control 
(MAC) protocol used by IEEE 802.11 (WiFi) WLANs 
[1], to improve its performance.  A useful tool for this is 
the Atheros wireless chipset.  Unlike most chipsets, the 
Atheros chipset implements most MAC functionality in 
software on the host computer rather than in firmware on 
the wireless card.  This makes the chipset very flexible 
and suitable for experimentation. 

This report describes the outcome of an internship by 
Tung Le, supervised by Hai Vu and Lachlan Andrew, 
which originally aimed to investigate variants of the 
ready-to-send/clear-to-send (RTS/CTS) mechanism  [1] 
which WiFi uses to avoid combat 

�
hidden terminals

�
 [2].  

This mechanism was to be emulated by using explicit 
packet fragmentation, which involves the host computer 
passing a large packet to the MAC and the MAC dividing 
the packet into smaller frames before transmission onto 
the wireless medium. 

However, a bug was discovered in the implementation 
of fragmentation in the MadWiFi driver [3], and the 
project changed to fixing that bug.  MadWiFi is one of 
three open source drivers for this chipset.  The ath9k 
driver was written by Athero1s and the ath5k driver was, 
like MadWiFi, written by reverse engineering the chipset 
behavior.  Although it would have been possible to 
continue the original project by using a different driver, it 
was decided that contributing a fix to the bug would be a 
useful contribution. 

Although the MadWiFi driver is popular, the bug has 
not previously been detected because fragmentation is not 
common.  The kernel normally produces packets no 
larger than 1500 bytes, and the WiFi interface allows 
packets of that size.  

The outline of this paper is as follows.  Section II 
describes the conditions under which the bug occurs, and 

                                                 
1 Author is currently an engineering student at Swinburne 
University of Technology. This report was written during the 
author’s winter internship at CAIA in 2010 

its symptoms.  Section III describes how it was found that 
the bug was in the driver rather than another component.  
Sections IV-VI present the debugging techniques used: 
remote access to the system console, detailed code 
inspection and the 

�
bisection

�
 method for locating bugs.  

The final cause of the bug and the solution are presented 
in Section VII. 

II.BUG DESCRIPTION 

This section covers the detailed hardware, software 
description and the scenario where the bug occurs.  

We consider an infrastructure wireless LAN with one 
Acer Aspire One net-book as a mobile device and an 
access point. The Madwifi driver has been installed on the 
net-book running Linux operating system. The following 
version of Madwifi and Ubuntu is used: 

Linux version: 2.6.32-22-generic    

Wireless Network Adapter: AR928X 

Madwifi version: svn r4132 (trunk) 
Tests are carried out by sending ping packets from the 

net-book to the access point. Without fragmentation, the 
transmission occurs as expected. When fragmentation 
option is turned on and the net-book sends packets exceed 
fragment threshold, the system crashes. Below is the 
screenshot showing command sequence and output when 
the crash occurs.    

 
 
 
 
 
 

Figure 1: The network setup 
 

root@wlan-proj-5:~# iwconfig ath0 frag 512 
root@wlan-proj-5:~# iwconfig  
lo        no wireless extensions. 
 
wifi0     no wireless extensions. 
 
ath0      IEEE 802.11g  ESSID:"AP605"   
          Mode:Managed  Frequency:2.412 GHz  Access 
Point: 00:0F:66:90:AD:0D    
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          Bit Rate:11 Mb/s   Tx-Power:13 dBm   
Sensitivity=1/1   
          Retry:off   RTS thr:off   Fragment thr=512 B    
          Encryption key:1111-1111-11   Security 
mode:restricted 
          Power Management:off 
          Link Quality=33/70  Signal level=-60 dBm  Noise 
level=-93 dBm 
          Rx invalid nwid:69797  Rx invalid crypt:0  Rx 
invalid frag:0 
          Tx excessive retries:0  Invalid misc:0   Missed 
beacon:0 
 
eth5      no wireless extensions. 
 
root@wlan-proj-5:~# ping 192.168.0.1 -c 1 -s 1000 
*****system crashes here********* 

Figure 2: Screen commands and output 
As shown in Fig. 2, the fragmentation threshold has 

been set to 512 bytes and the net-book was sending 1000 
bytes ping packet.  

Following messages are what appears in screen before 
the machine crashes: 

[ 4656.967047]  [<c03532bd>] ? copy_from_user+0x3d/0x130 

[ 4656.967047]  [<c04bc8da>] ? verify_iovec+0x5a/0xa0 

[ 4656.967047]  [<c04b41fd>] sys_sendmsg+0x15d/0x290 

[ 4656.967047]  [<c058a479>] ? mutex_lock+0x19/0x40 

[ 4656.967047]  [<c0353189>] ? copy_to_user+0x39/0x130 

[ 4656.967047]  [<c03b87f5>] ? copy_termios+0x35/0x50 

[ 4656.967047]  [<c01c9ca2>] ? find_get_page+0x22/0xa0 

[ 4656.967047]  [<c01304cc>] ? kmap_atomic_prot+0x4c/0xf0 

[ 4656.967047]  [<c01ca036>] ? unlock_page+0x46/0x50 

[ 4656.967047]  [<c01e49b8>] ? __do_fault+0x3a8/0x490 

[ 4656.967047]  [<c01e6259>] ? handle_mm_fault+0x139/0x390 

[ 4656.967047]  [<c04b481c>] sys_socketcall+0xcc/0x280 

[ 4656.967047]  [<c058db30>] ? do_page_fault+0x160/0x3a0 

[ 4656.967047]  [<c01033ec>] syscall_call+0x7/0xb 

[ 4656.967047] NOHZ: local_softirq_pending 2c2 

Figure 3: Screenshot of crash 
The following sections describe the debugging process 

to identify why the system crashes and how to fix it. 
III.BUG SOURCE IDENTIFICATION 

The first step of the debugging process is to identify 
the place that causes the crash. There are several possible 
error sources such as hardware faulty or incompatibility, 
software error (bug) in either operating system or the 
Madwifi driver. Each possibility must be carefully 
verified because it significantly affects the later 
debugging steps. 

The first possibility is because of hardware faulty. The 
test has been carried out in the same experiment and 

configurations but using different net-book. The same 
crash is observed. So the bug is not likely due to hardware 
failure. 

We then replace the Ubuntu net-book with a Unix 
operating computer and repeat the test. Again the same 
crash is observed. So the bug is not likely due to operating 
system failure. 

As the Madwifi driver has been developed through 
various versions, the easiest way to check is to reinstall 
the newest Madwifi driver in the net-book. Fragment bug 
might have been discovered before and is fixed in a newer 
version. However, after installing the new driver, the 
system still crashes. 

The last possible error source is the implementation of 
the Madwifi driver. To verify it, the Madwifi driver is 
replaced by an ath5k driver which is a default Linux 
wireless driver.  We then observe that the system is now 
working properly with fragmentation. 

At this point, we conclude that the fragment bug 
comes from the Madwifi driver implementation. In the 
next section, we describe the network setup to gather 
more information in order to find the place in the Madwifi 
implementation that causes the crash. 

IV.COLLECTING INFORMATION 

Collecting information is essential in the debugging 
process. The more you know about the bug, the easier to 
fix. The most obvious source of information is the 
Internet, as chance is someone already experienced this 
bug and posted the solution for it. After some searching 
effort, no relevant information can be found that is related 
to this problem. Below we will focus on how to collect 
useful information regarding a so-called “oops 
messages”. 

Oops messages are error messages printed out when 
the system experiences problem. When Linux kernel 
detects problems, it prints out oops messages and 
terminates any offending process. Those messages are 
used to debug and fix software problems. 

Fig. 3 shows messages that appear in the screen before 
the machine crashes. The problem is, however, a large 
part of these oops messages are missing. It is because the 
net-book crashes after printing all of those messages and 
we cannot go back and see do all the error messages 
except the last part appeared in the screen. One way to 
overcome this problem is to use a network console. 
Network console has been introduced from Linux 2.6 
series. It allows sending oops messages to an external 
terminal using UDP. So the entire oops messages can be 
retrieved in the remote machine later on. To setup the 
network console, a separate Ethernet interface is created 
between the mobile device and a desktop computer. 

Fig. 4 shows the network console and the commands 
to set it up with the net-book. 

Eth0: the interface used to send oops messages 
12345: port number to send oops messages 
10.0.0.1: remote host’s IP address 
00:E0:81:2B:0C:C1: MAC address of the remote host 
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The following important part of the oops messages 
captured by the above network console: 

 
 
 
 
 
 
 
 

Figure 4: Network console

root@wlan-proj-6:~# nc -dul 12345 
[ 4656.358987] ------------[ cut here ]------------
[4656.359188]kernel BUG at 

/home/tung/madwifi/ath/if_ath.c:3345!
[ 4656.359438] invalid opcode: 0000 [#1] SMP 
[4656.359649] last sysfs file: 

/sys/devices/virtual/sound/timer/uevent 

Figure 5: Network console captured oops messgaes
Fig. 5 clearly identifies where the crash

that although in this case the oops messages was able to 
point the line of the code where the error lies, in general 
the oops messages do not always state exactly 
following sections V and VI, we assume that we have no 
knowledge about these oops message and will attempt to
locate the bug in a different way. 

V.SOURCE CODE 

In order to fix something, it is important to 
understanding how it works. Since the bug causes system 
crashes whenever the net-book sends fragmented packets, 
we focus on the code to fragment and transmit packets.

 
 
 
 
 
 
 
 
 
 

Figure 6: Madwifi transmission process
Figure 3 represents the simplified Madwifi 

transmission process. The function ath_hardstart() is 
called whenever kernel wants to send a packet. Then 
function ath_hardstart() calls function ieee80211_encap() 
to set the correct 802.11 encapsulation and fragment 
packet if necessary. After that, ath_hardstart alloc
memory for each fragment. Finally, each fragment is sent 
by calling function ath_xt start(). 
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Experiments to find the bug focused on those sections 
of code.  

VI.DEBUGGING TECHNIQUES

Simply looking at the code rarely shows the cause of a 
bug.  It is often necessary to modify the code and run it to 
obtain information about its dynamic behavior.  This 
section describes the two techniques used to find the bug.

When debugging user-space programs, the simplest 
and most useful technique is to add diagnostic outpu
This technique inserts a of lots of output
track the control flow and data values in the execution of 
a piece of code. In the kernel, the function printk() 
behaves similarly to the printf() function in the standard C 
library.  However, the differences make it less useful for 
debugging. The printk() function sends messages to a 
logging system, which saves the output in a file and can 
also send it to the console, depending on the settings of 
the system logger daemon.  After the printk() call
added in different positions of the transmission code, the 
Madwifi driver can be reinstalled, and the system made to 
crash. The hope is that the output message on screen or in 
the log files will indicate the last executed printk() before 
the crash. It would then be possible to narrow down the 
error source. 

 
 
 
 
 
 
 
 
 
 

Figure 7: Weakness of 
However, when the system crashes, the printk() 

functions print nothing. The reason is that printk()7does 
not save messages directly to the hard disk.  It j
messages to a circular buffer then the next instruction is 
executed. It takes long time for Linux to copy messages 
from the buffer to the hard disk. In our case, the system 
crashes before the printk() messages are written to the 
hard disk, as illustrated in Figure 7. This means that 
printk() is of limited use in this case.

 
 
 
 
 
 
 
 

Figure 8: Bisection technique
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An alternative technique that does not use printk() is  
bisection. In this technique, part of the code is disabled, 
such as by putting a return statement before the end of a 
function.  If the system still crashes, the bug is probably 
within the section of code which was not disabled; 
otherwise the bug is most likely in the disabled code.  
This is repeated with increasingly small sections of code 
disabled until the location of the crash, or source of the 
bug, is found. This does not rely on printk()’s logging 
foibles, but it requires many iterations, in which the code 
is recompiled, the module reinstalled and (if there is a 
crash) the system is rebooted.  However, this was the 
method which eventually showed the location of the bug 
(before the networked console technique was 
discovered). 

VII.THE BUG AND ITS FIX 

The location of the crash can be found from the oops 
message in section IV or by the technique described in 
section VI. The crashed occurred in the highlighted line in 
the following piece of code from the function 
ieee80211_encap() in file ath/if_ath.c: 

for (bfcnt = 1; bfcnt < framecnt; ++bfcnt) 
{ 

tbf = ath_take_txbuf_locked(sc); //crash 

if (tbf == NULL) 

break; 

STAILQ_INSERT_TAIL(&bf_head, tbf, 

bf_list); 

} 

This piece of code allocates memory for each 
fragment.  The crash was caused by defensive 
programming by the module’s authors:  There is an 
explicit check for the presence of a “lock”.  A software 
lock is a mechanism to prevent conflicting accesses by 
multiple threads to a single data structure.  Before writing 
to a data structure, a thread obtains a “lock” which it 
releases after it has restored the structure to a consistent 
state.  Other threads are not able to obtain the lock until 
the initial thread releases it, which causes them to wait 
until the initial thread has finished.  When a packet is 
fragmented, the lock should be obtained before extracting 
the first fragment, and released after the last has been 
extracted.  For this reason,  the function 
ath_take_txbuf_locked(sc) assumes that the buffer which 
contains packet to be transmitted has already been locked, 
and explicitly checks for this. However, the commands to 
obtain the lock were missing.  That is why the system 
crashes when fragmented packets are sent. In order to fix 
this, the lock and unlock macros should be added, as 
follows: 
ATH_TXBUF_LOCK_IRQ(sc); 

for(bfcnt = 1; bfcnt < framecnt; ++bfcnt) { 

 tbf = ath_take_txbuf_locked(sc); 

 if (tbf == NULL) 

  break; 

 STAILQ_INSERT_TAIL(&bf_head, tbf, 
bf_list); 

} 

 

if (bfcnt != framecnt) { 

 ath_return_txbuf_list_locked(sc, 
&bf_head); 

 STAILQ_INIT(&bf_head); 

ATH_TXBUF_UNLOCK_IRQ(sc); 
 goto hardstart_fail; 

} 

ATH_TXBUF_UNLOCK_IRQ(sc); 

Note that the lock must be released after the failure 
as well as the successful transmission. 
 

VIII.CONCLUSION 

This report has described the process by which a bug 
was detected, located and removed from the MadWiFi 
driver for the Atheros chipset.  The symptom of the bug 
was that the kernel crashed, and the final caused was due 
to missing locking of a data structure in the function 
ieee80211_encap() in file ath/if_ath.c. 

The general debugging process involved the following 
steps: 

• Bug source identification: identify source of the 
problem. It could be hardware or software faulty. 

• Collecting information: Linux oops messages 
usually tell exactly where the bug is 

• Understanding source code: know which part of 
the code does what job. So we have clue which 
part potentially causes error 

• Debugging: two most simple methods are 
diagnostic output and bisection . 
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