
CAIA Technical Report 100820B August 2010 page 1 of 4

Debugging the Linux Madwifi Driver
Tung M. Le1, Lachlan L. H. Andrew and Hai L. Vu

Centre for Advanced Internet Architectures. Technical Report 100820B
Swinburne University of Technology

Melbourne, Australia
6216005@swin.edu.au

Abstract-This report describes a bug in the fragmentation code

of the Madwifi driver for the Atheros chipset under the Linux
kernel. The bug is due to incorrect locking of a data structure.
Techniques for Linux kernel debugging are described, and a fix
for the bug is presented.

I. INTRODUCTION
Wireless local area networks (WLANs) are

increasingly popular, leading to increasing demands on
wireless resources. CAIA

�
s MAGIC project is

investigating modifications to the medium access control
(MAC) protocol used by IEEE 802.11 (WiFi) WLANs
[1], to improve its performance. A useful tool for this is
the Atheros wireless chipset. Unlike most chipsets, the
Atheros chipset implements most MAC functionality in
software on the host computer rather than in firmware on
the wireless card. This makes the chipset very flexible
and suitable for experimentation.

This report describes the outcome of an internship by
Tung Le, supervised by Hai Vu and Lachlan Andrew,
which originally aimed to investigate variants of the
ready-to-send/clear-to-send (RTS/CTS) mechanism [1]
which WiFi uses to avoid combat

�
hidden terminals

�
 [2].

This mechanism was to be emulated by using explicit
packet fragmentation, which involves the host computer
passing a large packet to the MAC and the MAC dividing
the packet into smaller frames before transmission onto
the wireless medium.

However, a bug was discovered in the implementation
of fragmentation in the MadWiFi driver [3], and the
project changed to fixing that bug. MadWiFi is one of
three open source drivers for this chipset. The ath9k
driver was written by Athero1s and the ath5k driver was,
like MadWiFi, written by reverse engineering the chipset
behavior. Although it would have been possible to
continue the original project by using a different driver, it
was decided that contributing a fix to the bug would be a
useful contribution.

Although the MadWiFi driver is popular, the bug has
not previously been detected because fragmentation is not
common. The kernel normally produces packets no
larger than 1500 bytes, and the WiFi interface allows
packets of that size.

The outline of this paper is as follows. Section II
describes the conditions under which the bug occurs, and

1 Author is currently an engineering student at Swinburne
University of Technology. This report was written during the
author’s winter internship at CAIA in 2010

its symptoms. Section III describes how it was found that
the bug was in the driver rather than another component.
Sections IV-VI present the debugging techniques used:
remote access to the system console, detailed code
inspection and the

�
bisection

�
 method for locating bugs.

The final cause of the bug and the solution are presented
in Section VII.

II.BUG DESCRIPTION

This section covers the detailed hardware, software
description and the scenario where the bug occurs.

We consider an infrastructure wireless LAN with one
Acer Aspire One net-book as a mobile device and an
access point. The Madwifi driver has been installed on the
net-book running Linux operating system. The following
version of Madwifi and Ubuntu is used:

Linux version: 2.6.32-22-generic

Wireless Network Adapter: AR928X

Madwifi version: svn r4132 (trunk)
Tests are carried out by sending ping packets from the

net-book to the access point. Without fragmentation, the
transmission occurs as expected. When fragmentation
option is turned on and the net-book sends packets exceed
fragment threshold, the system crashes. Below is the
screenshot showing command sequence and output when
the crash occurs.

Figure 1: The network setup

root@wlan-proj-5:~# iwconfig ath0 frag 512
root@wlan-proj-5:~# iwconfig
lo no wireless extensions.

wifi0 no wireless extensions.

ath0 IEEE 802.11g ESSID:"AP605"
 Mode:Managed Frequency:2.412 GHz Access
Point: 00:0F:66:90:AD:0D

CAIA Technical Report 100820B August 2010 page 2 of 4

 Bit Rate:11 Mb/s Tx-Power:13 dBm
Sensitivity=1/1
 Retry:off RTS thr:off Fragment thr=512 B
 Encryption key:1111-1111-11 Security
mode:restricted
 Power Management:off
 Link Quality=33/70 Signal level=-60 dBm Noise
level=-93 dBm
 Rx invalid nwid:69797 Rx invalid crypt:0 Rx
invalid frag:0
 Tx excessive retries:0 Invalid misc:0 Missed
beacon:0

eth5 no wireless extensions.

root@wlan-proj-5:~# ping 192.168.0.1 -c 1 -s 1000
*****system crashes here*********

Figure 2: Screen commands and output
As shown in Fig. 2, the fragmentation threshold has

been set to 512 bytes and the net-book was sending 1000
bytes ping packet.

Following messages are what appears in screen before
the machine crashes:

[4656.967047] [<c03532bd>] ? copy_from_user+0x3d/0x130

[4656.967047] [<c04bc8da>] ? verify_iovec+0x5a/0xa0

[4656.967047] [<c04b41fd>] sys_sendmsg+0x15d/0x290

[4656.967047] [<c058a479>] ? mutex_lock+0x19/0x40

[4656.967047] [<c0353189>] ? copy_to_user+0x39/0x130

[4656.967047] [<c03b87f5>] ? copy_termios+0x35/0x50

[4656.967047] [<c01c9ca2>] ? find_get_page+0x22/0xa0

[4656.967047] [<c01304cc>] ? kmap_atomic_prot+0x4c/0xf0

[4656.967047] [<c01ca036>] ? unlock_page+0x46/0x50

[4656.967047] [<c01e49b8>] ? __do_fault+0x3a8/0x490

[4656.967047] [<c01e6259>] ? handle_mm_fault+0x139/0x390

[4656.967047] [<c04b481c>] sys_socketcall+0xcc/0x280

[4656.967047] [<c058db30>] ? do_page_fault+0x160/0x3a0

[4656.967047] [<c01033ec>] syscall_call+0x7/0xb

[4656.967047] NOHZ: local_softirq_pending 2c2

Figure 3: Screenshot of crash
The following sections describe the debugging process

to identify why the system crashes and how to fix it.
III.BUG SOURCE IDENTIFICATION

The first step of the debugging process is to identify
the place that causes the crash. There are several possible
error sources such as hardware faulty or incompatibility,
software error (bug) in either operating system or the
Madwifi driver. Each possibility must be carefully
verified because it significantly affects the later
debugging steps.

The first possibility is because of hardware faulty. The
test has been carried out in the same experiment and

configurations but using different net-book. The same
crash is observed. So the bug is not likely due to hardware
failure.

We then replace the Ubuntu net-book with a Unix
operating computer and repeat the test. Again the same
crash is observed. So the bug is not likely due to operating
system failure.

As the Madwifi driver has been developed through
various versions, the easiest way to check is to reinstall
the newest Madwifi driver in the net-book. Fragment bug
might have been discovered before and is fixed in a newer
version. However, after installing the new driver, the
system still crashes.

The last possible error source is the implementation of
the Madwifi driver. To verify it, the Madwifi driver is
replaced by an ath5k driver which is a default Linux
wireless driver. We then observe that the system is now
working properly with fragmentation.

At this point, we conclude that the fragment bug
comes from the Madwifi driver implementation. In the
next section, we describe the network setup to gather
more information in order to find the place in the Madwifi
implementation that causes the crash.

IV.COLLECTING INFORMATION

Collecting information is essential in the debugging
process. The more you know about the bug, the easier to
fix. The most obvious source of information is the
Internet, as chance is someone already experienced this
bug and posted the solution for it. After some searching
effort, no relevant information can be found that is related
to this problem. Below we will focus on how to collect
useful information regarding a so-called “oops
messages”.

Oops messages are error messages printed out when
the system experiences problem. When Linux kernel
detects problems, it prints out oops messages and
terminates any offending process. Those messages are
used to debug and fix software problems.

Fig. 3 shows messages that appear in the screen before
the machine crashes. The problem is, however, a large
part of these oops messages are missing. It is because the
net-book crashes after printing all of those messages and
we cannot go back and see do all the error messages
except the last part appeared in the screen. One way to
overcome this problem is to use a network console.
Network console has been introduced from Linux 2.6
series. It allows sending oops messages to an external
terminal using UDP. So the entire oops messages can be
retrieved in the remote machine later on. To setup the
network console, a separate Ethernet interface is created
between the mobile device and a desktop computer.

Fig. 4 shows the network console and the commands
to set it up with the net-book.

Eth0: the interface used to send oops messages
12345: port number to send oops messages
10.0.0.1: remote host’s IP address
00:E0:81:2B:0C:C1: MAC address of the remote host

CAIA Technical Report 100820B

The following important part of the oops messages
captured by the above network console:

Figure 4: Network console

root@wlan-proj-6:~# nc -dul 12345
[4656.358987] ------------[cut here]------------
[4656.359188]kernel BUG at

/home/tung/madwifi/ath/if_ath.c:3345!
[4656.359438] invalid opcode: 0000 [#1] SMP
[4656.359649] last sysfs file:

/sys/devices/virtual/sound/timer/uevent

Figure 5: Network console captured oops messgaes
Fig. 5 clearly identifies where the crash

that although in this case the oops messages was able to
point the line of the code where the error lies, in general
the oops messages do not always state exactly
following sections V and VI, we assume that we have no
knowledge about these oops message and will attempt to
locate the bug in a different way.

V.SOURCE CODE

In order to fix something, it is important to
understanding how it works. Since the bug causes system
crashes whenever the net-book sends fragmented packets,
we focus on the code to fragment and transmit packets.

Figure 6: Madwifi transmission process
Figure 3 represents the simplified Madwifi

transmission process. The function ath_hardstart() is
called whenever kernel wants to send a packet. Then
function ath_hardstart() calls function ieee80211_encap()
to set the correct 802.11 encapsulation and fragment
packet if necessary. After that, ath_hardstart alloc
memory for each fragment. Finally, each fragment is sent
by calling function ath_xt start().

August 2010

oops messages is

etwork console

[4656.359188]kernel BUG at

/home/tung/madwifi/ath/if_ath.c:3345!
[4656.359438] invalid opcode: 0000 [#1] SMP
[4656.359649] last sysfs file:

etwork console captured oops messgaes
crash occurs. Note

that although in this case the oops messages was able to
point the line of the code where the error lies, in general

exactly that. In the
assume that we have no

and will attempt to

In order to fix something, it is important to
it works. Since the bug causes system

book sends fragmented packets,
we focus on the code to fragment and transmit packets.

: Madwifi transmission process
Figure 3 represents the simplified Madwifi

process. The function ath_hardstart() is
called whenever kernel wants to send a packet. Then
function ath_hardstart() calls function ieee80211_encap()
to set the correct 802.11 encapsulation and fragment
packet if necessary. After that, ath_hardstart allocates
memory for each fragment. Finally, each fragment is sent

Experiments to find the bug focused on those sections
of code.

VI.DEBUGGING TECHNIQUES

Simply looking at the code rarely shows the cause of a
bug. It is often necessary to modify the code and run it to
obtain information about its dynamic behavior. This
section describes the two techniques used to find the bug.

When debugging user-space programs, the simplest
and most useful technique is to add diagnostic outpu
This technique inserts a of lots of output
track the control flow and data values in the execution of
a piece of code. In the kernel, the function printk()
behaves similarly to the printf() function in the standard C
library. However, the differences make it less useful for
debugging. The printk() function sends messages to a
logging system, which saves the output in a file and can
also send it to the console, depending on the settings of
the system logger daemon. After the printk() call
added in different positions of the transmission code, the
Madwifi driver can be reinstalled, and the system made to
crash. The hope is that the output message on screen or in
the log files will indicate the last executed printk() before
the crash. It would then be possible to narrow down the
error source.

Figure 7: Weakness of
However, when the system crashes, the printk()

functions print nothing. The reason is that printk()7does
not save messages directly to the hard disk. It j
messages to a circular buffer then the next instruction is
executed. It takes long time for Linux to copy messages
from the buffer to the hard disk. In our case, the system
crashes before the printk() messages are written to the
hard disk, as illustrated in Figure 7. This means that
printk() is of limited use in this case.

Figure 8: Bisection technique

 page 3 of 4

Experiments to find the bug focused on those sections

DEBUGGING TECHNIQUES

Simply looking at the code rarely shows the cause of a
necessary to modify the code and run it to

obtain information about its dynamic behavior. This
section describes the two techniques used to find the bug.

space programs, the simplest
and most useful technique is to add diagnostic output.
This technique inserts a of lots of output statements to
track the control flow and data values in the execution of

In the kernel, the function printk()
behaves similarly to the printf() function in the standard C

e differences make it less useful for
debugging. The printk() function sends messages to a
logging system, which saves the output in a file and can
also send it to the console, depending on the settings of
the system logger daemon. After the printk() calls are
added in different positions of the transmission code, the
Madwifi driver can be reinstalled, and the system made to
crash. The hope is that the output message on screen or in
the log files will indicate the last executed printk() before

t would then be possible to narrow down the

Weakness of printk()
However, when the system crashes, the printk()

functions print nothing. The reason is that printk()7does
not save messages directly to the hard disk. It just writes
messages to a circular buffer then the next instruction is
executed. It takes long time for Linux to copy messages
from the buffer to the hard disk. In our case, the system
crashes before the printk() messages are written to the

lustrated in Figure 7. This means that
printk() is of limited use in this case.

isection technique

CAIA Technical Report 100820B August 2010 page 4 of 4

An alternative technique that does not use printk() is
bisection. In this technique, part of the code is disabled,
such as by putting a return statement before the end of a
function. If the system still crashes, the bug is probably
within the section of code which was not disabled;
otherwise the bug is most likely in the disabled code.
This is repeated with increasingly small sections of code
disabled until the location of the crash, or source of the
bug, is found. This does not rely on printk()’s logging
foibles, but it requires many iterations, in which the code
is recompiled, the module reinstalled and (if there is a
crash) the system is rebooted. However, this was the
method which eventually showed the location of the bug
(before the networked console technique was
discovered).

VII.THE BUG AND ITS FIX

The location of the crash can be found from the oops
message in section IV or by the technique described in
section VI. The crashed occurred in the highlighted line in
the following piece of code from the function
ieee80211_encap() in file ath/if_ath.c:

for (bfcnt = 1; bfcnt < framecnt; ++bfcnt)
{

tbf = ath_take_txbuf_locked(sc); //crash

if (tbf == NULL)

break;

STAILQ_INSERT_TAIL(&bf_head, tbf,

bf_list);

}

This piece of code allocates memory for each
fragment. The crash was caused by defensive
programming by the module’s authors: There is an
explicit check for the presence of a “lock”. A software
lock is a mechanism to prevent conflicting accesses by
multiple threads to a single data structure. Before writing
to a data structure, a thread obtains a “lock” which it
releases after it has restored the structure to a consistent
state. Other threads are not able to obtain the lock until
the initial thread releases it, which causes them to wait
until the initial thread has finished. When a packet is
fragmented, the lock should be obtained before extracting
the first fragment, and released after the last has been
extracted. For this reason, the function
ath_take_txbuf_locked(sc) assumes that the buffer which
contains packet to be transmitted has already been locked,
and explicitly checks for this. However, the commands to
obtain the lock were missing. That is why the system
crashes when fragmented packets are sent. In order to fix
this, the lock and unlock macros should be added, as
follows:
ATH_TXBUF_LOCK_IRQ(sc);

for(bfcnt = 1; bfcnt < framecnt; ++bfcnt) {

 tbf = ath_take_txbuf_locked(sc);

 if (tbf == NULL)

 break;

 STAILQ_INSERT_TAIL(&bf_head, tbf,
bf_list);

}

if (bfcnt != framecnt) {

 ath_return_txbuf_list_locked(sc,
&bf_head);

 STAILQ_INIT(&bf_head);

ATH_TXBUF_UNLOCK_IRQ(sc);
 goto hardstart_fail;

}

ATH_TXBUF_UNLOCK_IRQ(sc);

Note that the lock must be released after the failure
as well as the successful transmission.

VIII.CONCLUSION

This report has described the process by which a bug
was detected, located and removed from the MadWiFi
driver for the Atheros chipset. The symptom of the bug
was that the kernel crashed, and the final caused was due
to missing locking of a data structure in the function
ieee80211_encap() in file ath/if_ath.c.

The general debugging process involved the following
steps:

• Bug source identification: identify source of the
problem. It could be hardware or software faulty.

• Collecting information: Linux oops messages
usually tell exactly where the bug is

• Understanding source code: know which part of
the code does what job. So we have clue which
part potentially causes error

• Debugging: two most simple methods are
diagnostic output and bisection .

ACKNOWLEDGMENTS

The authors thank Grenville Armitage for providing
TL with the opportunity to undertake this project and
CAIA for hospitality throughout the internship.

REFERENCES
[1] IEEE 802.11-2007 IEEE Standard for Information technology --

Telecommunications and information exchange between systems
-- Local and metropolitan area networks-Specific requirements --
Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications

[2] F. Tobagi and L. Kleinrock, “Packet Switching in Radio
Channels: Part II--The Hidden Terminal Problem in Carrier Sense
Multiple-Access and the Busy-Tone Solution”, IEEE Trans.
Commun., 23(12):1417-1433, 1975.

[3] “Madwifi project”, http://madwifi-project.org/ accessed July 2010.

	I. Introduction
	Acknowledgments
	References

