
MRT dump file manipulation toolkit (MDFMT) -
version 0.2

Mattia Rossi
Centre for Advanced Internet Architectures, Technical Report 090730B

Swinburne University of Technology
Melbourne, Australia
mrossi@swin.edu.au

Abstract—The MRT routing information export format
represents an effective way of storing BGP routing infor-
mation in binary dump files. Although a few tools exist
to extract data from MRT dump files, most of them do
not allow repacking or creating such MRT files. The MRT
dump file manipulation toolkit (MDFMT) allows to repack
parts of large MRT dump files containing BGP update
messages into smaller ones, and also allows to create them
from Quagga bgpd text log files. The resulting MRT files
contain a BGP update sequence of an initial routing table
(RIB) propagation followed by the recorded BGP update
messages, and may be used for recreating complete BGP
sessions based on real data in test setups using the “Update
Regenerator” (UR). It also includes a set of smaller scripts
to inspect BGP messages within an MRT data set and to
aid in operating the UR.

I. INTRODUCTION

In order to allow analysis of BGP [1] traffic, routers
and monitoring tools enable logging of BGP update
messages and creation of routing table dumps. Although
most of the routing tools use an own format for BGP
update messages logs and RIB dumps, many of them also
allow to use the binary MRT [2] format. The Quagga
Routing Suite [3], the routing software in use for the
BGP heuristics project [4] which generated the MRT
dump file manipulation toolkit (MDFMT) [5], is able
to produce human readable text log files and binary
MRT dump files for further analysis of BGP update
behaviour. While the text log files are usually extremely
large as they are intended mainly for debugging purposes
and may contain many unnecessary entries for BGP
traffic analysis, MRT dump files contain just the BGP
messages, preserving their full information in binary
network byte order form and also consuming less disk
space.

Quagga can produce two different types of MRT dump
files for BGP: BGP4MP types which contain BGP UP-

DATE, NOTIFICATION, KEEPALIVE or OPEN mes-
sages, collected continuously in the order they arrive
at the collecting router, or TableDumpV2 types which
contain the full BGP routing table (RIB) of the router,
dumped at certain time intervals to keep track of the
current routing table status.

Not only do such MRT dumps allow to evaluate BGP
behaviour in depth by analysing the collected dump file,
but the preserved BGP packets may also be reused and
injected into test routing setups in order to analyse the
possible behaviour of adjacent routers.

As Quagga users sometimes have only enabled text
logging but not MRT data collection, but would still like
to have MRT files for BGP packet injection, MDFMT
contains a tool for converting such Quagga text log files
into MRT dumps.

Injection of BGP update sequences anyhow would
require either that every adjacent router already contains
the same starting RIB or that the injected update se-
quence also propagates an initial RIB.

Unfortunately such a RIB propagation is only logged
by the routers when they initially connect to a peer,
but oftentimes it is wanted to test BGP behaviour for
an update sequence which took place at a certain time
interval.

MDFMT contains also a tool to create slices of larger
MRT update message dumps using MRT RIB dumps to
create an initial routing table propagation followed by
the BGP update sequence of the selected time interval.

The obtained MRT dumps can be used with the
“Update Regenerator” (UR), which can inject the whole
BGP session into a BGP speaker like Quagga.

The following sections will explain first how data
collection can be set up in Quagga, then the libraries
used for MRT file manipulation and following the tools
included in MDFMT version 0.2 which can be obtained
at [5].

CAIA Technical Report 090730B July 2009 page 1 of 7

mailto:mrossi@swin.edu.au

As the MRT standard is not a standard yet, but only
a draft, various versions exist. The draft Quagga and
the described tools follow, has been determined as draft
draft-ietf-grow-mrt-08. The minimum Quagga version
which complies to that draft has been determined in
0.99.10.

II. DATA COLLECTION IN QUAGGA

This section describes how data collection is enabled
in Quagga through the bgpd configuration file or also
through the command line interface (CLI). The com-
mands are the same in both cases. It is necessary that
the files to which data is going to be logged exist before
logging is activated. It is also required, that the user that
runs the Quagga process (commonly user Quagga) has
write access to those files. Table I shows the commands
to activate text logging in Quagga, Table II shows how to
dump BGP packets in the MRT format (BGP4MP type).
It also shows how to dump the RIB (TableDumpV2
type). As the routing table or RIB might be dumped
only at certain time intervals, a simple cron [6] script
as shown in Table III allows to rotate the dump files,
and to rename them with a time stamp. It is important
to precise at this point, that the data collected in MRT
dumps is only the received data, not the sent data, while
the text log files contain some information about which
prefixes are advertised but without attribute information.
The RIB dumps in text format also do not contain
the whole attribute information but only the AS path,
while the MRT RIB dumps preserve the whole attribute
information.

III. THE “DPKT” PACKET MANIPULATION LIBRARY

As BGP packets and MRT dumps can become quite
complex, it was necessary to use already existing li-
braries for packet manipulation. A set of libraries for
various programming languages exists to extract in-
formation from MRT dump files. Some of them are
rather complete, others provide just basic support. In this
section the dpkt Python library will be explained along
with the changes applied to make it more complete. Dpkt
allows you to read and create MRT packets as well as
BGP packets itself and can be easily integrated in any
Python program. This library is the base for the tools
explained in the following sections.

Dpkt is an open source project hosted on Google Code,
and aims to be an easy packet construction library in
Python for all sorts of network protocols. It has been
decided to use this library over other ones because of
its quite well developed BGP and MRT support and its

log file bgpd.log Sets the text log file to the file bgpd.log
in the current directory. It is necessary
that the file exists and is writable by
Quagga

debug bgp Enables logging
debug bgp events Enables logging of BGP events
debug bgp updates Enables logging of BGP advertise-

ments
debug bgp fsm Enables logging of finite state machine

events
debug bgp filters Enables logging of filtering events
debug bgp keepalives Enables logging of keepalive messages
debug bgp as4 Enables logging of information regard-

ing the processing of advertisements
containing 4 byte AS numbers

debug bgp as4 segment Enables logging of information regard-
ing AS path segments of advertise-
ments containing 4 byte AS paths ad-
ditionally to 2 byte AS paths

debug bgp zebra Enables logging of events of the for-
ward information base (FIB)

TABLE I
COMMANDS FOR TEXT LOGGING IN QUAGGA. THE 4 BYTE AS
NUMBER DEBUGGING HAS BEEN INTRODUCED WITH QUAGGA

VERSION 0.99.10

dump bgp all bgpd.dump This command dumps all messages in
MRT format into the file bgpd.dump.
The file needs to be writable by
Quagga

dump bgp routes-mrt \
rib/dump 24h

This command dumps the routing ta-
ble into the file dump in the folder
rib. The dump is repeated every 24
hours, and the first dump is created at
the beginning of the next hour when
the command is executed. The dump
format is TableDumpV2

TABLE II
COMMANDS FOR PRODUCING MRT BINARY DUMPS IN QUAGGA

59 23 * * * cd bgproutedumps && \
mv dump rib ‘date +\%d \%m \%Y‘ && \
touch dump && chmod 0777 dump

This command is executed every day one minute before midnight.
It renames the file to “rib” followed by the day, month, and year,
then creates the original empty dump file and makes it writable
for everybody.

TABLE III
AN EXAMPLE CRON COMMAND TO ROTATE THE RIB DUMPS

CAIA Technical Report 090730B July 2009 page 2 of 7

useful sister project PyBGPDump [7]. It has also been
determined as the library which makes it easiest to create
BGP and MRT packets from scratch, allowing not only
to unpack MRT files, but also to repack them. Even
though the latest release of the dpkt library contains quite
complete BGP support, it lacks necessary features like 4
byte AS number support and has some bugs that need to
be fixed in order to be able to use the library properly.
It also lacks MRT TableDumpV2 support, which is
required in order to handle the RIB dumps. Until the bug
fixes as well as 4 byte AS number and TableDumpV2
support will be included in the next release of dpkt, it is
necessary to use at least revision 52 of the library from
the Subversion [8] repository at Google Code [9] and
patch it with the dpkt patches from the MDFMT version
0.1 [5].

The dpkt library has no proper documentation. The
scripts described in the following sections, will also give
insight into the usage of the BGP and MRT part of
dpkt. PyBGPDump is a Python script which uses dpkt
and takes care of the extraction of MRT entries in a
MRT dump file, giving easy access to the information
of each entry. PyBGPDump has been used for the two
tools contained in MDFMT version 0.1.

IV. TEXT TO MRT LOG FILE CONVERTER

The first tool of MDFMT 0.2 is log-to-mrt. It is a tool
created to allow a conversion from Quagga text log files
into MRT dump files. It might be sometimes desirable to
have the collected data in MRT format rather than text
format for reasons already explained, but sometimes log
files may be present only in human readable form.

A. Mode of Operation

The converter simply reads through the text log file
line by line, and converts open, update and notification
messages into binary BGP packets. It uses only received
packets, as Quagga does not provide enough information
about sent packets in its text log files. The text log files
also do not contain certain information about the IPv4
address and AS number of the peers which is necessary
for the construction of proper MRT entries, so it is
important to know the configuration of the router that
produced the log file, in order to hand this information
over to the converter.

As input, the converter needs the text log file, the IPv4
address of the router that produced the log file, and a
simple text file, which contains the IPv4 address to AS
number mapping of all peering sessions recorded in the
log file. This is necessary, as it is information which

is needed for the MRT format, but not for BGP packets
itself, and is therefore missing in the text log files, which
contain just a textual representation of BGP packets. This
mapping can be found in the Quagga bgpd configuration
file. Automatic extraction from the configuration file is
not yet supported. The mapping file consists of two
columns separated by a white space. the first column
contains the IPv4 addresses in dotted format, the second
column contains the AS numbers, which may also be
4 byte numbers and may also be written in dotted AS
notation [10].

The current version of the script needs a complete
BGP session as input, including all the OPEN messages
as it determines whether to encode AS numbers with 4
byte or 2 byte from the OPEN message of the session. If
the OPEN message is missing or does not contain the 4
byte AS number capability code [11], [12], AS numbers
are encoded with 2 bytes.

As the aim of this tool is to create MRT dumps
which include an initial RIB propagation followed by
the recorded update messages for BGP packet injection,
it is necessary to have a text log file as source which also
includes an initial RIB propagation. It is not possible to
recreate an initial routing table propagation using text
RIB dumps, as they lack of the necessary information
about 4 byte AS numbers and certain attribute informa-
tion.

B. Known Issues

Currently the converter ignores IPv6 sessions and IPv6
routing information. Eventual IPv6 entries in the text
log file as well as in the mapping file will be ignored.
As the converter is a Python script and parses the text
log file line by line using regular expressions to filter
information, it is a quite slow process. Using a log file
with data of a months time, depending on the machine
it can result in several hours of processing time, using
quite a high amount of CPU power.

V. MRT SLICER

The second tool currently included in MDFMT 0.1 is
the mrt slice tool. Mrt slice extracts slices of a certain
time interval from a larger MRT BGP4MP type dump file
using a MRT RIB dump (TableDumpV2) to determine
the start of the time interval and to create the starting
update sequence. It is not possible to create slices of
MRT dumps starting at an arbitrary time, as the initial
RIB and the following updates need to remain consistent.
Mrt slice creates a file that contains a whole update

CAIA Technical Report 090730B July 2009 page 3 of 7

sequence in MRT BGP4MP type format for the time
interval selected.

A. Mode of Operation

The script can create MRT slices in two different
ways: either the slice starts from the beginning of the
original data, which should include already an initial RIB
propagation, and just extracts BGP messages up to the
desired end time, or it uses the given MRT RIB dump
file to determine the start time and proceeds from there
with the creation of the slice.

If the slice starts from the beginning of the original
file, the tool simply extracts the time stamp information
of the MRT header of each entry, and compares it with
the end date. As long as it is smaller, it repacks the
MRT header adds it to the new dump file and appends
the remaining payload of the entry, which contains the
BGP update packet.

The reading of MRT entries is not done with PyBG-
PDump, as that would extract the whole BGP packet
too, which is not necessary and would cause too much
overhead. If the start time is defined by the MRT RIB
dump, it is needed to convert the entries of the dump
from TableDumpV2 into BGP4MP, the update message
format. The subtype of BGP4MP used for storing update
information, is BGP4MP Message AS4, which allows
also to record 4 byte AS numbers. This format anyhow
does not affect the way AS numbers are recorded in
the BGP attributes for each prefix. If the BGP messages
carries a 2 byte AS number, it is still recorded as 4 byte
number in the MRT subtype After creating the MRT
Message type with the appropriate subtype, the prefix
and the attributes recorded in the RIB entry, are extracted
and added to this newly created structure.

After adding all necessary information to the new
BGP4MP structure, it is packed and written to the new
dump file. The following part looks up the start time
extracted from the RIB dump in the original update dump
file, and proceeds with adding the entries to the new
dump file as already described for the previous method.
If for some reason the timestamps in the RIB dumps
increase (which could happen if the dump process took
several seconds at the time of creating a RIB dump), the
script tries to mix the converted RIB dump entries with
the update messages from the original update dump file,
in order to keep the time line intact.

B. Known Issues

The mrt slice script does not recreate BGP OPEN
messages [1]. The slice anyways might contain such

messages if they were recorded in the original dump
file within the period of time which the slice represents.
OPEN messages may be easily recreated using dpkt.
With the conversion from TableDumpV2 to BGP4MP
every prefix is put in a single BGP message, which
impacts negatively on the size of the MRT slice and
creates additional network overhead when injecting the
packets.

VI. UPDATE REGENERATOR (UR)

The UR is the most interesting tool of the MDFMT,
and needs almost all other MDFMT tools and scripts to
be able to operate properly. The UR is a pseudo BGP
speaker, it connects to a live instance of Quagga (or
possibly any other BGP speaker, although not tested),
and injects a full BGP session, as included in the MRT
dump files generated by the MRT slicer and/or the log-
to-mrt converter. It is based on dpkt and PyBGPDump,
and uses a real network interface to communicate to a
BGP speaker.

A. Mode of Operation

The UR can only work with a full BGP session,
which includes an initial RIB announcement. It opens
a real TCP connection to a BGP speaker, eventually
also via a loopback interface, with the peering BGP
running on the same machine as the UR, and sends the
BGP updates extracted from the MRT dump file. As the
MRT file contains the updates received by the collector,
the UR takes the place of the peers connected to the
collector, while the collector is replaced by the BGP
speaker that peers with the UR as shown in Figure 1. The
updates anyhow do not contain information about the
destination, so the updates can be sent to any destination
IP address or AS, making the choice for the destination
BGP speaker flexible.

The UR takes 3 arguments as input:
• The MRT dump file
• The destination IP address
• A text file containing an AS number - IP address

mapping, including information about the use of
4 byte AS numbers or the common 2 byte AS
numbers, of the peering sessions contained in the
MRT file.

The AS to IP mapping file is needed in order to create
the necessary OPEN message(s), and also to filter only
wanted peering sessions from the input MRT file. The
information can be extracted by the additional asip.py
script described in section VII. Each line in the AS-IP
mapping file creates a regenerated peering session. If a

CAIA Technical Report 090730B July 2009 page 4 of 7

321 2UR

Historic DataOriginal Setup Emulator Setup

Data Collector

3

Update Regenerator

Fig. 1. The UR takes the place of the BGP speaker peering with the collector

recorded session doesn’t need to be regenerated, the line
describing that session can simply be omitted.

An entry in the AS-IP mapping file is an AS number
followed by a whitespace, followed by an IP address and
another whitespace, follwed by either 0 or 1. A 0 means
that the peering session was recorded using 2 byte AS
numbers, while a 1 means the session used 4 byte AS
numbers. This information is necessary in order to create
an OPEN message which is consistent with the updates
regenerated by the UR simulating the affected peer.

The UR parses the AS-IP mapping file and uses the IP
addresses in the file to establish a TCP connection to the
peer. In order to establish a BGP connection, an OPEN
message is constructed and sent, by using the informa-
tion about AS number, AS number type and IP address.
Most of the capabilities [11] sent in the OPEN message
are currently hard coded in the UR: MULTIPROTO
(IPv4/Unicast — PyBGPDump uses only IPv4/Unicast
by default), Route Refresh and Route Refresh OLD [12].
The AS4 capability is set dynamically, depending on the
contents of the AS-IP file.

The UR doesn’t implement a “server” part of the
BGP speaker, so it ignores all messages sent by the
peering BGP speaker. Instead it relies on the intelligence
of the peer to accept the OPEN message and sends
a KEEPALIVE message one second after the OPEN
message in order to signal it’s readiness. It assumes that
the peer is ready to receive data within this time span (an
assumption that proved to work with a Quagga instance
as peer). Once the KEEPALIVE is sent, a timer is started
to send KEEPALIVE messages every 30 seconds, also
hard coded in the UR.

After the BGP connection is up, the UPDATE mes-
sages are sent each second. The timestamp is read from
the MRT header, and all updates within a second of
recorded time are sent as quick as possible. As soon as
the recorded time increases by a second, the real time is
controlled, and the UR sleeps for the eventual remainder
to the end of the real time second. This ensures a preci-
sion on a per second basis. The UR sends only updates

that belong to an IP address in the AS-IP mapping list.
If an update belongs to a different IP address, it is
discarded. The UR quits as soon as it finishes sending,
closing the TCP connections beforehand.

As the MRT dump file contains data collected at a sin-
gle router, the UR can only peer to a single BGP speaker,
even though it regenerates sessions from multiple peers.
The best practise so far has been to setup the UR together
with a Quagga instance on a single machine, and let
them peer via a loopback interface, and let the Quagga
instance peer with any other BGP speaker necessary.

B. BGP peer configuration

The UR sets up a real BGP session to a BGP speaker,
thus it is necessary to configure such a router properly.
The suggested, yet not so resource friendly way of
operation is to use the UR in conjunction with a Quagga
instance on the same machine, using a common interface
for communication. The interface needs to be configured
with the destination address, as well as the IP addresses
recorded in the AS-IP mapping file, so that the UR and
the Quagga instance can bind these addresses.

The Quagga instance then needs to be configured for
peering to the BGP speakers which the UR claims to
be - also as recorded in the AS-IP mapping file. If the
Quagga instance wants to peer to a remote BGP speaker,
all the addresses need to be set up at the interface that is
able to reach the remote BGP speaker. Table IV shows
an example Quagga BGP configuration file. Such a setup
might create some confusion in some networks, therefore
other solutions like multiple instances [13] might be
approached.

C. Known Issues

The Update Regenerator is highly experimental, and
could be improved and extended in many ways. It has
been proved to work quite well in specific context, but
it might need some changes in the source code to make
it work under different circumstances. The UR has only
been used in conjunction with Quagga version 0.99.10
and higher, but it might also work with other BGP

CAIA Technical Report 090730B July 2009 page 5 of 7

router bgp <AS number> The AS number of the Quagga BGP speaker - not important
for the UR

bgp router-id <router IP> The IP address of the Quagga BGP, to be passed to the UR as
destination IP address

neighbor <remote-ip> remote-as <AS number> The AS number of the remote peer
neighbor <remote-ip> update-source <router IP> The IP address of the Quagga BGP. This is necessary if

multiple IP addresses are configured on a single interface
neighbor <remote-ip> filter-list 20 in Does not accept updates from the remote peer. This makes

sense, as is acts only as intermediate for the UR

neighbor <UR IP address 1> remote-as <UR AS number 1> The AS number of the first UR peer
neighbor <UR IP address 1> update-source <router IP> The IP address of the Quagga BGP. Same as above
neighbor <UR IP address 1> filter-list 20 out Does not send updates to the UR peer. The UR doesn’t accept

them. This is important in order not to disrupt functionality

neighbor <UR IP address 2> remote-as <UR AS number 2> The AS number of the second UR peer
neighbor <UR IP address 2> update-source <router IP> The IP address of the Quagga BGP. Same as above
neighbor <UR IP address 2> filter-list 20 out Does not send updates to the UR peer. Same as above

ip as-path access-list 20 deny .* Applies the filter-list 20 to all addresses

TABLE IV
AN EXAMPLE CONFIGURATION FOR A QUAGGA BGP RUNNING ON THE SAME MACHINE AS THE UR AND USING THE LOOPBACK

INTERFACE FOR COMMUNICATION

speakers. It is completely missing a “server” part, which
might confuse certain BGP speakers, and make them
refuse to connect. The UR also does not recover from
connection loss, as it does not contain the necessary
FSM. The UR also needs the IP addresses contained
in the MRT dump file to be available on the interface
used for BGP peering, which might reduce it’s range of
employment. The UR also uses a quite high amount of
resources, specially if there are many updates to be sent
(like the initial RIB propagation) as it reads the BGP
message from a file, performing a high amount of I/O
operations.

VII. ADDITIONAL SCRIPTS

The MDFMT contains additional small scripts based
on dpkt for extracting information from MRT dump files.
The asip.py script is needed in combination with the UR,
as it extracts the AS number and IP addresses of all
peering sessions from a dump file, and places them into
a text file. It also detects whether a peering session uses
4 byte AS numbers or 2 byte AS numbers.

The follow prefix.py script is a simple script to extract
updates regarding a certain prefix from a set of MRT
dump files and to list the updates in chronological
order. This allows to examine the announcements or

withdrawals of the prefix in a whole BGP system, and
helps with the discovery of eventual misconfiguration.

The find withdrawals.py script discovers
withdrawals within a MRT dump, making sure the
prefix has been previously announced, while the
check path hunting intervals.py script searches a dump
file for path hunting events [14], and calculates how
long such events last.

While this scripts have been written for specific con-
texts which may not seem useful to anyone else, it is
rather easy to create a your own scripts using dpkt using
the presented scripts as aid.

VIII. CONCLUSIONS

The MRT dump file manipulation toolkit version 0.2
provides tools which can be used for manipulating and
creating MRT files, which again can be used for BGP
packet injection. The MRT files created by the tools
always contain a consistent sequence of BGP packets
representing an initial RIB propagation followed by BGP
updates. The UR can be used to repeatedly inject the
same data into a BGP setup, providing a useful tool
for data and BGP configuration analysis. The tools of
MDFMT 0.2 have been used extensively in specific
contexts [4], although they have been created with a

CAIA Technical Report 090730B July 2009 page 6 of 7

certain level of generality, they may not yield the wanted
results under specific circumstances.

IX. ACKNOWLEDGEMENTS

The development of MDFMT has been made possible
in part by a grant from the Cisco University Research
Program Fund at Community Foundation Silicon Valley.

REFERENCES

[1] Y. Rekhter, T. Li, and S. H. (Editors), “RFC 4271: A Border
Gateway Protocol 4 (BGP-4),” RFC 4271 (Draft Standard),
january 2006, obsoletes RFC 1771. [Online]. Available:
http://tools.ietf.org/html/rfc4271

[2] L. Blunk, M. Karir, and C. Labovitz, “MRT Routing
Information Export Format,” February 2009. [Online].
Available: http://tools.ietf.org/html/draft-ietf-grow-mrt-09

[3] K. Ishiguro, “Quagga Software Routing Suite.” [Online].
Available: http://www.quagga.net

[4] G. Armitage, G. Huston, and M. Rossi, “Reducing BGP Update
Noise.” [Online]. Available: http://caia.swin.edu.au/urp/bgp/

[5] M. Rossi, “MDFMT - MRT dump file manipulation toolkit
- version 0.2.” [Online]. Available: http://caia.swin.edu.au/urp/
bgp/tools.html

[6] “Cron, a time-based Scheduling Service.” [Online]. Available:
http://en.wikipedia.org/wiki/Cron

[7] J. Oberheide, “PyBGPDump, BGP Messages Parser of
MRT Dumps.” [Online]. Available: http://code.google.com/p/
pybgpdump/

[8] “Subversion, an Open Source Version Control System.”
[Online]. Available: http://subversion.tigris.org

[9] “Dpkt Subversion Repository.” [Online]. Available: http:
//code.google.com/p/dpkt/source/checkout

[10] G. Michaelson and G. Huston, “Canonical Textual
Representation of Four-octet AS Numbers,” Decem-
ber 2007. [Online]. Available: http://tools.ietf.org/html/
draft-michaelson-4byte-as-representation-05

[11] R. Chandra and J. Scudder, “RFC 3392: Capabilities
Advertisement with BGP-4,” RFC 3392 (Draft Standard),
november 2002, obsoletes RFC 2842. [Online]. Available:
http://tools.ietf.org/html/rfc3392

[12] C. Appanna and E. Chen, “IANA Capability Codes,” last
Updated on 06/08/2008. [Online]. Available: http://www.iana.
org/assignments/capability-codes/capability-codes.xhtml

[13] K. Ishiguro, “Quagga Software Routing Suite - BGP
configuration documentation.” [Online]. Available: http://
quagga.net/docs/docs-multi/BGP.html#BGP

[14] M. Rossi, “Implementing path-exploration damping in the
Quagga Software Routing Suite Version 0.99.13 - patch
set version 0.3,” Centre for Advanced Internet Architectures
(CAIA) - Swinburne University of Technology, Tech. Rep.,
July 2009. [Online]. Available: http://caia.swin.edu.au/reports/
090730A/CAIA-TR-090730A.pdf

CAIA Technical Report 090730B July 2009 page 7 of 7

http://tools.ietf.org/html/rfc4271
http://tools.ietf.org/html/draft-ietf-grow-mrt-09
http://www.quagga.net
http://caia.swin.edu.au/urp/bgp/
http://caia.swin.edu.au/urp/bgp/tools.html
http://caia.swin.edu.au/urp/bgp/tools.html
http://en.wikipedia.org/wiki/Cron
http://code.google.com/p/pybgpdump/
http://code.google.com/p/pybgpdump/
http://subversion.tigris.org
http://code.google.com/p/dpkt/source/checkout
http://code.google.com/p/dpkt/source/checkout
http://tools.ietf.org/html/draft-michaelson-4byte-as-representation-05
http://tools.ietf.org/html/draft-michaelson-4byte-as-representation-05
http://tools.ietf.org/html/rfc3392
http://www.iana.org/assignments/capability-codes/capability-codes.xhtml
http://www.iana.org/assignments/capability-codes/capability-codes.xhtml
http://quagga.net/docs/docs-multi/BGP.html#BGP
http://quagga.net/docs/docs-multi/BGP.html#BGP
http://caia.swin.edu.au/reports/090730A/CAIA-TR-090730A.pdf
http://caia.swin.edu.au/reports/090730A/CAIA-TR-090730A.pdf

	Introduction
	Data Collection in Quagga
	The ``dpkt'' packet manipulation library
	Text to MRT Log File Converter
	Mode of Operation
	Known Issues

	MRT Slicer
	Mode of Operation
	Known Issues

	Update Regenerator (UR)
	Mode of Operation
	BGP peer configuration
	Known Issues

	Additional Scripts
	Conclusions
	Acknowledgements
	References

