
Implementing path-exploration damping in the
Quagga Software Routing Suite Version 0.99.13 -

patch set version 0.3
Mattia Rossi

Centre for Advanced Internet Architectures, Technical Report 090730A
Swinburne University of Technology

Melbourne, Australia
mrossi@swin.edu.au

Abstract—Quagga is a software routing suite which
provides implementations of various routing protocols for
UNIX based platforms. It supports implementations of
RIP, OSPF and BGP version 4. Path-exploration damping
(or simply path-damping) is one possible approach to filter
out the path hunting phenomenon in BGP, in which a single
prefix withdrawal event at the original announcement’s
origin may generate a large volume of subsequent updates
as the routing system converges. Implementing path-
damping in Quagga, using version 0.99.13, results in a fully
operating routing suite which makes use of this technique.
This technical report describes the patch set version
0.3 of the path exploration damping implementation in
Quagga version 0.99.13, obsoleting CAIA Technical Re-
ports 081117A and 090327A.

I. INTRODUCTION

Quagga is a collection of daemons, each of them
representing a routing protocol and exchanging routing
information with peers speaking the same protocol. All
of them are hold together by an additional core daemon,
the zebra daemon, which installs the learnt routes into the
kernel and manages static routes. This technical report
will explain parts of the Quagga version 0.99.13 BGP
implementation (the bgpd daemon), and the necessary
changes made in order to get a working routing suite
which implements the technique of path-damping. As
Quagga is Open Source Software (OSS) written in C it
is possible to browse through the source code and try to
understand it with the help of a lot of in line comments.
Quagga can be found at [1] and includes a slightly out-
dated but still helpful documentation. It also comes with
its own command line interface (CLI) for configuration
which is similar to the CLI in Cisco equipment. The
latest Quagga release at the time of writing is version
0.99.13. The path-damping algorithm implemented and

described in this report, is based on Geoff Huston’s [2]
analysis of BGP update messages [3] and is also ex-
plained in his ISP column [4]. The implementation
is available as part of the BGP Heuristics project [5]
as version 0.3 of the “Quagga per-prefix MRAI timer
and path-exploration damping patchset” [6]. The path
exploration damping algorithm may be switched on
via configuration options. In short, the intention of the
algorithm is to alter the MRAI behaviour such that
the MRAI timer is applied on a per-prefix basis, and
the MRAI damping period is extended across multiple
MRAI intervals for as long as successive updates to a
prefix extend the AS Path length. In fact the MRAI is
eliminated and replaced by the path damping interval
(PDI) The intention is to use the PDI to selectively
dampen BGP’s ”path hunt to withdrawal” behaviour, and
thereby reduce the BGP update rate without altering the
underlying BGP information propagation characteristics.

II. CURRENT IMPLEMENTATION OF THE MRAI
TIMER IN QUAGGA

The BGP version 4 standard is described in RFC
4271 [7] which amongst the protocol definitions also
suggests the use of an MRAI timer and its standard
values for eBGP and iBGP sessions set to 30 seconds
and 5 seconds respectively. A current Internet draft
exists, which intends to redefine the intervals [8] to
lower values, while the path-damping idea yet aims
to set the MRAI timer to 0. The algorithm instead
introduces a path damping interval (PDI) which uses the
value originally used for the MRAI timer in the BGP
configuration.

The MRAI timer defines the minimum time interval
between successive advertised updates of a prefix to a
peer, where with peer every BGP speaker connected

CAIA Technical Report 090730A July 2009 page 1 of 11

mailto:mrossi@swin.edu.au


to the sending BGP speaker is intended. In paragraph
9.2.1.1 [9] of RFC 4271 the MRAI timer suggestion
is described. It states, that an MRAI timer should be
defined on a per peer basis, but applied on a per
destination basis and it also explicitly states that the
timer should affect updates as well as withdrawals,
where RFC 1771 was explicit about MRAI applying to
updates and mute about its application to withdrawals.
The current Quagga implementation instead deploys a so
called “burst” MRAI timer where all updates to a given
peer are held until the next MRAI timer interval expires,
at which time all queued updates are announced. Quagga
supports this “burst” behaviour, and the practise seems to
be quite common also in various other implementations.
The cause could not be traced to its origin, but current
maintainers of this implementations (including Quagga)
guess that this solution has been chosen initially because
of its implementation simplicity. Quagga also applies
the timer only on updates not on withdrawals, as this
part of the implementation has not been updated after
obsoleting RFC 1771. The memory and CPU overhead of
the path-damping (including per peer per prefix MRAI)
implementation is discussed in section VI-A.

III. THE SHORT VERSION OF PATH-EXPLORATION

DAMPING

Already in the year 2000 Craig Labovitz et al. [10]
demonstrated the problem of BGP convergence due to
path hunting. In [4] Geoff Huston proposes to apply a
selective heuristic to the BGP update stream in order to
attempt to remove these path exploration updates from
the stream. This section tries to give a short overview of
the whole idea.

A. The Path Hunting Problem

The whole path hunting phenomenon can be explained
quickly using Figure 1. When router 1 becomes unreach-
able, router 5 sends 2 update messages and 3 withdrawals
(2 preceding the update messages) of which only the last
withdrawal is of any use for the peering routers. This
results in unnecessary network traffic, and unnecessary
use of resources in routers adjacent to router 5. While
the path-damping algorithm tries mainly to address this
additional use of resources, it might also have some
beneficial effects on the convergence time of routers, if
an unstable update sequence terminates in a withdrawal
or a shorter path. The tradeoff is a higher convergence
time if an update sequence terminates in a longer path.
Additional thoughts to path-hunting related issues can be
found in the BGP stability draft [11].

1

2 3 4

5 Path: 5,2,1

1

2 3 4

5 Path: 5,3,2,1

1

2 3 4

5 Path: 5,4,3,2,1

Withdrawal

W

W

W

W W

W

1

2 3 4

5

W

W W

W W

Fig. 1. BGP path hunting problem: The lost reachability of router
1 takes 3 update message before it is properly registered by router 5
(image borrowed from [2])

B. A Solution Proposal

The idea of the algorithm is to simply suppress updates
which follow an update of the same prefix within a
suppression timer interval if the path the new update
is advertising is no shorter than the previous path state.
In the case depicted in Figure 1 this could reduce the
messages to be sent by router number 5 down to the
last withdrawal. Obviously this depends on the settings
of the PDI, and on the time the various messages from
routers 2, 3 and 4 arrive. In the path damping article it
is suggested to use a selective suppression timer value
which is slightly longer than the commonly used MRAI
timer interval.

For the path-damping algorithm to function correctly,
the per-peer ”burst” behaviour must be replaced by a set
of per-peer-per-prefix timers. Additionally the algorithm
would need route flap damping to be turned off, as
that algorithm would interfere with the path-damping
algorithm, and would be obsoleted anyways through it.

CAIA Technical Report 090730A July 2009 page 2 of 11



Recent studies increasingly discourage using route flap
damping at all [12]. Algorithm 1 shows the path damping
algorithm used for implementation.

Algorithm 1 Path Damping
On a per-peer, per-prefix basis define:

• a new path damping interval (PDI) Timer
• a temporary outbound queue for holding an update

When ready to transmit an update for known prefix X:
1) If sending an update announcing a longer or same

length path and
• the PDI Timer is not active: Queue the update,

and start the PDI Timer
• the PDI Timer is active: Delete any previously

queued update for this prefix, queue the new
update and restart the PDI Timer from zero

2) If sending an update containing a shorter path or
a withdrawal:
• Eliminate any previously queued update for

this prefix and send the new update immedi-
ately

IV. INTRODUCTION TO THE QUAGGA SOURCE CODE

In order make the implementation of path-damping
more understanding, a short overview of the folder and
file structure of Quagga as well as the connections
between the most important structs and functions will
be given.

A. Folders and Files

The Quagga project is a typical automake project
with its various parts divided into subdirectories which
contents are easy to figure out. Table I gives an overview
of the most important ones. It can be easily seen, that
in order to apply changes to the BGP daemon, it is only
necessary to take a closer look to the bgpd subdirectory
and eventually also to the lib subdirectory. It is not
necessary to change anything in the zebra and vtysh
subdirectories, as the files containing the connection
functions to this important parts of Quagga are actually
located in the bgpd subdirectories, as the file list in
table II shows.

There is actually no need to implement changes to any
files in the lib directory for path-damping, therefore the
listing of the files will be omitted, even if there will be
some references to files in that directory in the following
sections.

Subdirectory Contents

bgpd Contains the BGP daemon
doc Contains documentation files e.g. manpages
isisd Contains the IS-IS daemon
lib Contains the core of Quagga: the files and func-

tions common to all daemons
ospf6d Contains the OSPF daemon for IPv6
ospfd Contains the OSPF daemon for IPv4
ripd Contains the RIP daemon
ripngd Contains the next generation RIP daemon

(RIPv2)
tests Contains some files to test certain Quagga func-

tions
tools Some additional tools (mostly Perl scripts) for

various parts of Quagga
vtysh The CLI to any Quagga daemon
watchQuagga Watchdog program to monitor the status of

Quagga daemons
zebra The zebra daemon which controls the kernels

forwarding table

TABLE I
QUAGGAS MOST IMPORTANT SUBDIRECTORIES

B. Structures

Knowing what all folders and files contain is a start
in understanding the Quagga source code, but the most
important part is to understand how the various structs
and functions play together. It has to be said, that Quagga
is a threaded program, and makes extensive use of
function hooks, which let you easily loose the overview
of the work flow you’re following.

As for every BGP implementation, the heart of the
BGP speaker is the finite state machine. As this finite
state machine keeps the states of every single BGP peer-
ing session, it is obvious that it needs to be connected
to some structure which reflects such a session. In the
case of Quagga this is the struct peer defined in the
bgpd.h header file. The struct where all this information
converges, is the struct bgp also defined in the same
header file, which also reflects an instance of the BGP
daemon. This bgp struct also contains the pointers to the
BGP routing tables, represented by the struct bgp table.
There may be present multiple instances of routing tables
in one BGP instance, like static routes, aggregated routes
and the RIB (Routing Information Base). Every table
is constructed as binary tree for quick searching, with
structs containing the prefixes and its attributes. The tree
nodes are represented by the struct bgp node, which
contains the prefix struct defined in lib/prefix.h — a

CAIA Technical Report 090730A July 2009 page 3 of 11



Source file Header file Description

bgp advertise.c bgp advertise.h Contains functions to manage advertisement and adjacency information within the BGP
daemon. This is the main file needed to deploy path exploration damping

bgp aspath.c bgp aspath.h Functions for the most important Autonomous System Path attribute. Since version 0.99.10
of Quagga it supports also 4 Byte AS Numbers

bgp attr.c bgp attr.h This file contains all the functions related to the attributes of BGP update messages. The
attributes are related to the capabilities advertised in a BGP open message. Since version
0.99.10 the AS4Path and AS4Aggregator attributes are also included [13]

bgp clist.c bgp clist.h This files manage the community and extended community lists [14], [15]
bgp community.c bgp community.h Functions to handle the community attributes [14]
bgp damp.c bgp damp.h Handling of Route Flap Damping as described in RFC 2439 [16]
bgp debug.c bgp debug.h Functions for logging with different debugging levels in the BGP daemon
bgp dump.c bgp dump.h The binary MRT [17] dump for BGP is created here
bgp ecommunity.c bgp ecommunity.h BGP extended communities [15]
bgp filter.c bgp filter.h Route filter functions [18]
bgp fsm.c bgp fsm.h The BGP finite state machine. This is an other file needed for the implementation of path-

exploration damping, as it contains the functions which handle the BGP timers, including
the MRAI timer

bgp main.c The main function. After running through initialisation functions, the main function gets into
an infinite loop, which can be stopped only by sending the process a SIG TERM (15) signal

bgp mplsvpn.c bgp mplsvpn.h Functions for running BGP over MPLS VPN [19]
bgp network.c bgp network.h The networking functions. This file manages the TCP connections needed between two BGP

speakers
bgp nexthop.c bgp nexthop.h Functions to check the nexthop reachability if BGP is used in conjunction with the zebra

forwarding daemon
bgp open.c bgp open.h Functions to manage the opening of a BGP connection. In this file it is taken care of all the

possible BGP capabilities and their outgoing or incoming advertisement from and to every
single peer

bgp packet.c bgp packet.h The functions in this file take care of the binary BGP packet creation. The FSM mostly calls
functions of this file which then call all the other functions which manage BGP attributes,
before creating the packet and sending it

bgp regex.c bgp regex.h Enables the use of regular expressions in the BGP CLI
bgp route.c bgp route.h Manages the routing tables. As routes/prefixes are mainly handled in this file
bgp routemap.c The implementation of Cisco route-maps
bgp snmp.c bgp snmp.h Controlling the BGP daemon over SNMP
bgp table.c bgp table.h Contains the BGP routing table structure and provides the functions to perform operations

on it
bgp vty.c bgp vty.h The Command Line Interface client for the BGP daemon. Adds BGP specific commands to

the general vtysh
bgp zebra.c bgp zebra.h The Zebra client for BGP. This client enables to install BGP routes into the kernel through

the zebra daemon
bgpd.c bgpd.h The main files of the BGP daemon containing the essential bgp and peer structs

TABLE II
THE FILES OF THE BGPD SUBDIRECTORY

CAIA Technical Report 090730A July 2009 page 4 of 11



program wide struct representing a prefix for uniform
handling throughout the various protocols Quagga im-
plements.

Additionally the node contains also the incoming and
outgoing information for the prefix, like the attributes
stored in the bgp adj in and bgp adj out structs, which
is required by the BGP RFC. The bgp adj out struct
contains the information about the advertisement at-
tributes of a certain prefix. The bgp adj out struct is
linked to the bgp node struct — thus a prefix, but
additionally also to a peer struct, making it perfectly
suitable for the implementation of a per-peer-per-prefix
MRAI and PDI.

The bgp adj out struct gives access to the informa-
tion for an actual announcement (prefix and current
attributes) to be sent to a certain peer and is also linked
to a bgp advertise struct. This advertisement structure
contains pointers to information needed to prepare up-
dates for sending. The bgp advertise struct is inserted
in a double linked list defined in the bgp advertise fifo
struct: the actual output queue. This queue has three
instances — update, withdraw and withdraw low — kept
in struct bgp synchronize which is accessed from the
peer struct. As BGP is an extensible protocol, there is
actually no limit in the amount of attributes an adver-
tisement can carry. In order to minimise memory usage,
Quagga uses various hashes and a lot of additional structs
to retain the needed information. As this structs have not
been changed in the implementation of path damping,
their explanation will be omitted at this point. Figure 2 is
a simplified diagram to show the dependencies between
the explained structs.

C. Functions

As already explained, Quagga is a heavily threaded
program, which allows it to perform extremely well with
regard to CPU idle time and responsiveness. The bgpd
daemon consists of writing, reading and timing threads,
all hold together by the so called thread master, which
is executed once for every instance of the daemon. It is
practically the main function which ends up in an infinite
loop. The thread functions, prototypes and macros are all
defined in the lib/thread.c and the respective header file.

The interesting part is the way BGP advertisements
are triggered in the Quagga bgpd. Upon start of the
bgpd daemon, after various initialisations, like parsing
the configuration file, the main function ends in the
infinite loop, which continuously fetches threads from
a list of threads and executes or reschedules them. At
first, the program tries to create a TCP connection to

struct peer *peer_self;
/*The actual router*/

struct list *peer;
/*A list of peers*/

struct bgp_table *rib;
/*The BGP RIB*/ 

struct bgp

struct bgp *bgp;

struct 
bgp_synchronize *sync;

struct bgp_node *top;

struct bgp_table *table;

struct bgp_node *parent;
struct bgp_node *link[2];
/*The binary tree*/

struct 
bgp_adj_out *adj_out;

struct bgp_adj_out *next;
struct bgp_adj_out *prev;

/*linked list*/

struct bgp_advertise *adv;

struct bgp_node *rn;

struct bgp_advertise *next;
struct bgp_advertise *prev;

struct bgp_adj_out *adj;

struct 
bgp_advertise_fifo fifo;

struct bgp_advertise *next;
struct bgp_advertise *prev;

struct 
bgp_advertise_fifo update;
struct 
bgp_advertise_fifo withdraw;
struct 
bgp_advertise_fifo 
withdraw_low;

struct bgp_node

struct peer

struct bgp_table

struct bgp_adj_out struct bgp_advertise

struct
bgp_synchronize

Fig. 2. A simplified diagram of struct interdependencies in bgpd

the various configured peers, using the functions in
bgp network.c and on success it installs a reading thread
on the connection using the macro BGP READ ON,
which it keeps calling after every read until the con-
nection is closed. It also sends the OPEN messages
using a writing thread which is invoked every time
something has to be sent, through the BGP WRITE ON
macro. It additionally installs various timer threads, one
of which triggers the TCP reconnection attempt, in
case the first attempt failed. The most important timer
thread is the MRAI timer which is set in bgp fsm.c.
In bgpd this timer is called route advertisement timer
and invokes the bgp routeadv timer function where the
sending of update messages is triggered. To get to this
point where updates are sent, first the reading thread
needs to be observed. Advertisements are only triggered
if there are either changes in the kernel routing table
and the zebra daemon is running (change to static

CAIA Technical Report 090730A July 2009 page 5 of 11



routes or route redistribution from other protocols like
OSPF), or if advertisements arrive from neighbouring
peers. The second case is the interesting one, as path-
hunting only happens for updates coming from other
peers. If an advertisement arrives from a remote peer,
the reading thread triggers the function bgp read in
bgp packet.c, which analyses the incoming packet and,
if it’s an update, calls bgp update receive and a few
other functions in bgp route.c. This functions do all
the pre-processing for the update: extract the attributes
and NLRI (Network Layer Reachability Information —
the announced prefixes) of the update, and apply the
configured filters. All updates and withdrawals are stored
in a worker queue defined in lib/workqueue.h, where a
working thread fetches them for further processing as
soon as it is available.

The worker thread in bgpd triggers the
bgp process main function which performs the best
path selection for updates, applies the changes to the
RIB, and passes the updates on to the bgp adj out set
function in bgp advertise.c, while withdrawals are sent
to bgp adj out unset. This two functions then put the
advertisement into respective update and withdrawal
queues. While the withdrawal queue is processed
immediately by calling the write thread, the update
queue is processed within the bgp routeadv timer
function.

Figures ?? show the functions of the advertisement
work flow and which structs described in section IV-B
are accessed when.

V. IMPLEMENTATION OF PDI

As already stated, the first changes in the effort of im-
plementing path damping, has to be made to the MRAI
timer implementation. The standard Quagga implemen-
tation a per peer “burst” timer, which sends updates
queued in the peers advertisement fifo every time the
timer thread is fetched calling the bgp routeadv timer
function. This is an easy approach to implement the
MRAI timer, but it doesn’t quite follow the suggestions
in the RFC. With a proper implementation of the MRAI
timer as described afterwards, it is not difficult to imple-
ment the PDI algorithm itself.

A. Per Prefix per Peer MRAI Timer

The Solution used to implement the per prefix per peer
MRAI timer is the following described in the following
steps:

• The first changes are made in function
bgp adj out set which queues the updates in

the output fifo. This changes imply the creation
of additional structs and variables in the files
bgp advertise.c and bgp advertise.h

• As the information about an earlier update for a
certain prefix needs to be retained, the bgp adj out
struct, which represents a prefix which has been
sent, needs to be altered. The new mrai timer
variable simply retains the absolute time — the wall
clock time — after which the next possible update
for a prefix could be scheduled. The absolute time
is provided by an already existing Quagga function.

• A list of update queues per peer is constructed, rep-
resented by the struct bgp mrai list, further simply
called MRAI list. This list reflects the MRAI timer.
The maximum amount of queues present in the
MRAI list equals the amount of seconds configured
in the MRAI timer settings of the BGP configu-
ration. With a 30 second MRAI timer as standard
for eBGP sessions this would result in a maximum
of 30 queues in the list. Every queue represents
one second of the interval. The mrai timer value
of a prefix determines in which queue the current
update is inserted. This value can never exceed the
absolute time value in seconds of the configured
MRAI timer added to the current time. The queues
are kept sorted in the list containing additionally
the time stamp in the variable update time, which
indicates at which absolute time the queue should be
processed and the contained updates sent. Updates
are scheduled only on a per second basis, microsec-
onds are disregarded.

• The second part of the implementation alters the
bgp routeadv timer function in bgp fsm.c.

• The original MRAI timer thread is retained, but it’s
expiration is changed to every second, and not, as
originally, to the configured MRAI timer (which
now is used for the creation of the bgp mrai list).

• Upon expiration of the timer the first queue of
the MRAI list is processed by putting its content
into the original bgpd update queue, so that the
writing thread function doesn’t need to be changed.
During this process, the new mrai timer value
is set for every bgp adj out item using the new
set mrai timer function, which follows exactly the
MRAI timer calculation described in the RFC. This
value determines the queue in which following
updates using the same struct (thus carrying the
same prefix) are inserted.

• As it is possible, that for certain absolute time
values the MRAI list does not contain a queue —

CAIA Technical Report 090730A July 2009 page 6 of 11



bgpd/bgp_packet.c

bgpd/bgp_advertise.c

bgp_read()
struct thread;

bgp_read()
struct thread;

bgp_update_receive()
struct peer;
struct attr;

bgp_update_receive()
struct peer;
struct attr;

bgp_nlri_parse()
struct peer;
struct attr;

struct prefix;

bgp_nlri_parse()
struct peer;
struct attr;

struct prefix;

bgp_update()
struct peer;
 struct attr;

struct prefix;
struct bgp;

bgp_update()
struct peer;
 struct attr;

struct prefix;
struct bgp;

bgp_withdraw()
struct peer;
struct attr;

struct prefix;
struct bgp;

struct bgp_node;

bgp_withdraw()
struct peer;
struct attr;

struct prefix;
struct bgp;

struct bgp_node; bgp_adj_in_unset()
struct peer;
struct attr;

struct prefix;
struct bgp;

struct bgp_node;

bgp_adj_in_unset()
struct peer;
struct attr;

struct prefix;
struct bgp;

struct bgp_node;

bgpd/bgp_route.c

bgp_rib_withdraw()
struct peer;

struct bgp_node;

/*Route Flap Damping 
Is activated here*/

bgp_rib_withdraw()
struct peer;

struct bgp_node;

/*Route Flap Damping 
Is activated here*/

bgp_rib_remove()
struct peer;

struct bgp_node;

bgp_rib_remove()
struct peer;

struct bgp_node;

bgp_process()
struct bgp_node;

struct bgp;

/*The node is inserted 
into a workqueue,
where it will be 

further processed by
the worker thread*/

bgp_process()
struct bgp_node;

struct bgp;

/*The node is inserted 
into a workqueue,
where it will be 

further processed by
the worker thread*/

bgp_update_main()
struct peer;
 struct attr;

struct prefix;
struct bgp;

struct bgp_node;

/*In this function 
updates are analyzed 

and dropped if
the filter requires it*/

bgp_update_main()
struct peer;
 struct attr;

struct prefix;
struct bgp;

struct bgp_node;

/*In this function 
updates are analyzed 

and dropped if
the filter requires it*/

bgp_adj_in_set()
struct peer;
struct attr;

struct prefix;
struct bgp;

struct bgp_node;

bgp_adj_in_set()
struct peer;
struct attr;

struct prefix;
struct bgp;

struct bgp_node;

Fig. 3. The work flow of an advertisement reception

CAIA Technical Report 090730A July 2009 page 7 of 11



bgp_process_main()
struct peer;
struct prefix;

struct bgp_info;
struct bgp_node;

/* This function is called upon dequeing of the
work queue*/

bgp_process_main()
struct peer;
struct prefix;

struct bgp_info;
struct bgp_node;

/* This function is called upon dequeing of the
work queue*/

bgpd/bgp_advertise.c

bgp_process_announce_selected()
struct peer;
struct attr;

struct prefix;
struct bgp_info;

struct bgp_node;

bgp_process_announce_selected()
struct peer;
struct attr;

struct prefix;
struct bgp_info;

struct bgp_node;

bgp_adj_out_unset()
struct peer;
struct prefix;

struct bgp_node;
struct bgp_adj_out;

struct bgp_advertise;

/* withdrawal
processing.

Stores withdrawal
in peers withdrawal 

queue. Sends
immediately*/

bgp_adj_out_unset()
struct peer;
struct prefix;

struct bgp_node;
struct bgp_adj_out;

struct bgp_advertise;

/* withdrawal
processing.

Stores withdrawal
in peers withdrawal 

queue. Sends
immediately*/

bgpd/bgp_route.c

bgp_info_reap()
struct bgp_info;

struct bgp_node;

/*Deletes old routing
information from RIB*/

bgp_info_reap()
struct bgp_info;

struct bgp_node;

/*Deletes old routing
information from RIB*/

bgp_best_path_selection()
struct bgp_info;

struct bgp_node;
struct bgp;

bgp_best_path_selection()
struct bgp_info;

struct bgp_node;
struct bgp;

bgp_adj_out_set()
struct peer;
struct prefix;

struct bgp_info;
struct bgp_node;

struct bgp_adj_out;
struct bgp_advertise;

/*update 
processing.
Updates are
queued in

update queue
which is processed

by the MRAI thread*/

bgp_adj_out_set()
struct peer;
struct prefix;

struct bgp_info;
struct bgp_node;

struct bgp_adj_out;
struct bgp_advertise;

/*update 
processing.
Updates are
queued in

update queue
which is processed

by the MRAI thread*/

bgp_adj_out_free()

/*remove adjacency
information*/

bgp_adj_out_free()

/*remove adjacency
information*/

bgpd/bgp_fsm.c

bgp_routeadv_timer()
struct peer;

struct thread;

/* This function is called upon expiry
of the MRAI timer and dequeues

the peers update queue*/

bgp_routeadv_timer()
struct peer;

struct thread;

/* This function is called upon expiry
of the MRAI timer and dequeues

the peers update queue*/

Fig. 4. Further processing of a BGP advertisement in bgpd

CAIA Technical Report 090730A July 2009 page 8 of 11



which means that no updates are scheduled for that
second — it is necessary to check the time stamp
on the queue, in order not to process it before its
expiration time. This also allows the thread to be
paused until the absolute time value of the next,
but only when a queue is present in the list.

• An empty processed queue is deleted from the
MRAI list. This way, searching operations on the
list are avoided, as the thread always needs to
process only the first queue in the list.

B. Implementation of the path damping Algorithm

The path damping algorithm does an AS Path length
check on the updates to be sent. If the path is longer
than a previously sent update, it is queued, otherwise
it is sent immediately. Withdrawals are always sent
immediately. This way the MRAI timer becomes the
update suppression timer, and the actual MRAI timer
interval is set to 0 (send immediately). Compared to
the previous implementation for Quagga version 0.99.10,
it has been decided to use the ADJ RIB OUT instead
of the RIB itself for comparison of advertisement path
lengths. It has been decided, that it was necessary to
keep track of the attributes of the advertisement last sent
for a certain prefix. This information is overwritten in
the RIB every time a new advertisement is received.
In the ADJ RIB OUT this information is retained a bit
longer, until an advertisement is scheduled for sending.
Any queued updates anyhow are also scheduled for
sending, and the original information might be lost.
Therefore it’s necessary to keep the information about
the last announcement really sent in a separate variable,
and allocate some extra memory for it. This slightly
increased memory usage is a valid trade-off for the
diminished CPU load. The following steps describe the
implementation in detail:

• The path damping process takes place in the func-
tions bgp adj out set in the file bgp advertise.c
and bgp routeadv timer in the file bgp fsm.c like
the per-prefix timer.

• In order to be able to retain the necessary infor-
mation, an additional pointer lastattr to an attribute
struct within the adjacency struct containing update
information is created in file bgp advertise.h. This
additional pointer slightly increases memory usage,
as it prevents memory allocated to certain attribute
structs from being freed until a new update for the
prefix they belong to is actually sent.

• In the bgp adj out set function then, if there is
a previous adjacency struct, meaning there has

already been an advertisement, and if also lastattr
is a valid pointer to an attribute set, the path
length comparison takes place. Depending on the
outcome, the advertisement is scheduled for sending
immediately by changing the MRAI time stamp in
the mrai timer value to the current time. In the other
case, the timer is reset to the current time plus the
set PDI, resulting in the update being queued at least
for an other path damping interval.

• In case there is an old adj struct but no valid lastattr,
it is treated as a new update, and the timer is set
to the current time value (scheduled for immediate
sending).

• After the path-damping decision process the per-
prefix MRAI timer process selects the proper send-
ing queue for the update.

• In function bgp routeadv timer in bgp fsm.c, we
have to record every sent packet in it’s newly
created lastattr storage. This happens after the ad-
vertisement has been removed from the MRAI list,
and before it is put into the real send queue.

• If there is a new advertised attribute, it will be
recorded as the new lastattr. If the advertisements
adjacency struct contains already a lastattr, this will
be unreferenced, and in case it is the last reference,
the memory used by it will be freed.

• If for some reason no new attribute set is present,
lastattr will be a NULL pointer.

C. Known Issues

The implementation of the per peer per prefix MRAI
timer tries to avoid unnecessary calls of the timer thread
by checking for gaps between queues in the MRAI list.
Unfortunately in reality it seems to happen quite often
that the list ends up completely empty, which results in
a continuous per second call of the timer thread.

VI. TESTING

The program has been tested on various setups, with
single and multiple BGP sessions, to verify the proper
implementation of the per-peer-per-prefix MRAI timer
and PDI. Even though there have not been encountered
any run-time problems and the testing showed also no
errors in the BGP communication, complete certainty
can only be achieved with extensive BGP runs in real
world situations.

A. CPU and memory usage

From the source code perspective, the path-damping
implementation should create some CPU overhead, as

CAIA Technical Report 090730A July 2009 page 9 of 11



Original Path-Damping

1st run
average CPU 5.18454697054 5.05480822679
max CPU 92.0 92.5
average MEM 22.0971650917 21.2932740411
max MEM 25.5 25.3

2nd run
average CPU 5.28754863813 4.98221234019
max CPU 92.3 90.9
average MEM 22.4085047248 21.9050027793
max MEM 25.7 25.2

3rd run
average CPU 5.02073374097 5.13301834352
max CPU 91.3 91.8
average MEM 21.8633685381 22.16209005
max MEM 25.4 25.6

TABLE III
AVERAGE AND PEAK CPU AND MEMORY USAGE IN PERCENTAGE

OF AN ORIGINAL AND A MODIFIED QUAGGA INSTANCE

there have been introduced additional comparison op-
erations, and the route advertisement thread is called
every second (see V-C). There should be noticeable some
memory overhead too, as the implementation adds an
additional queue for the updates (the MRAI list) and
keeps also a reference to the last sent attribute preventing
it from being freed from memory for a longer period than
an original Quagga instance would do.

The reality looks a bit different though. There has
been made a simple test running an original Quagga
and a modified one three times alternating for half an
hour, receiving Updates from one BGP speaker, and
sending to an other. Every run included the reception and
propagation of the whole routing table at the beginning
of the session. CPU and memory usage have been
measured every second throughout a run. Table III shows
the average and peak usage in percents. The tests have
been made on a FreeBSD 7.0 system with a 2.4 GHz
CPU and 512 MB of RAM.

In fact, due to diminished update activity, in two out
of 3 test runs, the average and maximum CPU usage as
well as the average and maximum memory usage of the
path-damping version are lower than those of an original
Quagga instance.

VII. CONCLUSIONS

Thanks to the well structured and cleanly written
source code of Quagga, it was possible to implement

the path-exploration damping algorithm without much
hassle. Many functions and structs already existed, and
could be used as needed. The current implementation
is not completely optimised, but it is working without
producing noticeable overhead. This also shows that the
concerns which might have pushed the original authors
of Quagga towards the current implementation of the
MRAI timer as described in section II were unfounded.
The implementation can be obtained as patchset version
0.3 for Quagga version 0.99.13 at [6].

VIII. FUTURE WORK

Current work has shown, that PDI has the desired
effect of improving BGP, a publication is currently under
review. The implementation also needs to be optimised
in order to get rid of the known issues.

IX. ACKNOWLEDGEMENTS

This work is based on the extensive research work
done by Geoff Huston, leading to the development of
PDI. The author’s extensions to Quagga have been made
possible in part by a grant from the Cisco University Re-
search Program Fund at Community Foundation Silicon
Valley.

REFERENCES

[1] K. Ishiguro, “Quagga Software Routing Suite.” [Online].
Available: http://www.quagga.net

[2] G. Huston, “Potaroo.net.” [Online]. Available: http://www.
potaroo.net

[3] G. Huston, “The BGP Instability Report.” [Online]. Available:
http://bgp.potaroo.net/index-upd.html

[4] G. Huston, “ISP column: Path Damping,” June 2007.
[Online]. Available: http://www.potaroo.net/ispcol/2007-06/
dampbgp.html

[5] G. Armitage, G. Huston, and M. Rossi, “Reducing BGP Update
Noise.” [Online]. Available: http://caia.swin.edu.au/urp/bgp/

[6] M. Rossi, “Quagga per-prefix MRAI timer and path-
exploration damping patchset.” [Online]. Available: http:
//caia.swin.edu.au/urp/bgp/tools.html

[7] Y. Rekhter, T. Li, and S. H. (Editors), “RFC 4271: A
Border Gateway Protocol 4 (BGP-4),” RFC 4271 (Draft
Standard), 2006, obsoletes RFC 1771. [Online]. Available:
http://tools.ietf.org/html/rfc4271

[8] P. Jakma, “Revised Default Values for the BGP
’Minimum Route Advertisement Interval’,” draft-jakma-
mrai-00.txt (Internet Draft), 2008. [Online]. Available:
http://tools.ietf.org/html/draft-jakma-mrai-00.txt

[9] “RFC 4271: 9.2.1.1. Frequency of Route Advertisement.”
[Online]. Available: http://tools.ietf.org/html/rfc4271#section-9.
2.1.1

[10] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed
Internet Routing Convergence,” in in Proc. ACM SIGCOMM,
2000, pp. 175–187.

[11] T. Li and G. Huston, “BGP Stability Improvements,” draft-li-
bgp-stability-01.txt (Internet Draft), 2007. [Online]. Available:
http://tools.ietf.org/html/draft-li-bgp-stability-01.txt

CAIA Technical Report 090730A July 2009 page 10 of 11

http://www.quagga.net
http://www.potaroo.net
http://www.potaroo.net
http://bgp.potaroo.net/index-upd.html
http://www.potaroo.net/ispcol/2007-06/dampbgp.html
http://www.potaroo.net/ispcol/2007-06/dampbgp.html
http://caia.swin.edu.au/urp/bgp/
http://caia.swin.edu.au/urp/bgp/tools.html
http://caia.swin.edu.au/urp/bgp/tools.html
http://tools.ietf.org/html/rfc4271
http://tools.ietf.org/html/draft-jakma-mrai-00.txt
http://tools.ietf.org/html/rfc4271#section-9.2.1.1
http://tools.ietf.org/html/rfc4271#section-9.2.1.1
http://tools.ietf.org/html/draft-li-bgp-stability-01.txt


[12] P. Smith and C. Panigl, “RIPE Routing Working Group:
Recommendations on Route-flap Damping,” May 2006.
[Online]. Available: http://www.ripe.net/docs/ripe-378.html

[13] Q. Vohra and E. Chen, “RFC 4893: BGP Support for Four-octet
AS Number Space,” RFC 4893 (Proposed Standard), May
2007. [Online]. Available: http://tools.ietf.org/html/rfc4893

[14] R. Chandra, P. Traina, and T. Li, “RFC 1997: BGP
Communities Attribute,” RFC 1997 (Proposed Standard), 1996.
[Online]. Available: http://tools.ietf.org/html/rfc1997

[15] S. Sangli, D. Tappan, and Y. Rekhter, “RFC 4360: BGP
Extended Communities Attribute,” RFC 4360 (Proposed
Standard), 2006. [Online]. Available: http://tools.ietf.org/html/
rfc4360

[16] C. Villamizar, R. Chandra, and R. Govindan, “RFC 2439: BGP
Route Flap Damping,” RFC 2439 (Proposed Standard), 1998.
[Online]. Available: http://tools.ietf.org/html/rfc2439

[17] L. Blunk, M. Karir, and C. Labovitz, “MRT routing
information export format,” draft-ietf-grow-mrt-08.txt (Internet
Draft), 2008. [Online]. Available: http://tools.ietf.org/html/
draft-ietf-grow-mrt-08.txt

[18] E. Chen and Y. Rekhter, “RFC 5291: Outbound Route Filtering
Capability for BGP-4,” RFC 5291 (Proposed Standard), 2008.
[Online]. Available: http://tools.ietf.org/html/rfc5291

[19] E. Rosen and Y. Rekhter, “RFC 4364: BGP/MPLS IP Virtual
Private Networks (VPNs),” RFC 4364 (Proposed Standard),
2006, obsoletes RFC 2547, Updated by RFC 4577 and RFC
4684. [Online]. Available: http://tools.ietf.org/html/rfc4364

CAIA Technical Report 090730A July 2009 page 11 of 11

http://www.ripe.net/docs/ripe-378.html
http://tools.ietf.org/html/rfc4893
http://tools.ietf.org/html/rfc1997
http://tools.ietf.org/html/rfc4360
http://tools.ietf.org/html/rfc4360
http://tools.ietf.org/html/rfc2439
http://tools.ietf.org/html/draft-ietf-grow-mrt-08.txt
http://tools.ietf.org/html/draft-ietf-grow-mrt-08.txt
http://tools.ietf.org/html/rfc5291
http://tools.ietf.org/html/rfc4364

	Introduction
	Current Implementation of the MRAI Timer in Quagga
	The Short Version of Path-Exploration Damping
	The Path Hunting Problem
	A Solution Proposal

	Introduction to the Quagga Source Code
	Folders and Files
	Structures
	Functions

	Implementation of PDI
	Per Prefix per Peer MRAI Timer
	Implementation of the path damping Algorithm
	Known Issues

	Testing
	CPU and memory usage

	Conclusions
	Future work
	Acknowledgements
	References

