
Accelerated Processing of Historical BGP Events
for Testing New BGP Heuristics

Mattia Rossi, Grenville Armitage
Centre for Advanced Internet Architectures, Technical Report 090321A

Swinburne University of Technology
Melbourne, Australia

mrossi@swin.edu.au, garmitage@swin.edu.au

Abstract—This paper describes a technique for arti-
ficially accelerating ‘real time’ when testing new BGP
protocol enhancements using historical real-world data.
We show how months of BGP advertisement data may be
processed in hours, yet generate outputs that appear to
reflect months of actual operation by a network of fully
featured BGP speakers. Using Quagga (an operational
open-source implementation of BGP) we characterise the
performance trade-offs of our technique, and show how
‘accelerated time’ benefits researchers who are exploring
modifications to BGP’s dynamic, timer-based behaviours.
We consider the impact of our technique when multiple
instances of Quagga run on a single host or are distributed
across multiple hosts.

Keywords: BGP, routing, modelling, simulation,
Quagga

I. INTRODUCTION

Border Gateway Protocol (BGP) version 4 is central
to the internet’s inter-domain routing infrastructure [1].
BGP is spoken by border routers between autonomous
systems (AS), sharing reachability information with
neighbors in order to build and maintain up-to-date maps
of AS and route topology. These maps are constantly in
a state of flux due to changing policies between different
organisations, link failures and restorations, or attempts
to locally optimise the distribution of traffic between
adjacent AS. BGP is essentially a continuous, distributed
computation based on incomplete information shared
by neighbors. Many activities (such as advertising and
withdrawing routes learned from other neighbors) are
controlled by local per-border-router timers that cause
complex network-wide consequences.

Researchers exploring optimisations of BGP’s be-
haviour must test not only for functional correctness
but for viability. By viability we mean that the modi-
fied behaviour does not have unforseen and/or negative
consequences when exposed to long-term patterns of

realistic BGP activity. However, testing for long-term
viability is currently a significant challenge.

One approach is to simulate a network of BGP speak-
ers fed by streams of synthetic BGP updates. Whilst it
is possible to operate a simulation at much faster than
real time, the results still need verification in operational
networks. The simulator’s BGP code base is unlikely
to have actually been debugged in real networks, and
the synthesised BGP updates are only statistical approx-
imations of the diversity of update traffic seen in real
networks.

A second approach is to implement and test new
ideas in one or more BGP speakers that are receiving
a live feed of BGP updates from a real network. Key
limitations are that events happen at the speed of the
real world (a week of activity takes a week to observe)
and tests cannot be repeated with identical input data.
One might also drive the modified BGP speakers with
a historical feed of BGP updates previously collected
from a real network. This has the advantage of being
repeatable (the historical data may be replayed many
times to assess permutations of a modified BGP algo-
rithm). However, observing realistic timer-related BGP
behaviours requires the historical updates be regenerated
at their original arrival rate. A month of historical data
would take a month to use.

This paper describes and evaluates a variation on the
second approach. We enable one or more real BGP
speakers to operate in an accelerated time frame synchro-
nised to the timestamps of update messages previously
collected from a live network. For example, a week of
historical BGP updates may be evaluated in hours yet
the BGP speakers will produce outputs correctly scaled
in time.

Our accelerated emulator is built around Quagga [2],
an operationally-tested, open-source BGP router imple-
mentation. Multiple instances of Quagga can be used

CAIA Technical Report 090321A March 2009 page 1 of 7

mailto:mrossi@swin.edu.au
mailto:garmitage@swin.edu.au

to emulate arbitrary BGP topologies operating in accel-
erated time. The instances of Quagga may exist on a
single host or be distributed among a small number of
hosts. The accelerated emulator has become a valuable
tool for our evaluation of different techniques for path
exploration damping using weeks and months of real-
world BGP update data [3] [4] in Quagga.

Section II discusses the background for this work, with
our basic technique described in section III. Our analysis
of resource consumption when emulating different small
BGP topologies is provided in section IV. Section V
considers possible future work, and the paper concludes
with Section VI.

II. BACKGROUND

Our primary motivation was to enable research into
new heuristics for processing BGP advertisements,
which required that we repeatedly play-back historical
data gathered at various points in the internet. A number
of techniques were considered before settling on Quagga
for our accelerated emulation system.

Arbitrary BGP topologies can be simulated in an
accelerated fashion using BGP++ [5], a BGP plug-in for
the NS-2 [6] simulator. BGP++ is itself based on Ze-
bra [7], Quagga’s predecessor. Due to its Zebra origins,
it should be relatively easy to port BGP++ modifications
into Quagga for operational use. However, as noted in
section I, viability testing of new BGP algorithms would
be still rely on synthesised approximations of real-world
BGP update traffic patterns.

An alternative is BGPMon [8], designed to process
BGP updates from either a live BGP network or histori-
cal real-world data. BGPMon is is primarily intended to
provide real BGP peering sessions for research, and lacks
the ability to install learned BGP routes into an underly-
ing system’s forwarding tables. BGPMon currently does
not provide any mechanism for accelerated processing
of historical BGP update streams.

We ultimately chose Quagga because it is an open-
source routing suite with fully featured BGP imple-
mentation. Quagga is considered to be conservative in
resource usage and has been deployed for operational use
in various AS. Our technique for accelerated processing
was relatively easy to back-port into Quagga’s codebase,
and our sources of historical BGP update data were in a
Quagga-compatible binary MRT [9] form. Implementing
and testing new ideas in Quagga would provide the best
outcome for a BGP research project, as the resulting code
could be directly used in an operational environment.

321 2UR

Historic DataOriginal Setup Emulator Setup

Data Collector

3

Update Regenerator

Fig. 1. BGP advertisements originally collected at router 2 can be
later replayed by our Update Regenerator (UR) as though they were
again originating from router 1

III. EMULATOR SETUP

Our technique involves two steps - regenerating au-
thentic BGP update messages from historical data and
accelerating the time frame in which the regenerated
stream of updates is processed.

A. Regenerating historical BGP update traffic

Figure 1 illustrates the relationship between the source
of historical data and our later regeneration. In the
Original Setup router 2 collects BGP advertisements
received from adjacent router 1. Node 1 is typically
identified as the source of each advertisement, with the
AS number and IP address of the adjacent router coded
in the nexthop and AS path attribute of the BGP packets
collected by node 2. Consequently, in the Emulator Setup
our Update Regenerator (UR) uses router 2’s logfiles to
recreate a BGP session that appears to be coming from
router 1

We implemented our UR to read logfiles of BGP
update activity stored as text form or MRT dump files1.
The UR establishes a legitimate BGP session to a live
instance of Quagga (router 2, in Fig. 1) and regenerates
previously saved BGP advertisements at an accelerated
rate2.

B. Accelerating time

Our goal is to accelerate the emulation of BGP topolo-
gies having nodes represented by multiple instances of
Quagga. Figure 2 expands on Figure 1 to illustrate our
solution.

In the original setup a real BGP speaker feeds updates
to Quagga 1 (router 2), which processes and forwards
updates to Quagga 2 (router 3) as required. Quagga’s
core clock normally retrieves UTC timestamps from the

1When used to collect traffic, Quagga may log BGP advertisments
in either human readable text form or binary MRT dump files

2Our prototype UR uses the local loopback interface to open a
BGP connection to this ‘router 2’ instance of Quagga running on the
same host. ‘Router 2’ may then have any arbitrary AS number and
IP address

CAIA Technical Report 090321A March 2009 page 2 of 7

System
Clock

Quagga 1

Router 2

Quagga core clock

BGP
router

Quagga 2

Router 3

Quagga core clock

UTC time

BGP traffic

Forged
Clock:

Memory Map
or File

UR

Emulator

Original Setup

Fig. 2. BGP updates are triggered by time based events. (black lines)
Original setup: Quagga’s core clock is derived from the system clock
when processing real updates. (red lines) Emulator setup: The UR
establishes a ‘forged clock’ in shared file or memory map. Quagga’s
core clock now reads this file or memory map instead.

host’s system clock in order to drive Quagga’s event
system responsible for triggering BGP updates.

In our accelerated emulator setup we modify each
participating Quagga to instead read their core clock’s
timestamps from a block of shared memory (or file)
controlled by the UR. The UR itself increments this
alternative time information using the timestamps of re-
generated BGP advertisements, effectively ‘accelerating
time’ for all instances of Quagga participating in the
emulation3.

Our approach provides the significant benefit of re-
ducing the time it takes to evaluate new BGP algorithms
using historical BGP data. However, there are resource
consumption and performance issues to be considered.

Using mapped shared memory restricts our emulator
to a single host or system where all processes can
access the same shared memory. Using a file enables
us to run all Quagga instances on a single host or to
distribute the load over a number of hosts (using a
network file system to provide all processes with access
to the timestamp file). The last approach would ease the
load on a single system, but would dramatically increase
the network load. In the following section we consider
resource consumption for these scenarios.

IV. RESOURCE USAGE AND LIMITATIONS

In this section we are presenting some facts about
resource usage of the accelerated emulator. We have
tested three different approaches, regarding their way of
exchanging time information:

3Quagga’s events system is also changed to solely utilise infor-
mation in the timestamps rather than on the frequency of timestamp
update

T1

UR 1

T2

UR 1 2

T3

UR 1 2 UR 1 2

3
T4

T5

UR 1 2

34

3

T6

UR 1 2

34
T7

UR 1 2

34

UR 1 2

34
T8

Fig. 3. Various topologies have been tested for resource usage
tests. UR is the Update Regenerator which reproduces the historic
data stream. The arrows indicate the direction of BGP advertisement
propagation

• The UR and all Quagga instances running on the
same host using a memory map for the fake clock

• The UR and all Quagga instances running on the
same host using a file for the fake clock

• The UR and at least one Quagga instance run-
ning on a single host, connected to at least one
other Quagga instance on an other machine over a
100Mbit single switched ethernet connection, using
a file shared via NFS [10] for the fake clock.
The network file system uses the same ethernet
connection.

We have tested also various topologies of routing
networks, in order to be able to make a comparison of
resource usage as shown in Fig. 3.

All tests have been carried out on hosts equipped with
a dual core 2.4 GHz processor and 4GB of RAM running
on FreeBSD Current (8.0) in 32 bit mode. All tests have
also made use of a MRT dump file which propagates
an initial routing table followed by BGP advertisements.
The file contains 2 hours worth of real BGP traffic
collected on a router running Quagga 0.99.10, which
connected to a single router (AS 65000) at APNIC (Asia
Pacific network Information Centre) [11]. The routers
used in the tests were Quagga 0.99.10 based routers with
a slight modification for enabling use of the fake time,
the Update Regenerator was written in Python.

A. Memory Mapped Emulator

Analysing the results of the memory mapped emulator
over topologies T7 and T8 of Fig. 3, we can see that CPU
usage, Memory usage and with that the overall execution
time already rise with one additional connection as
depicted in Fig. 4.

If we look at the CPU and memory usage of the
UR, we see that it uses always the same amount of
resources. Only the overall time changes, which depends
on the overall system load, which again is defined by

CAIA Technical Report 090321A March 2009 page 3 of 7

CPU Usage

S
ec

on
ds

0

50

100

150

200

250

s
1

234
s

1
2 3

4

s 1234

s

1

23 4

s

1

234

s123 4
T7
T8

Peak Memory Usage

K
B

yt
e

0

50,000

100,000

150,000

200,000

250,000

300,000

s

1
2

3

4

s

1

2

3
4

T7
T8

 CPU user CPU system Execution time

Fig. 4. Execution time, CPU user time, CPU system time and peak memory usage of the mmap version emulating topologies T7 and T8

the amount of Quagga instances and peering sessions.
Additional peering sessions between Quagga instances
are mostly responsible for extra load on the system. The
extra load is added to the routers participating at the
peering session (routers 1 and 4). As the emulator is not
deterministic in its behaviour4 the little extra load on
routers 2 and 3 can be ignored.

Additional peering sessions put different load on the
system, depending on the peers involved. A peer gener-
ating high load will generate more additional load with
one additional connection, than a peer with less load.
Fig. 5 compares peak memory and average CPU usage
of topologies T1 to T8, which reflect such situations.
The graph contains a comparison to the resource usage
of “original” Quagga instances, which make use of the
real system clock.

The higher memory usage of T4 towards T6 is caused
by the additional connection starting from router 1 in T4
instead of router 2 as in T6. As router 1 is usually on
a higher load as can be seen in Fig. 4, the additional
peering session adds much more load to the system
as an additional peering session from router 2 with
an additional Quagga instance. T1 and T8 use slightly
more memory than the comparable original Quagga
instances. This amount equals approximately the amount
used by the Update Regenerator, which is not taken into
consideration when using original Quagga instances, as
they connect to a live source. CPU usage is scaled to 200
percent as the host is equipped with a dual-core CPU.

4Quagga instances run completely independent, therefore slight
variations in event handling may occur between test runs, resulting
in slightly different output and resource usage

We can see that the emulator uses much more CPU than
Quagga instances which run at normal speed. Topology
T4 again uses slightly more CPU than T6 for the same
reason as above. Additionally we see a slight decrease in
CPU usage for T8 towards T7 which is caused by linear
increase of execution time and CPU time resulting in
constant percentage. This indicates that in this test runs
we might have already reached the limits of the host.

B. File Based Emulator

A file based emulator is much slower than a memory
map based one in processing the same BGP data. The
continuous file operation adds extra load to the system,
and CPU usage as well as overall execution time increase
as memory usage does too. Fig. 6 compares memory
map based and file based resource usage. As for the
memory mapped emulator, it can be also seen, that the
replaying script uses a quite constant amount of CPU
and a minimal amount of memory.

C. File Based Distributed Emulator

The distributed file based emulator is quite different
to the systems described before. As it can make use
of multiple networked machines, it has a much lower
resource usage per machine. It uses a network file system
to propagate the time information, therefore it gener-
ates additional network traffic. We analysed specifically
topology T8 in this system, with 3 setups:

• 3 Quaggas on the NFS server, 1 on the client (3to1)
• 1 Quagga on the NFS server and 3 on the client

(1to3)
• 2 Quaggas on both (2to2)

CAIA Technical Report 090321A March 2009 page 4 of 7

Peak Memory Usage

K
by

te

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

o T1

T2

T3

T4
T5T6

T7

T8o4

CPU Usage

P
er

ce
nt

0

50

100

150

200

o

T1

T2

T3

T4

T5
T6

T7 T8

o4

Fig. 5. Memory and CPU usage for topologies T1 to T8 on the memory map emulator. It also compares to a single original Quagga
instance (o), and a T8 like topology of 4 full mesh Quaggas (o4).

 CPU user CPU system Execution time

Peak Memory Usage

K
B

yt
e

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

s

1 2
3

4
s

1

2

3

4

T8 mmap
T8 file

CPU Usage

S
ec

on
ds

0

50

100

150

200

250

300

350

s

1
234

s

1

2 34

s 1234

s

123 4

s

1
234

s123 4
T8 mmap
T8 file

Fig. 6. Resource usage for topology T8 using a memory map based emulator vs. a file based emulator

Figure 7 shows the network traffic of all 3 settings over
the single Ethernet link connecting the two machines.
It compares BGP and NFS traffic and also shows the
typical BGP traffic that is produced over a single peering
session between two original Quagga instances as well as
the real network traffic generated by the non distributed
emulators (which equals zero as traffic is sent over the
loopback interface).

From the graph it can be seen that the average NFS
traffic overhead is remarkable compared to the gener-
ated BGP traffic. If we consider the maximum average
network usage of 857 KByte/s (approx. 6.8 Mbit/s)
achieved in this setup, we see that with the distributed
file based emulator we would be able to emulate larger
topologies than with an mmap based one, not having

reached common network limits by far. Additionally it
can be seen, that NFS overhead increases only about
approx. 150 KByte/s for two additional Quagga instances
accessing the NFS on the same client (“1to3” compared
to “3to1”), which shows that the additional overhead per
BGP speaker instance and NFS client is growing only
slowly. The increase in BGP traffic for the “3to1” setting
shows, that BGP traffic increases towards the sink of the
BGP network.

Sharing time information through the NFS file system
though, results in a less accurate output. Running the
distributed file based emulator at its maximum speed,
we could identify skipped timestamps in the shared file
used by the Quagga instances on the NFS client host
compared to the timestamps written at the NFS server

CAIA Technical Report 090321A March 2009 page 5 of 7

Average Network Traffic

K
B

yt
e/

s

0

10

20

700

800

900

orig mmap file

net 1to3
net 2to2

net 3to1

All network traffic
BGP traffic
NFS traffic

Fig. 7. Average network overhead of the different emulator types.

Speedup for T8

S
ec

on
ds

0

100

200

300

400

3,400

3,500

3,600
orig

mmap

file

net 1to3
net 2to2

net 3to1

Fig. 8. Comparison of the time needed to process 2 hours of BGP
data over topology T8 with the various types of emulator settings

side. The accuracy could be improved by artificially
slowing down the propagation of BGP advertisements
in the UR, but as the NFS based emulator has been used
only for demonstration purposes, it has not been further
analysed.

Figure 8 shows how much speedup could be achieved
for every type of emulator over topology T8. The com-
parison is towards an original BGP session lasting 2
hours.

It can be seen that a file based emulator running
many Quagga instances and peering sessions on the same
machine as the UR, has the lowest speedup (“file”, “net
3to1”). The best performance is achieved with the emu-
lator using a memory map, which reduces the processing
time from the original 2 hours down to 2 minutes and

37 seconds resulting in a speedup of approximately 24.

V. FURTHER WORK

In this project we used Python to create the Update Re-
generator and Quagga as the routing software of choice
as described in II. The technique presented although may
be applied to a large variety of BGP routing software,
using other programming languages than Python for the
UR and developing new ways to provide fake time to the
participating routers. This could result in performance
improvement and allow the emulation of larger BGP
topologies. Creating an emulator with BGP speakers
distributed over different hosts using faster network file
system protocols than NFS, would also improve accuracy
allowing to operate still at higher speed.

VI. CONCLUSIONS

By extracting timestamp information about BGP up-
date events stored in a historical BGP data stream, and
providing them to Quagga based BGP speakers to forge
the synchronisation with the system clock, we were able
to replay this historical data stream accelerated over a
system of these Quagga instances, still producing outputs
correctly scaled in time. We have been able to emulate
various BGP topologies using three different approaches
to share fake time information between the participating
BGP speakers, and we have also shown possible resource
usage.

We identified the memory map based emulator as the
fastest approach with a speedup of 24 times using a
full mesh topology over four Quagga instances, meaning
that 24 hours of data could be processed in one hour.
Smaller topologies with e.g. three Quagga instances and
two peering sessions, could be sped up to 71 times,
allowing the processing of one months data in only 10
hours. The size of the emulated BGP topology is limited
to the available resources on a single machine, which
might be exhausted with only few Quagga instances and
peering sessions. This approach is suggested for testing
new Quagga implementations on small topologies with
historical data covering large periods of time.

The distributed file based approach was used for
demonstration purposes only, and showed a slightly
smaller speed up (about 20 times) for the full mesh
BGP topology, but required less system resource usage
being distributed over several machines and having the
trade off as extra load on the network. Additionally
the accuracy of the output was deteriorated, resulting
in an even lower speedup, if we wanted to keep the
accuracy high. We could also show that in our test

CAIA Technical Report 090321A March 2009 page 6 of 7

case the distributed file based approach would allow the
emulation of larger topologies than a memory map based
one. This approach is suggested for emulating larger
topologies with historical data covering small periods of
time.

Based on this facts we are able to confirm the benefits
such an emulator can provide to BGP research: it makes
use of a full featured BGP routing software (Quagga),
which is ready for use in operational networks, it makes
use of real historical BGP data, allowing to repeat tests
with the same input keeping output coherent, and the
system can process data faster than real-time, showing
that it’s speedup mainly depends on the size of BGP
topologies simulated.

VII. ACKNOWLEDGEMENTS

This research project has been made possible in part
by a grant from the Cisco University Research Program
Fund at Community Foundation Silicon Valley.

REFERENCES

[1] Y. Rekhter, T. Li, and S. H. (Editors), “RFC 4271: A
Border Gateway Protocol 4 (BGP-4),” RFC 4271 (Draft
Standard), 2006, obsoletes RFC 1771. [Online]. Available:
http://tools.ietf.org/html/rfc4271

[2] K. Ishiguro, “Quagga Software Routing Suite.” [Online].
Available: http://www.quagga.net

[3] G. Huston, “ISP column: Path Damping,” June 2007.
[Online]. Available: http://www.potaroo.net/ispcol/2007-06/
dampbgp.html

[4] M. Rossi, “Implementing path-exploration damping in the
Quagga Software Routing Suite Version 0.99.10,” Centre
for Advanced Internet Architectures (CAIA) - Swinburne
University of Technology, Tech. Rep., November 2008.
[Online]. Available: http://caia.swin.edu.au/reports/081117A/
CAIA-TR-081117A.pdf

[5] X. Dimitropoulos and G. Riley, “Efficient large-scale BGP
simulations,” Elsevier Computer Networks, Special Issue on
Network Modeling and Simulation, vol. 50, no. 12, 2006.

[6] DARPA, “The Network Simulator NS-2.” [Online]. Available:
http://www.isi.edu/nsnam/

[7] K. Ishiguro, “GNU Zebra: Free routing software distributed
under GNU General Public License.” [Online]. Available:
http://www.zebra.org

[8] D. Massey, D. Matthews, H. Yan, and Y. Chen, “BGPMon:
BGP Monitoring System.” [Online]. Available: http://bgpmon.
netsec.colostate.edu

[9] L. Blunk, M. Karir, and C. Labovitz, “MRT Routing
Information Export Format,” June 2008. [Online]. Available:
http://tools.ietf.org/html/draft-ietf-grow-mrt-08

[10] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame,
M. Eisler, and D. Noveck, “RFC 3530: NFS version 4 Protocol,”
RFC 3530 (Draft Standard), 2000, obsoletes RFC 1813, RFC
1094. [Online]. Available: http://tools.ietf.org/html/rfc3530

[11] G. Huston, “AS65000 BGP Routing Table Analysis Report.”
[Online]. Available: http://bgp.potaroo.net/as2.0/index.html

CAIA Technical Report 090321A March 2009 page 7 of 7

http://tools.ietf.org/html/rfc4271
http://www.quagga.net
http://www.potaroo.net/ispcol/2007-06/dampbgp.html
http://www.potaroo.net/ispcol/2007-06/dampbgp.html
http://caia.swin.edu.au/reports/081117A/CAIA-TR-081117A.pdf
http://caia.swin.edu.au/reports/081117A/CAIA-TR-081117A.pdf
http://www.isi.edu/nsnam/
http://www.zebra.org
http://bgpmon.netsec.colostate.edu
http://bgpmon.netsec.colostate.edu
http://tools.ietf.org/html/draft-ietf-grow-mrt-08
http://tools.ietf.org/html/rfc3530
http://bgp.potaroo.net/as2.0/index.html

	Introduction
	Background
	Emulator Setup
	Regenerating historical BGP update traffic
	Accelerating time

	Resource Usage and Limitations
	Memory Mapped Emulator
	File Based Emulator
	File Based Distributed Emulator

	Further Work
	Conclusions
	Acknowledgements
	References

