
BitTorrent Traffic Classification
Atwin O. Calchand, Van T. Dinh, Philip Branch, Jason But

Centre for Advanced Internet Architectures, Technical Report 090227A
Swinburne University of Technology

Melbourne, Australia
pbranch@swin.edu.au, jbut@swin.edu.au

Abstract—This paper describes the research undertaken
to classify BitTorrent traffic from “Other” traffic. BitTor-
rent is a Peer-to-Peer (P2P) file sharing protocol. According
to various research papers, P2P traffic makes up a large
portion of today’s Internet. P2P technology has been
evolving to take into consideration and bypass methods of
detection that could identify it. As such, P2P applications,
like BitTorrent, use various obfuscation techniques to
hide themselves. As P2P applications continue to evolve,
powerful techniques need to be found to effectively identify
P2P traffic. This paper outlines some research that we have
been doing using Machine Learning techniques to identify
BitTorrent traffic based on its traffic-flow characteristics.

I. INTRODUCTION

Recent traffic measurement studies carried out by vari-
ous institutions indicate that P2P occupies a large volume
of the Internet, around 35% [1]. A proper mechanism
that is able to identify P2P traffic on today’s modern
Internet is necessary since P2P applications are devel-
oping rapidly to adapt to newer detection techniques.
Many P2P applications make use of obfuscation tech-
niques, such as multiple TCP connections, port hopping,
dynamic random port numbers, HTTP masquerading and
encrypted payloads, to conceal their presence on the
Internet.

Proper identification of BitTorrent is particularly use-
ful to Internet Service Providers (ISP). One of the
concerns to ISPs is the issue of P2P applications be-
ing bandwidth-intensive. When these applications start
using a large proportion of the ISP’s network, it slows
down other basic services like web browsing. Excessive
network congestion could hence lead to dissatisfied cus-
tomers. A solution to this problem that ISPs can consider
is to increase their network capacity by dedicating more
resources but this is not always feasible since doing so
adds to the operating costs of the company - adding new
equipments is expensive, and so is their maintenance.
Moreover increasing network capacity would only make
a difference for a short amount of time as P2P traffic

may soon expand to consume the increased capacity.
One other major concern to ISPs is the contents of files

shared in P2P applications. Many of these files contain
illicit material, such as games, video clips, movies,
software and eBooks, which disregard copyright laws.
Companies which produced the aforementioned contents
have on various occasions held ISPs responsible for the
copyright infringement [1].

Since BitTorrent makes use of dynamic ports, port-
based analysis cannot be used to map known port num-
bers to BitTorrent. Also, there is an increasing amount
of applications on the Internet which are making use
of non-standard port numbers, in the case of running a
web server on a random port instead of the usual port
80. Research suggests that 30-70% of Internet traffic
cannot be accurately identified using port numbers. The
other method that could be used to analyse network
traffic relies on examining the contents of the payload
in packets. The payload information contained would
reveal a specific signature - each application has its own
signature - which would help determine what software
generated the packet. Payload analysis is difficult for
various reasons. First, there is the issue of the payload
being encrypted. Analysis of encrypted payloads is not
only time-consuming, but it is also difficult. Secondly,
there are the concerns about whether it is legal or not.
Since examining the payload would mean that someone
would know what data it contains, this constitutes a
breach of the receiver’s privacy.

A promising method that can effectively help us
identify traffic generated by BitTorrent without having
to worry about the legal ramifications and which would
not take port number into consideration is the use of
Machine Learning techniques. Machine Learning would
allow the identification of specific patterns in traffic flow
and then classify those flows.

This paper describes research in finding features that
best identify BitTorrent traffic from “Other” Traffic -
such as DNS and HTTP. The rest of the paper is

CAIA Technical Report 090227A February 2009 page 1 of 5

mailto:pbranch@swin.edu.au
mailto:jbut@swin.edu.au


structured as follows. Section II describes the setup of
the experiment and our datasets. Section III discusses the
results we obtained and provides some graphs to contrast
BitTorrent from Other traffic.

II. SETUP OF THE EXPERIMENT

This section explains how the experiment was set up
and the process of analysing the traffic characteristics
and behaviour in order to build the best feature set
to classify BitTorrent traffic amongst other traffic. In
particular, what these experiments hoped to achieve is a
set of key features that could later be used to build a clas-
sifier model using Machine Learning (ML) techniques.
In order to accomplish this task, the experiments were
designed so that we could generate as many features as
possible, and make use of multiple ML algorithms to sort
out the best feature set and also determine the algorithm
that gave us better results.

The experiment used two classes of trace files in pcap
format [2]. One of the classes contained only BitTorrent
traffic and the second trace contained a mix of other
traffic - Hello packets, HTTP, DNS, QUAKE3 and more
(with no payload). BitTorrent trace files were captured
when simulating BitTorrent traffic over a FreeBSD jail
system at the Centre for Advanced Internet Architec-
tures, Swinburne University of Technology. The other
trace was obtained from the University of Twente in the
Netherlands.

A. Tools

Two important tools used in the experiment were Net-
mate and WEKA (Waikato Environment for Knowledge
Analysis).

• Netmate [3] was used to group the raw packets into
flows and generate statistics for those flows. The
way netmate generates the statistics is through its
modules. Netmate provides some standard modules,
and each module generates a specific range of
statistics. Because the experiments focused on flow
classification, only a few essential modules were
selected: bandwidth, pktlen and jitter.
Using other modules does not seem significant in
this case since they generate statistics for single
packets or overlap other module output. However,
they are useful if there is need to gather information
about individual packet information.

• WEKA [4] - Selecting out relevant features is the
next important part of the process. The experiment
made use of WEKA’s classifiers to build the model

TABLE I
ATTRIBUTES USED

proto Protocol
packets Total packet in the flow
bytes Total byte in the flow
diff_min Minimum inter-arrival time
diff_avg Average inter-arrival time
diff_max Maximum inter-arrival time
diff_var Inter-arrival time variation
minlen Minimum packet length in the flow
maxlen Maximum packet length in the flow
avglen Average packet length in the flow

and indicate how effective each Machine Learning
algorithm was at classifying the flows.

B. Process

Fig. 1. illustrates how we used trace files to make the
training and testing datasets. The same set of netmate
modules (bandwidth, pktlen and jitter) were
applied for all the trace files. The amount of output flows
are not the same for every traces. However, to achieve
more accuracy when using the ML technique later in
the process, the training data file had been generated to
contain comparative flows of BitTorrent and other traffic.
The training files were formatted as arff files which are
readable by WEKA. Before running WEKA classifiers,
a preliminary step took place to remove the features that
have been known to be irrelevant.

The following features were sorted out of the All-
Feature-Training-File:

• srcip - Source IP Address
• desip - Destination IP Address
• srcport - Source Port Number
• desip - Destination Port Number
The reason to filter out these features is because IP

addresses tell us nothing about the traffic behaviour and
provides no help for classification and BitTorrent clients
tend to use dynamic ports.

After generating the proper arff files that would be
used for training and testing data, WEKA was run to
build the model. Datasets A and B can be either used
for training or for testing. The experiment ran all possible
tests in order to get the best understanding of the data
set. The steps can be listed as:

• Use data set A for both training and testing
• Use data set B for both training and testing
• Use data set A for training and B for testing
• Use data set B for training and A for testing
• Use data set A and cross-validation technique for

testing

CAIA Technical Report 090227A February 2009 page 2 of 5



Fig. 1. Dataset Illustration

• Use data set B and cross-validation technique for
testing

The next section describes the results for these exper-
iments.

III. RESULTS

Once we had netmate’s output from each of its packet
processing modules we used them to build our training
and testing datasets. The datasets were then used with
WEKA [4] to run simulations with different Machine
Learning algorithms to see how they compared and how
well they could classify BitTorrent traffic from other
traffic.

The main algorithms we used were the Naive Bayes,
Bayes Net, J48 (C4.5) and NBTree. These algorithms
have been showed to work well at classifying IP traffic
flows [5]. Table II shows the results that we obtained.
Once we had identified the attributes that gave a us a
higher recall and precision, we built the best-features
training and testing arff files. We have included the
output from two tree algorithm which have worked well
and since they are easy to understand as they provide a
graphical representation of how the classifier is working
on the dataset.

From Table II, we can see that packet length and
packet inter-arrival time attributes gave us a higher
accuracy in correctly identifying instances from each of
the classes. Once we had this information, we built our

TABLE II
PERCENTAGE OF CORRECTLY IDENTIFIED INSTANCES

Algorithm Bandwidth Jitter Packet Length
Naive Bayes 43 88 94.3
Bayes Net 41 99.2 99.9
J48 (C4.5) 61 99.9 99.9

Fig. 2. J48 algorithm (truncated output from WEKA)

best-features set using attributes from those two packet-
processing modules only and ran more simulations to
compare it with the results obtained when having at-
tributes from all three modules. We found out that using
bandwidth attributes did not contribute to classification
and that we obtained better results using only the best-
features set.

A. J48 Algorithm Results

The J48 algorithm is a decision-tree algorithm which
is available in WEKA and is an implemetation of Quin-
lan’s C4.5 algorithm [6].

Fig. 2. shows the results that we obtained after running
the J48 classifier on our training and testing datasets. The
output from this algorithm gave us something to think
about. As can be observed, the J48 classifier is making
its decisions based mainly on the minimum packet length
of each flow.

B. NBTree Algorithm Results

The NBTree (Naive Bayes Tree) algorithm is a hybrid
algorithm combining the reliability and robustness of the
Naive Bayes algorithm and the swiftness of decision tree

CAIA Technical Report 090227A February 2009 page 3 of 5



Fig. 3. NBTree algorithm (truncated output from WEKA)

algorithms. These combined features make the NBTree
outperform the other algorithms and NBTree has been
shown to scale well in large databases [7].

Fig. 3. shows the results that we obtained after running
the NBTree classifier on our training and testing datasets.
The results obtained from the NBTree output tells us
that a more broad range of features are being used to
correctly identify each instance in the dataset including
both packet-length and inter-arrival time modules.

C. Further Investigation

As we mentioned earlier the output from the J48
algorithm was surprising. We were not expecting the
classifier to base its decisions mainly on one attribute, in
that case the minimum packet length. Moreover, for that
algorithm to reach a high level of precision (0.994) and
recall (0.999) using that one attribute was even more
confusing. This led us to analyse the distribution of
packets in the whole PCAP files more accurately.

We used the “show ascii” module supplied with the
netmate package to get the size of each individual packet.
Using a stream editor, we modified netmate’s output
to include only the packet sizes. We then developed a
simple shell script which did a word-count on that output
and gave us the frequency of each packet size. We ran
this script on the output obtained for both the BitTorrent
traffic and the other traffic.

Fig. 4. shows a plot of the cumulative packet sizes for
both datasets. The minimum packet size for BitTorrent

Fig. 4. Cumulative Packet Size Distribution of BitTorrent and Other
traffic

was 40 bytes and the one for Other was 28 bytes whereas
their maximum packet size were 1500 bytes for each.

Figures 5 and 6 show how the minimum and maximum
packet sizes compare in each dataset. We have only
included the range of statistics which gave a more
representative idea of the distribution. The packets that
were discarded in the graphs only accounted for between
0 - 0.01% of the whole distribution.

From the cumulative graph, we can observe that the
minimum packet length and the maximum packet length
are roughly the same. But if we take a closer look at the
data in between the two extremities, we can see that the
middle portion for BitTorrent accounts for around 4%
of the total distribution whereas the one for the Other
traffic amounts to around 12%. This information tells us
that the average packet length plays an important role
in distinguishing between BitTorrent and other traffic.
The NBtree algorithm can be seen to be making use of
the average packet length (avglen) attribute to classify
the instances in the dataset. The mean packet length for
BitTorrent was 800.18 bytes and the one for Other traffic
was 537.15 bytes.

From these results, we deduced that we need to
undertake some more work towards understanding the
significance of the average packet lengths and why the
J48 algorithm omits the 40 byte packets which constitute
an important part of the Other traffic.

IV. CONCLUSION

The research conducted on BitTorrent and Other traffic
has helped us to understand how packets are distributed
in both datasets. We also found that there are enough dis-
tinct characteristics between BitTorrent and Other traffic
that would make the former’s classification possible
using Machine Learning Techniques. We have also noted

CAIA Technical Report 090227A February 2009 page 4 of 5



Fig. 5. BitTorrent and Other Traffic Minimum Packet Size Distri-
bution

Fig. 6. BitTorrent and Other Traffic Maximum Packet Size Distri-
bution

that using the J48 algorithm we reached an accuracy
at correctly identifying instances of 99.8771%, with a
precision and recall margin of 0.994 and 0.999 respec-
tively. On the other hand, using the NBTree algorithm
we reached an accuracy at correctly identifying instances
of 99.9099%, with a precision and recall margin of 0.997
and 0.998 respectively.

REFERENCES

[1] A. Madhukar and C. Williamson, “A longitudinal study of p2p
traffic classification,” 2006.

[2] Wikipedia, “Pcap — Wikipedia, the free encyclopedia,”
2009, [Online; accessed 27-January-2009]. [Online]. Available:
http://en.wikipedia.org/wiki/Pcap

[3] C. Schmoll and S. Zander, “Netmate — user and developer
manual,” 2004.

[4] T. U. of Waikato, “Weka 3: Data mining software in java,”
2009, [Online; accessed 19-January-2009]. [Online]. Available:
http://www.cs.waikato.ac.nz/∼ml/weka/

[5] S. Zander, N. Williams, and G. Armitage, “A preliminary per-
formance comparison of five machine learning algorithms for
practical ip traffic flow classification,” October 2006.

[6] G. T. Shed, “J48 decision trees,” 2002, [Online; accessed
21-December-2008]. [Online]. Available: http://grb.mnsu.edu/
grbts/doc/manual/J48 Decision Trees.html

[7] D. Morrison, “Nbtree: A naive bayes/decision-tree hybrid,” April
17, 2006.

CAIA Technical Report 090227A February 2009 page 5 of 5

http://en.wikipedia.org/wiki/Pcap
http://www.cs.waikato.ac.nz/~ml/weka/
http://grb.mnsu.edu/grbts/doc/manual/J48_Decision_Trees.html
http://grb.mnsu.edu/grbts/doc/manual/J48_Decision_Trees.html

	Introduction
	Setup of the Experiment
	Tools
	Process

	Results
	J48 Algorithm Results
	NBTree Algorithm Results
	Further Investigation

	Conclusion
	References

