
Skype Traffic Detector
Atwin O. Calchand, Van T. Dinh, Philip Branch, Jason But

Centre for Advanced Internet Architectures, Technical Report 090128A
Swinburne University of Technology

Melbourne, Australia
pbranch@swin.edu.au, jbut@swin.edu.au

Abstract—This paper describes the need for the Skype
Traffic Detector, a GUI designed for the purpose of filtering
and displaying VoIP calls made from the Skype software.

I. INTRODUCTION

Real-time detection of network traffic types is of re-
cent but increasing interest for law enforcement agencies
and telecommunications companies alike. With increased
criminal and terrorist activities in the past few years,
law enforcement agencies have realised that the use of
data networks for communication is making their job
of identifying imminent threats more difficult. Freely
available VoIP (Voice over Internet Protocol) software,
which offers free PC-to-PC calls, is being used by more
and more people around the globe to communicate.
Skype has captured the attention of the aforementioned
authorities since it is the most widely used VoIP software
in the world. Due to its closed-source code, research
institutes are also taking a keen interest in Skype to better
understand how it works.

Lawful Interception of IP packets, e.g. VoIP calls, can
help law enforcement agencies track criminal and terror-
ist activities to ensure a country’s security. Telecommu-
nications companies are interested in identifying Skype
traffic since they are facing losses on their traditional
voice networks. Understanding how Skype is being used
would help them better shape their business strategies.
Internet Service Providers (ISPs), on the other hand, can
use data gathered from detected Skype traffic flows to
generate statistics and hence provide additional resources
for increased Quality of Service on real-time VoIP calls.
Skype relays are also a concern to ISPs since Skype
makes use of nodes within networks to route packets
without the nodes’ owners knowing about it.

We have used machine learning techniques to analyse
network traffic traces to detect Skype traffic. However
this causes a problem in the amount of data that needs
to be interpreted. Going through and trying to make
sense of all this data is virtually impossible, specially

when quick results are needed for the purposes of lawful
interception, call tracking and so forth. Furthermore, it
would be better to collate and display this information
using a simple and intuitive graphical user interface
which would make it easier to check for Skype calls.
We have developed such an interface that would allow
the user to quickly locate and filter Skype traffic flows.

The rest of the paper is structured as follows. Section
II describes the tools required to make the detector work.
It also covers the components making up the Detector
and describes the function of each. Section III elaborates
on how to set up the machine learning tools developed
previously by Fokus Institute, Germany and CAIA. The
manual pages of those tools need to be checked for a
thorough understanding of how they work. Section IV
describes how to start the tools and make a trace.

II. THE TOOLS

Machine Learning (ML) is part of the broad area
of Artificial Intelligence. ML mostly has to do with
the design and development of algorithms that allow
computers to learn from provided data sets to improve
their performance at a specific task. Datasets can be in
the form of databases and data gathered from sensors.
Using those datasets a Machine Learning algorithm then
builds models based on patterns it detects. Due to these
characteristics, Machine Learning is closely related to
applications in data mining, statistics, inductive reason-
ing, pattern recognition, and theoretical computer science
[1].

For the purpose of our research our dataset consisted
of traffic dumps (stored in .pcap format) [2] which were
composed of both Skype and other network traffic. The
tools used were:

• NetAI - uses ML algorithms to generate statistics
based on traffic flows

• Netmate - classifies traffic flows
• WEKA - machine learning software used by NetAI

CAIA Technical Report 090128A January 2009 page 1 of 5

mailto:pbranch@swin.edu.au
mailto:jbut@swin.edu.au


• Skype Traffic Detector - for filtering and displaying
results

WEKA (Waikato Environment for Knowledge Analy-
sis) is a collection of machine learning algorithms. The
WEKA software suite was developed at the University
of Waikato in New Zealand [3]. NetAI makes use of
WEKA’s capabilities to generate statistics on data ac-
quired from NetMate and classifies that data based on
patterns and defined rules (depending on the machine
learning algorithm being used).

The Skype Traffic Detector was written in python and
consists of three main parts: the filter, the graphical user
interface (GUI) and a database. The filter’s function is
to read data from netAI’s output file and store it in the
database. As data is read, it is compared to existing
records to see if it matches previous entries in the
database. If an entry matches, the record in the database
is updated so that there are no repeating records. Also, a
timeout period and “call end” flag determines whether a
record is kept or removed from the database. The GUI’s
function is to display all calls in the database and update
the display at fixed intervals to be in sync with the
contents in the database. The GUI is the main program
the user interacts with whilst the filter runs in background
in another thread. The GUI also allows a user to display
specific records from the database. The user has to enter
desired IP addresses and the GUI will update the display
for matching records.

By default, when the detector is launched, all the
appropriate fields are displayed. Using command line
arguments, the user can choose to display distinct fields.

Fig. 1. Block Diagram of the Skype Traffic Detector

III. MAKING IT ALL WORK

In this section we describe how to install the various
tools in order to make the detector work. The documen-
tation of those tools needs to be examined before they
are installed. The platforms on which they are installed
needs to be taken into consideration as well. Netmate

and netAI only work under UNIX-like environments and
their dependencies need to be installed on these systems
before they are set up. In our research, we have used
FreeBSD 7.0 as our test platform. Installation procedure
may vary on other operating systems.

A. Quick Start Guide

The netAI package can be obtained from the caia
website at http://caia.swin.edu.au/urp/dstc/netai/. Once
the tarball is downloaded, extract it to a directory of
your choice then cd into that directory. Issue the fol-
lowing command: ./install-sh. This command will
download and install WEKA and netmate automatically.
Below are the steps if the tarball file is downloaded onto
the Desktop. [4]

cd /root/Desktop/

tar -xvzf netAI-0.1.tar.gz

cd netAI-0.1

./install-sh

B. Alternative Installation Procedure

It might occur in some cases that the automated install
from the netAI package will not work as it should. In
which case, a manual install of the different packages is
required. Downloading the individual packages and then
putting them into the install directory of netAI and re-
issuing the command ./install-sh as demonstrated
above also worked in some cases. Follow the instructions
below to install each package.

First of all, WEKA needs to be installed. To
do so, cd into the WEKA FreeBSD port tree; cd

/usr/ports/textproc/weka/ and issue the com-
mand make && make install and wait for the in-
stallation to complete. To check whether the installation
was successful, issue the command weka in a command-
line interface, such as a terminal or shell, and it should
display the user-interface of WEKA. If an x-server is not
available, the command-line version of WEKA should
show up. In our research, WEKA was tested on FreeBSD
7.0 running X11 server with KDE 3.5.

Once WEKA is installed, netmate and netAI can be set
up - it does not matter in which order they are installed.
Netmate can be downloaded from http://sourceforge.net/
projects/netmate-meter/ and NetAI can be obtained from
http://caia.swin.edu.au/urp/dstc/netai/.

1) Installing NetMate: Once downloaded, extract the
tarball and cd into it. Then issue the following commands
[5]:

CAIA Technical Report 090128A January 2009 page 2 of 5

http://caia.swin.edu.au/urp/dstc/netai/
http://sourceforge.net/projects/netmate-meter/
http://sourceforge.net/projects/netmate-meter/
http://caia.swin.edu.au/urp/dstc/netai/


./configure

gmake

gmake install

Notice that gmake was used instead of make (as
described in the original installation guide). It was noted
that gmake handles the installation process much better
than make when we tried to install the packages under
FreeBSD 7.0.

2) Installing netAI: The installation for netAI is more
challenging. After the tarball for netAI has been down-
loaded and extracted, cd into the extracted directory and
issue the following commands:

./configure −−prefix=/root/Desktop/netAI-0.1/
−−with-weka=/usr/local/bin/
−−with-netmate=/root/Desktop/netmate-0.9.4/
−−with-netmate-src=/root/Desktop/netmate-0.9.4/
gmake
gmake install

We are assuming here that both netmate and netAI
have been extracted to the root user’s desktop and
installed there itself in their respective directories.

C. Installing the Skype Traffic Detector

The Skype Traffic Detector can be downloaded from
http:// ... . Its installation is relatively simple; cd into
the directory where the tarball has been downloaded and
execute

tar -xvzf Skypetd.tar.gz

This will extract the Skype Traffic Detector
(Skype.pyw) and the best feature file (BestFea-
turesA.arff). Before running the Skype Detector, make
sure that Python 2.5.2 or higher is installed and that the
TCL/TK libraries are available as well. If the TCL/TK
libraries are not present they can be installed via the
FreeBSD ports tree. Issue the following commands to
install TCL/TK for Python.

cd /usr/ports/x11-toolkits/py-tkinter/

make && make install

A directory where the software will access files from
netAI’s output needs to be created as well. To accomplish
this, become the root user and execute

cd /usr/

TABLE I
COMMANDS FOR CAPTURING NETWORK TRAFFIC

Capture Type Command
Live Capture netmate -i em0
Trace File netmate -f /root/Desktop/tcp.pcap

mkdir Skype

The Skype Traffic Detector can only be run by root
due to privacy concerns.

IV. STARTING A TRACE

A training dataset is required in the .arff format to
start with. The manual pages of netmate and netAI
can be referred to for a complete list of arguments that
can be used to run the trace. Both netAI and netmate
have to be running simultaneously for the trace to work.
The most efficient way to achieve this is to execute
netmate in one shell window and netAI in another. There
will be no results if they are run independently of each
other. In our research, we mostly used trace files to run
our simulations since we were building upon already
accomplished work by other CAIA staff.

They had already built the training files needed to
identify Skype traffic. The C45 algorithm, or J48 as it
is known in WEKA, was used to determine the best
features that could be used to identify Skype traffic flows
and the training file was generated using that algorithm.
The Naive Bayes algorithm was also tested but the C45
algorithm proved to be more accurate in classifying
Skype traffic flows.

A. Start netmate

Netmate can be used to capture data from a trace-file
(-f <filename>) (e.g. a tcp-dump) or from a live capture
(-i <interface>) directly from a connected network
interface. If capture from a tracefile is chosen, run netAI
first (see below for details). Tables I and II demonstrate
what commands need to be issued and what output
should be expected.

The -r <filename> can be used to define any rules
that the user wishes to process while running the capture
such as netmate -f /root/Desktop/tcp.pcap -r

/root/Desktop/netAI-rules.xml, depending on
the location of your files, the commands would vary
accordingly. The designation of your network interface
card, whether emX or ethX, can be found by running
ifconfig command.

CAIA Technical Report 090128A January 2009 page 3 of 5



TABLE II
SAMPLE RESULTS FROM NETMATE CAPTURE

For Live Capture
Listening on em0
Up and Running

For Trace File
NetMate version 0.9.4,
(c) 2003-2004 Fraunhofer Institute FOKUS, Germany
netmate logfile is: /usr/local/var/log/netmate.log
Listening on: /root/Desktop/tcp.dump
Up and running.
End of capture file reached
Classifier Dump
packets: 18591
bytes: 2564968
rules: 2
NetTapPcap dump:
packets: 18604
bytes: 2565656
dropped packets: 0
Terminating netmate.

TABLE III
ARGUMENTS REQUIRED TO START NETAI

-c the class index
-t the training file
-A the attributes you want to run the algorithm on
-o needed to write output to a file
-Y the attributes you want in the output

B. Start netAI

netAI can also be configured to capture either from
a tracefile or directly from an interface. A basic un-
derstanding of how WEKA works is a must and a
knowledge of how data is stored in the .arff files is also
essential to get netAI to function properly. netAI requires
more arguments than netmate.

Arguments needed to make netAI work are shown in
Table III, and an example command is demonstrated in
Table IV. Table V shows the output after executing the
command.

In this scenario, the results from netAI are written

TABLE IV
EXAMPLE OF HOW TO START NETAI FROM THE COMMAND LINE

java -jar /root/netAI-0.1/src/netAI CL/netAI CL.jar
weka.classifiers.trees.J48
-c 1 -t /usr/Skype/BestFeaturesA.arff
-A 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18
-o /usr/Skype/Skype.test
-Y 0,1,2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,
21,22,23,24,25,26,27,28,29,30

TABLE V
A SAMPLE OUTPUT FROM NETAI AFTER IT IS SUCCESSFULLY

STARTED

netAI CL Version 0.1
Outputting features: 0 1 2 3 4 ... 16 17 18 19 20
Output File: /usr/Skype/data.test
Training File: /usr/Skype/BestFeaturesA.arff
Classification Algorithm: weka.classifiers.trees.J48
Model created in 1.99 seconds
Ready to receive from: TCP export

Fig. 2. Skype Traffic Detector

to a file, Skype.test, and we are using the training data
file BestFeaturesA.arff. weka.classifiers.trees.J48 is the
algorithm being used to train on the data obtained from
netmate.

C. Skype Traffic Detector

The main function of the Skype Traffic Detector is
to display and filter out the results output from netAI
on a clean graphical user interface, making it easier
for the user to interpret and work on. Note that it
is important that netAI outputs its results to the
correct location and uses the proper filename for
the Skype Traffic Detector to work. The first thing
that needs to be done to run the detector is to change
its file mode to executable so that it can be run. To do
so, issue the following commands in sequence:

cd into directory where program is stored

./Skype.pyw (to execute it)

The output file from netAI needs to be stored in
the directory /usr/Skype/ and should have the filename
Skype.test.

Once the program is up and running the results can
immediately be seen on the screen as illustrated in Figure

CAIA Technical Report 090128A January 2009 page 4 of 5



Fig. 3. Skype Traffic Detector and filter dialog

Fig. 4. Skype Traffic Detector filtering

2. The program can be set to display records from a
chosen list of IPs only. To achieve this, click on the
“Tools” menu and then select the “Filter” command.
A window identical to that shown in Figure 3 appears.
Type in the IP addresses desired and click on the “Add”
button to add them to the filter list and the program will
start filtering immediately, as illustrated in Figure 4. In
case an entry mistake is made, the whole list can be
cleared and the filtering criteria must be re-entered. It
is also possible to use wildcard masks to filter out IPs.
Suppose IPs starting with 24.62 need to filtered; 24.62.*
should be input in the entry textbox and added to the
list. The detector will then filter all IPs in the range
24.62.XXX.XXX.

Specific fields can be displayed by entering command
line arguments, such as ./Skype.pyw 0 1 2 3. This
will cause the GUI to display four fields. The arguments
for the various fields in the program are shown in Table
VI.

V. CONCLUSION

In this technical report, we have illustrated how ma-
chine learning tools can be set up and how we can filter
out VoIP calls made on Skype using the Skype Traffic
Detector. Our objective to design a system that could
display and update records from netAI in real-time was
successfully achieved. We were able to implement func-

TABLE VI
FIELDS AND THEIR ASSOCIATED NUMBERS

Field Argument
certainty 0
flowID 1
srcIP 2
srcPort 3
desIP 4
desPort 5
protocol 6
datetimeStart 7
datetimeEnd 8
timeOut 9
startTime 10
endTime 11
duration 12
ringTime 13
end 14

tions to eliminate repeated and redundant information all
by providing a way to filter out records based on their
IP address. Even though the Skype Traffic Detector was
designed to filter out Skype VoIP calls, its code can be
altered to suit other applications where network traffic
capture is involved. Further development in machine
learning techniques means that we will be able to create
more reliable and powerful filtering systems.

Future development on the Skype Traffic Detector can
include more filtering options and the ability to print to
softcopy or hardcopy. A next release can also include
loading netAI files which have been saved before and
therefore conducting the trace on those files instead of
having to run netAI and netmate at the same time as the
Detector.

REFERENCES

[1] Wikipedia, “Machine learning — Wikipedia, the free ency-
clopedia,” 2009, [Online; accessed 19-January-2009]. [Online].
Available: http://en.wikipedia.org/wiki/Machine learning

[2] ——, “Pcap — Wikipedia, the free encyclopedia,” 2009,
[Online; accessed 27-January-2009]. [Online]. Available: http:
//en.wikipedia.org/wiki/Pcap

[3] T. U. of Waikato, “Weka 3: Data mining software in java,”
2009, [Online; accessed 19-January-2009]. [Online]. Available:
http://www.cs.waikato.ac.nz/∼ml/weka/

[4] S. Zander and N. Williams, “netai install,” 2006, [Online;
accessed 19-January-2009]. [Online]. Available: http://caia.swin.
edu.au/urp/dstc/netai/INSTALL

[5] C. Schmoll and S. Zander, “Netmate — user and developer
manual,” 2004.

CAIA Technical Report 090128A January 2009 page 5 of 5

http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Pcap
http://en.wikipedia.org/wiki/Pcap
http://www.cs.waikato.ac.nz/~ml/weka/
http://caia.swin.edu.au/urp/dstc/netai/INSTALL
http://caia.swin.edu.au/urp/dstc/netai/INSTALL

	Introduction
	The Tools
	Making It All Work
	Quick Start Guide
	Alternative Installation Procedure
	Installing NetMate
	Installing netAI

	Installing the Skype Traffic Detector

	Starting a Trace
	Start netmate
	Start netAI
	Skype Traffic Detector

	Conclusion
	References

