
SCTP NAT Automatic Test Utilities
David Hayes, Jason But

Centre for Advanced Internet Architectures, Technical Report 081128B
Swinburne University of Technology

Melbourne, Australia
david.hayes@ieee.org, jbut@swin.edu.au

Abstract—The development of the SCTP NAT auto-
matic test utilities is part of the SONATA[1] project to
develop and release a BSD licensed implementation of a
Network Address Translation (NAT) module that supports
the Stream Control Transmission Protocol (SCTP). The
test utilities work with master/slave architecture commu-
nicating over a control channel. Tests are specified in
configuration files on the master host. This report gives
instructions on how tests can be specified, with examples
of common SCTP NAT functionality tests.

I. INTRODUCTION

As part of the development of the FreeBSD kernel
SCTP NAT implementation, alias_sctp, some ver-
satile automated functionality testing utilities have been
developed. In this report we outline the architecture of
these test utilities and how to develop configuration files
to perform various testing scenarios using these utilities.

The NAT is a black box that translates IP address of
packets traversing the private and public sides of the
device. Typically this would involve multiple hosts on
each side of the NAT. It is however feasible to test NAT
functionality using a single device on either side of the
NAT and configuring tests to emulate conditions that
would normally only be seen with multiple devices.

We employ a master/slave architecture – tests are
completely managed by the master executing on a host
on the local side of the NAT. Tests are designed and
written as configuration files to be processed by the
master.

We also note that the SCTP NAT test suite is not
specific to our alias_sctp implementation and has
been specifically developed to be used with any SCTP
NAT implementation.

This report is structured as follows, in Section II we
discuss the architecture used in the testing environment
while Section III looks at the details of executing the
Python scripts on the test platforms. In Section IV we
provide details on the formats of the test configuration
files with some examples provided in Section V. In the

Appendices we provide some further examples along
with a listing of library requirements for the test ap-
plications.

II. AUTOMATIC TEST ARCHITECTURE

A NAT typically handles connections from and to
multiple clients. However to test the NAT’s functionality
it is not necessary to re-construct this physical layout.
It is possible to perform many functionality tests using
a single client on either side of the NAT. The range of
tests that can be performed is greatly expanded if the host
on the global side of the NAT is multi-homed. Further
testing is possible if both local and remote hosts are
multi-homed.

In our test architecture we initiate testing from the
local side of the NAT, since access from the global side
depends on port forwarding rules installed in the NAT.
A slave utility is first launched on the global side which
waits for a connection from the master (local side of
the NAT). The master establishes a control channel (see
Figure 1) through which it can control the execution of
commands on the slave. A series of test channels are
then established as required to complete the programmed
tests. The tests to be performed are outlined in a set
of configuration files which are read and parsed by the
master utility.

A. Address configuration

Both the local and global hosts must have a con-
figuration file (.cfg), that contains their IP address and
network interface information (see section IV for de-
tails on these files). After establishment of the control
channel, the local host sets the global host’s response
timeout (resp TO) variable via the control channel. It is
important for both hosts to agree on the response timeout
to avoid synchronisation problems.

B. Test execution

The local host reads its test procedures from one or
more configuration files (.cfg). Each section defines a

CAIA Technical Report 081128B November 2008 page 1 of 10

mailto:david.hayes@ieee.org
mailto:jbut@swin.edu.au

LOCAL

Test channels

Master

Control channel

GLOBAL

.
.
.

NAT

Slave

Fig. 1. Automatic test setup

no

Execute command

valid?

from InCtlQ

Get next command

print error message

yes

Fig. 3. Slave (global) basic operation

test where instructions within the test are executed in
sequential order. Test sections are executed in alpha-
betical order. The basic operation of the master for a
particular test section is shown in figure 2. Instructions
can be either commands for the master (local host) or
the slave (global host), or to set variables on the master.
Operations on the master side are checked for validity
and then executed. If there are any errors, a message is
printed, and the master attempts to continue processing.

Instructions for the slave are not checked for validity,
but sent over the control channel. The slave simply re-
ceives commands from the master, checks their validity,
and executes them (see figure 3).

The success or failure of instructions on the master’s
side is tracked, with a summary of the pass rate for each
test (instructions within a test section), and the overall
pass rate when all tests have been completed. The results
of instructions that pass are output in green, while those
that fail are printed in red. Any problems in the execution
of the instructions are printed in blue.

C. Channel Queues

Packets are received via the pcap interface (python
Pcapy module[2]). A thread is started to look after the
incoming packets on each interface the host has defined
in its configuration file.

All packets received on any of the interfaces are
placed in either the InCtlQ or the InPktQ queues

vtag != 1

InCtlQ InPktQ

vtag = 1

(or inittag = 1)

(or inittag != 1)

Fig. 4. Incoming packets

(see figure 4). The control channel is discriminated using
vtags = ports = 1 values. Packets arriving on the
control channel are placed in the InCtlQ. All other
packets are placed in the InPktQ queues. The queueing
utilises the python Queue, which handles the necessary
mutex thread safe locking. When either the local host,
or the global host is waiting for a response it issues
a blocking get request to the respective queue with a
resp TO timeout.

It is also necessary to install a firewall rule on each
end-host to discard SCTP packets. This prevents the local
SCTP stack from receiving and responding to the packets
generated during testing.

III. PYTHON SCRIPTS

The automatic SCTP NAT utilities consist of:
• RawSctp.py – SCTP encoding and decoding

classes (based on the Impacket library[3])
• sctpNATtestCommon.py – Common classes

for both the master and slave scripts.
• sctpNATtestL – Executable master script, run

on the local side of the NAT.
• sctpNATtestG – Executable slave script, run on

the global side of the NAT.
Command line options for sctpNATtestL and

sctpNATtestG are shown in Code segments 1 and 2
respectively. The only compulsory option is for
sctpNATtestL, which requires a destination IP ad-
dress on the slave host.

IV. CONFIGURATION FILE

The auto test utilities rely on configuration files
(“.cfg”) files to define their IP addresses and the
tests to be conducted. The names of the files are not
significant. The test utilities will load all “.cfg” files
in the current directory (or the one given by the path
option).

The basic format of the configuration files is:
[section heading] followed by instructions. Lines
that begin with “#” are comments.

CAIA Technical Report 081128B November 2008 page 2 of 10

print error message set variableExecute command

Send command to
slave (ctl channel)

Get next instruction
from config file

type?

Set variable

valid?

Master command

valid?

Slave command

Fig. 2. Master (local) basic operation

Code segment 1 Local host (master) command line options
Options:

--version show program’s version number and exit
-h, --help show this help message and exit
-v, --verbose turns on verbose mode, showing all command states and

packets received
-n, --nocolour turns colour mode on
-d ip_address, --dest=ip_address

destination ip address of slave (global host)
-t N, --timeout=N timout after N seconds when waiting for responses

[default: 2]
-p PATH, --config_path=PATH

path to config files (.cfg)

Code segment 2 Global host (slave) command line options
Options:

--version show program’s version number and exit
-h, --help show this help message and exit
-v, --verbose turns on verbose mode, showing all command states and

packets received
-w N, --wait=N Wait N seconds for commands from master [default: 300]
-p PATH, --config_path=PATH

path to config files (.cfg)

CAIA Technical Report 081128B November 2008 page 3 of 10

A. Address configuration

Both the master and slave hosts must have a con-
figuration file that describes their network interfaces
and corresponding IP addresses. The section is headed
by the title “[MY_ADDRESSES]”. Each item under
this section heading consists of label and a tuple of
< interface, address >. See code segment 3 for an
example.

Code segment 3 Example address Configuration
[MY_ADDRESSES]
myip1=(’tun0’,’10.0.1.2’)
myip2=(’tun1’,’10.0.2.2’)

There should not be multiple “[MY_ADDRESSES]”
configuration sections within the configuration files,
since they will overwrite each other.

B. Test configuration

Only the master uses the test configuration files. Test
configuration files consist of a section heading “[Test
Name]” for each test, followed by a set of Instructions.
Tests are run in alphabetical order, while the instructions
are stepped through in the order given in the configura-
tion file. Instructions consist of an identifier, followed by
a “:”. There are four identifiers for instructions:

• Mcmd: command to be executed on the master host
• Scmd: command to be sent to the slave host for

execution
• TestRtn: test the returned result of the last

instruction
• SetVar: set a variable on the master host
Commands and their descriptions are shown in Table I

for the master, and Table II for the slave.
Three variables may be set using the SetVar identi-

fier:
• CurrentSrc – the default source address to use

when sending an SCTP test packet. This variable
defaults to srcaddrs[0].

• CurrentDst – the default destination address
to use when sending an SCTP test packet. This
variable defaults to dstaddr

• CurrentPayload – the default payload data to
be put into a test DATA chunk. This variable
defaults to ’Test Data’.

V. EXAMPLES

This section will look at two test configuration exam-
ples in detail.

Code segment 4 shows the configuration for a simple
multi-homed setup. The test proceeds as follows:

1) First an association instance labeled MT is created.
This single command creates the instance on both
the master and the slave side hosts.

2) The slave is then instructed to wait for an INIT
chunk on association MT.

3) The Master then sends the INIT and implicitly
waits for an INIT-ACK

4) The master then initiates a test of sending data on
all source↔destination address pairs, instructing
the slave to echo the data back, checking that what
was sent is received.

5) The slave is instructed to wait for a SHUTDOWN-
ACK chunk, and respond with a SHUTDOWN-
COMPLETE chunk.

6) The master sends a SHUTDOWN-ACK chunk
and waits for the SHUTDOWN-COMPLETE.

Code segment 4 Example to test all paths in a multi-
homed setup
[Multi-home Test]
Mcmd: SetAssoc MT (10,10,10,10)
Scmd: WaitInit MT
Mcmd: Init MT
Mcmd: TestAllPaths MT
Scmd: WaitClose MT
Mcmd: Close MT

The second example shown in Code segment 5 tests
the response of the NAT when it receives a packet
from an unknown association. It also demonstrates the
SetVar, TestRtn, and the different TestPath methods.
The SetVar examples are not necessary in this case,
since they are setting the variables to their default values.
They are here as an example.

The test proceeds as follows:
1) An association instance, ID TE, is created.
2) Set variable CurrentSrc to srcaddrs[0]. The config-

uration files are permitted to use variables that are
internal to the python scripts. In this case srcaddrs
is a list of the master’s addresses.

3) Set variable CurrentDst to dstaddr. In this case
dstaddr is the address given on the master’s com-
mand line.

4) Set variable CurrentPayload to ’Test Data’.
5) Print to stdout a comment to say what the test is

about
6) If the NAT is working properly the next command

should fail. FailisPass tells the master to treat

CAIA Technical Report 081128B November 2008 page 4 of 10

Master command Description
SetAssoc assocID
(sport,dport,rx_vtag,tx_vtag)

Establish a new association instance on the master and the slave identified by assocID. The tuple
of source port, destination port, vtag for receiving, vtag for transmitting, is from the master’s
perspective. An association must be defined in this way, before it is referenced by any of the
other commands. Note: this does not establish an association between the master and the slave,
that is done by the Init or ootbAddAddr commands

Init assocID Initialise the association identified by assocID (this must have been defined prior to this with the
SetAssoc command). The master will send an INIT to the slave, and wait for an INIT-ACK

WaitInit assocID Wait for initialisation of the association identified by assocID. That is, it will wait for an INIT
from the slave, and respond with an INIT-ACK

TxData assocID Transmit data on the association identified by assocID using the CurrentSrc as the source IP
address, CurrentDst as the current destination IP address, and CurrentPayload as the payload
for the DATA chunk. Note: It is not necessary to have an established SCTP association to issue
this command. It can be used to check the NATs response to Out Of The Blue (OOTB) packets.

RxData assocID Receive data on the association identified by assocID.

RxAny assocID Receive any SCTP message on the association identified by assocID.

AddAddr assocID newaddress Uses an ASCONF-AddIP to add the given address to the association. It will then wait for an
ASCONF-ACK. The ASCONF-AddIP is sent using the base source and destination addresses.

ootbAddAddr assocID newaddress Similar to AddAddr, except the source address will be newaddress.

WaitAddAddr assocID Wait for an ASCONF-AddIP on from association assocID and respond with an ASCONF-ACK.

DelAddr assocID ip_address Uses an ASCONF-DelIP to delete the given address to the association. It will then wait for an
ASCONF-ACK.

WaitDelAddr assocID Wait for an ASCONF-DelIP on from association assocID and respond with an ASCONF-ACK.

Close assocID Send a SHUTDOWN-ACK on association assocID, and wait for a SHUTDOWN-
COMPLETE.

WaitClose assocID Wait for a SHUTDOWN-ACK on association assocID, and respond with a SHUTDOWN-
COMPLETE.

Abort assocID Send an ABORT on on association assocID.

TestPath assocID
srcaddr dstaddr payload

Test the source↔destination path using payload as the data in the DATA chunk. The master
sends payload to the slave, and the slave echos back whatever it received. The master then
compares what it sent with what it received. A match is a pass.
Normally the TestPath command performs the equivalent of:

1) Scmd: RxData
2) Mcmd: TxData
3) Mcmd: RxData
4) Scmd: EchoData

TestCurrentPath assocID Similar to TestPath except CurrentSrc, CurrentDst, and CurrentPayload are used.

TestAllPaths assocID This command does a TestPath for all source↔destination address pairs defined for this
association.

RxSlaveCtlData Receive data from the slave on the control channel. This is useful if the master wants to find
out the result of a failed slave command.

FailisPass The result of the next command will be treated as a pass if it fails. This is useful when testing
the response of the NAT to OOTB packets, which depending on the configuration should not
pass through the NAT. A pass for the NAT, is then the failure of the command.

Wait N Wait N seconds, before proceeding.

Print ’text’ Print the given text to stdout. Useful for adding comments to aid in interpretation of the results.

PrintLastRxChunk assocID Decode and print the last received chunk on assocID to stdout.

FlushTestQ Remove any queued packets in the test packet queue.

TABLE I
COMMANDS THE MASTER INTERPRETS

CAIA Technical Report 081128B November 2008 page 5 of 10

Slave command Description
SetRespTO N Set the packet wait timeout to N , where N can be a decimal number. The master issues this

command to the slave during initialisation, so that both master’s response wait time and the
slave’s are the same. It should not be present in the configuration file.

SetAssoc assocID
(sport,dport,rx_vtag,tx_vtag)

This command is sent by the master as part of the action it performs when it is issued the
command. It should not be present in the configuration file.

Init assocID As for master.

WaitInit assocID As for master.

TxData assocID As for master.

RxData assocID As for master.

EchoData assocID This requests the slave to send a DATA chunk containing the contents of the last DATA chunk
it recievied on the association identified by assocID.

AddAddr assocID newaddress As for master.

ootbAddAddr assocID newaddress As for master.

WaitAddAddr assocID As for master.

DelAddr assocID ip_address As for master.

WaitDelAddr assocID As for master.

Close assocID As for master.

WaitClose assocID As for master.

Abort assocID As for master.

TxLastChunkInfo assocID Transmit the decoded last chunk received on assocID to the master on the control channel (in
a DATA chunk)

FlushTestQ As for Master.

WaitCtlClose Wait for the control channel to close. This is automatically issued by the master after all the
tests are complete. It should not be present in the configuration file.

TABLE II
COMMANDS THE SLAVE INTERPRETS

the fail as a pass.
7) Test association TE by sending data, having the

slave echo what it received, and checking the
received value.

8) Set the instruction return value to be the value of
the last SCTP chunk received on TE.

9) Test the return value, to check that it is ’Error’.
In this case, if the NAT is responding to local side
OOTB packets with an ERROR-M chunk, the last
chunk we received should be an error.

10) Wait for the slave to time out waiting for data
it wasn’t going to receive. The internal variable
resp TO is used. This parameter defaults to 2
seconds, but is configurable on the command line
through the --timeout option.

11) Tell the slave to wait for an ASCONF-AddIP on
TE and respond with an ASCONF-ACK.

12) Send an OOTB ASCONF-AddIP chunk from
srcaddrs[0], adding srcaddrs[0], and wait for the
ASCONF-ACK.

13) Test association TE by sending TestCurrentPay-
load using CurrentSrc and CurrentDst, having the
slave echo what it received, and checking the
received value. This is the same as the previous
test, except that now we expect it to pass.

14) This does the same as the above, except that it
specifies the source address to be srcaddrs[0], the
destination address to be dstaddr, and the payload
of the DATA chunk as ’Payload’.

15) This is another way of doing the same thing,
this time specifying the source and destination ad-
dresses ’192.168.0.65’ and ’10.0.1.2’.

16) Instruct the slave to wait for the association to
close down. That is wait for a SHUTDOWN-ACK

CAIA Technical Report 081128B November 2008 page 6 of 10

and respond with a SHUTDOWN-COMPLETE.
17) Send a SHUTDOWN-ACK and wait for a

SHUTDOWN-COMPLETE.

A. Writing configuration files

Some points to remember when writing configuration
files:

• All control channel and test packets are queued.
– This means that it is often fine for one side to

send something before the other side is asked
to receive it. However it is good practice not
to do this.

– The slave gets one instruction from the control
queue, processes it, and then gets the next one.
When an instruction waiting for a response
does not get it, it will eventually time out, and
only then will the next instruction be executed.
As such care must be taken to ensure that the
slave will be ready to respond. Code segment 5
gives an example of this.

• In a multi-homed setup, packets will travel on
different paths and may not arrive in the order they
are sent. We recommend adding “Mcmd: Wait
1” between instructions where this may occur.

• The FlushTestQ command can be useful in
restoring the InPktQ to the empty state. This is
automatically done at the beginning of each test.

– Be aware that if the FlushTestQ command is
sent to the slave, it will be put on the InCtlQ,
and be processed once all other previous in-
structions have been processed. For this reason,
sometimes it may be necessary to add a Wait
after issuing this command.

VI. CONCLUSION

The SCTP NAT automatic testing utilities provide a
framework for testing the functionality of an SCTP NAT.
The tests are conducted via a master/slave arrangement
via a control channel. New tests can be specified in con-
figuration files on the master (local side) host, without
any new test programs being written.

ACKNOWLEDGEMENTS

The development of the SCTP NAT automatic test
utilities is part of the SONATA [1] project and was made
possible in part by a grant from the Cisco University Re-
search Program Fund at Community Foundation Silicon
Valley.

The project benefits from the people and facilities of
CAIA.

REFERENCES

[1] CAIA, “SONATA SCTP over NAT adaptation,”
viewed 12 June 2008. [Online]. Available: http:
//caia.swin.edu.au/urp/sonata

[2] C. S. Technologies, “Pcapy,” viewed on 28
November 2008. [Online]. Available: http://oss.
coresecurity.com/projects/pcapy.html

[3] ——, “Impacket,” viewed on 28 November
2008. [Online]. Available: http://oss.coresecurity.
com/projects/impacket.html

APPENDIX A
ADDITIONAL EXAMPLES

Two additional examples are included to aid those
who wish to specify their own tests. The test shown in
code segment 6 tests how the NAT handle’s lookup table
conflicts. The test shown in code segment 7 tests the NAT
functionality when addresses are added to and removed
from an association (which is important when global IP
addresses are tracked).

APPENDIX B
USEFUL INTERNAL VARIABLES

Table III gives a list of useful internal variables that
can be addressed in configuration files. Refer to the
different configuration files to see how they can be used.

CAIA Technical Report 081128B November 2008 page 7 of 10

http://caia.swin.edu.au/urp/sonata
http://caia.swin.edu.au/urp/sonata
http://oss.coresecurity.com/projects/pcapy.html
http://oss.coresecurity.com/projects/pcapy.html
http://oss.coresecurity.com/projects/impacket.html
http://oss.coresecurity.com/projects/impacket.html

Code segment 5 Example to test response of a NAT to an unknown association
[Test Error AddIP]
Mcmd: SetAssoc TE (11,11,11,11)
SetVar: CurrentSrc = srcaddrs[0]
SetVar: CurrentDst = dstaddr
SetVar: CurrentPayload = ’Test Data’
Mcmd: Print ’Try sending when there is no associaion up in the NAT’
Mcmd: FailisPass
Mcmd: TestCurrentPath TE
Mcmd: LastRxChunkInfo TE
TestRtn: ’Error’
#wait for slave to timout on RxData
Mcmd: Wait resp_TO*2
Scmd: WaitAddAddr TE
Mcmd: ootbAddAddr TE srcaddrs[0]
Mcmd: Print ’Run a few test paths’
#shorthand testpath - uses CurrentSrc, CurrentDst, and CurrentPayload
Mcmd: TestCurrentPath TE
#long shorthand testpath
Mcmd: TestPath TE srcaddrs[0] dstaddr ’Payload’
#or
Mcmd: TestPath TE ’192.168.0.65’ ’10.0.1.2’ ’Payload’
Scmd: WaitClose TE
Mcmd: Close TE

Internal Variable Description

srcaddrs[] list of the master’s ip addresses, as given in the configuration file

dstaddr slave destination address, as given on the command line

resp TO Time to wait for a response, before timing out

TABLE III
USEFUL INTERNAL VARIABLES THAT CAN BE ADDRESSED IN CONFIGURATION FILES

CAIA Technical Report 081128B November 2008 page 8 of 10

Code segment 6 Example to test the response of the NAT to look up table collisions
[Test Init-Abort]
Mcmd: SetAssoc TA1 (33,33,33,33)
Scmd: WaitInit TA1
Mcmd: Init TA1
Mcmd: Print ’Try to cause an abort, by using same vtags and ports’
Mcmd: SetAssoc TA2 (33,33,33,33)
Scmd: WaitInit TA2
Mcmd: FailisPass
Mcmd: Init TA2
Mcmd: LastRxChunkInfo TA2
TestRtn: ’Abort’
wait for slave timout
Mcmd: Wait resp_TO*2
Mcmd: Print ’Try to cause an abort,’
Mcmd: Print ’ with only the vtag the global host will put on packets different’
Mcmd: SetAssoc TA3 (33,33,44,33)
Scmd: WaitInit TA3
Mcmd: FailisPass
Mcmd: Init TA3
Mcmd: LastRxChunkInfo TA3
TestRtn: ’Abort’
wait for slave timout
Mcmd: Wait resp_TO*2
Mcmd: Print ’Try to cause an abort,’
Mcmd: Print ’ with only the vtag the local host will put on packets different’
Mcmd: SetAssoc TA4 (33,33,33,44)
Scmd: WaitInit TA4
Mcmd: FailisPass
Mcmd: Init TA4
Mcmd: LastRxChunkInfo TA4
TestRtn: ’Abort’
wait for slave timout
Mcmd: Wait resp_TO*2
Mcmd: Print ’Only the local src port different’
Mcmd: Print ’ is enough since match in both directions is src/dst ports’
Mcmd: SetAssoc TA5 (44,33,33,33)
Scmd: WaitInit TA5
Mcmd: Init TA5
Mcmd: Print ’Only the dst port different’
Mcmd: Print ’ is enough since match in both directions is src/dst ports’
Mcmd: SetAssoc TA6 (33,44,33,33)
Scmd: WaitInit TA6
Mcmd: Init TA6
Mcmd: Print ’Try a valid connection with different vtags’
Mcmd: SetAssoc TA7 (33,33,44,44)
Scmd: WaitInit TA7
Mcmd: Init TA7
Scmd: WaitClose TA1
Mcmd: Close TA1
Scmd: WaitClose TA5
Mcmd: Close TA5
Scmd: WaitClose TA6
Mcmd: Close TA6
Scmd: WaitClose TA7
Mcmd: Close TA7

CAIA Technical Report 081128B November 2008 page 9 of 10

Code segment 7 Example to test adding and removing IP addresses for an association that is established through
the NAT
[Test DelIP]
Mcmd: SetAssoc TD (22,22,22,22)
Scmd: WaitInit TD
Mcmd: Init TD
Mcmd: TestAllPaths TD
#delete the last of the list of source addresses
Mcmd: Print ’Deleting 10.0.2.2 and test path’
Scmd: DelAddr TD ’10.0.2.2’
Mcmd: WaitDelAddr TD
#need to wait here otherwise the AsconfAck may beat
the test data packet (they travel on different paths)
Mcmd: Wait 1
Mcmd: FailisPass
Mcmd: TestPath TD srcaddrs[0] ’10.0.2.2’ ’Payload 1’
#wait for slave RxData to time out
Mcmd: Wait resp_TO*2
Mcmd: Print ’Adding 10.0.2.2 and test path’
Scmd: AddAddr TD ’10.0.2.2’
Mcmd: WaitAddAddr TD
#need to wait here otherwise the AsconfAck may beat
the test data packet (they travel on different paths)
Mcmd: Wait 1
Mcmd: TestPath TD srcaddrs[0] ’10.0.2.2’ ’Payload 2’
Scmd: WaitClose TD
Mcmd: Close TD

CAIA Technical Report 081128B November 2008 page 10 of 10

	Introduction
	Automatic test architecture
	Address configuration
	Test execution
	Channel Queues

	Python scripts
	Configuration file
	Address configuration
	Test configuration

	Examples
	Writing configuration files

	Conclusion
	Appendix A: Additional examples
	Appendix B: Useful internal variables

