
Alias sctp Version 0.2:
SCTP NAT implementation in IPFW

David Hayes, Jason But
Centre for Advanced Internet Architectures, Technical Report 081128A

Swinburne University of Technology
Melbourne, Australia

david.hayes@ieee.org, jbut@swin.edu.au

Abstract—Alias sctp is part of the SONATA[1] project
to develop and release a BSD licensed implementation of a
Network Address Translation (NAT) module that supports
the Stream Control Transmission Protocol (SCTP). Arriv-
ing SCTP packets are first parsed for information that
may be important to the association’s state in the NAT.
This information along with the SCTP message is then
passed to the state machine for further processing for a
final decision on whether to NAT the packet, and whether
the association’s state in the NAT should change.

Alias sctp is implemented as a patch for the libalias
kernel module, which works with the FreeBSD IPFW2
NAT module. Many of alias sctp’s parameters can be con-
figured dynamically through the FreeBSD sysctl interface.
Some minor modifications to the storage and management
of IP addresses will need to be made when libalias
supports IPv6. Alias sctp 0.2 is a fully functional IPv4
SCTP NAT.

I. INTRODUCTION

Alias sctp 0.2.x is a fully functional Stream Control
Transmission Protocol (SCTP) Network Address Trans-
lation module for FreeBSD. The module works with the
IPFW2 NAT kernel module, patching the libalias kernel
module. This technical report now obsoletes the original
Alias sctp 0.1 report [2].

SCTP[3] is a reliable transport protocol operating
on top of the Internet Protocol (IP). It was originally
designed to transport telephony signalling but its appli-
cation is broad, providing improved UDP and TCP type
functionality.

Standard TCP/UDP type NAT implementations use
<address,ports> tuples to identify each connection. This
will not work with SCTP because:

• SCTP’s checksum requires calculation of a CRC-
32C over the entire SCTP message. Therefore, any
changes made, such as a port number, require a full
recalculation of the checksum.

• SCTP supports multi-homing of endpoints. If a NAT
was to change the port number to avoid a lookup
table conflict, this would require synchronisation
with other NATs which may be connected though
alternate paths through the network.

• SCTP’s messages can contain a number of control
chunks, which need to be scanned to determine
whether the incoming packet will change the state
of the association in the NAT.

This report outlines the design of alias_sctp 0.2.x.
Following a description of the terminology used in the
report, the details of the SCTP NAT design are described.
These include the packet parser, state machine, look
up tables, and timer queue designs. Following this are
some notes on the implementation in the FreeBSD ipfw2
libalias context and changes that will be required for
IPv6 functionality when this is supported by libalias.
The report concludes with a summary of achievements
and suggestions for further enhancements and analysis.

II. TERMINOLOGY

The operational states and packet processing se-
quences in alias sctp are described using ITU-T Message
Sequence Charts (MSC) [4]. Table I describes some of
the notation used in the MSCs.

The SCTP protocol unit is termed a message.
Chunks within an SCTP message are identified in
UPPERCASE-BOLD, while parameters within chunks
are bold upper and lower case.

III. PACKET PARSER

Figure 1 gives an overview of the SCTP NAT. When
a packet arrives, the state of the timer queue is checked,
with any resulting timeouts processed. Following this,
packets are parsed for relevant SCTP information. The
appropriate association state is then searched for in the

CAIA Technical Report 081128A November 2008 page 1 of 17

mailto:david.hayes@ieee.org
mailto:jbut@swin.edu.au

CheckTimers

PktParser

ID INi INa UP CL

ID process INi process INa process UP process CL process

hmsc SctpAlias

Fig. 1. SCTP NAT overview

sctp(*) any sctp message
[sctp(*)] The sending of this message is depen-

dent on the NATs configuration
l sctp(*) sctp message that has been received

from a local address.
g sctp(*) sctp message that is from a global

address outside the NAT device.
r sctp(*) sctp message reply back to the sender,

usually under error. conditions.
f sctp(*) forward of sctp packet through NAT.
{l,g} vtag Set appropriate local or global verifica-

tion tag
init tag Initiation Tag
* T Any timer
LT Look up Table
assoc state Stored state of an SCTP association

TABLE I
SCTP MSC SYNTAX

lookup tables. The packet is processed according to the
recorded state of the SCTP association.

A. SCTP messages

SCTP’s multi-streaming capability makes parsing
packets more difficult than would be the case with a
TCP/UDP NAT. An IP packet contains a single SCTP

message. However this message may contain many con-
trol and data streams delineated as chunks (see Figure 2).
In addition, each control chunk may contain a number
of parameters, some of which are relevant to the NAT.
Generally the NAT parses just enough information in
the PktParser to determine the current state of the
association the packet belongs to. Further parsing of the
chunk and parameters is done as required by the state
machine.

SCTP uses a Verification tag (vtag), to differentiate
associations. The vtag is randomly generated by the end-
points during the association initialisation process and
should be used as part of the tuple to identify associa-
tions. Alias_sctp uses a tuple consisting of <vtag,
ports, [global IP address]> to identify associations. The
use of the global IP addresses is optional [5] (see [6] for
a full discussion on pros and cons of tracking global
IP addresses). Using vtags within the identification tuple
allows the NAT to leave port numbers unchanged. There
is then no need to recalculate the SCTP checksum.

B. Parsing mechanism

Figure 3 outlines the operation of the PktParser.
First, the source and destination addresses are obtained

CAIA Technical Report 081128A November 2008 page 2 of 17

Ipfw In

IpfwIn

NAT parse

NAT P

Ipfw Out

IpfwOut

NAT function

NAT

packet

parse packet for:
src & dst IP address,

SCTP vtag and src & dst port

Locate chunk of interest:
INIT, INIT-ACK, ASCONF,

ABORT, SHUTDOWN-ACK,
or SHUTDOWN-COMPLETE

when in LT

Extract assoc state

otherwise

when not Initiating
and not an ABORT

[sctp(ERROR-M)]

exc

when no resources

drop packet

exc

Create new
assoc state template

alt

sctp(*)

msc PktParser

Fig. 3. Parsing and checking of an arriving packet

CAIA Technical Report 081128A November 2008 page 3 of 17

SCTP Header

Control Chunk 1 Header

Control Chunk 2 Header

Data Chunk 1 Header

(a) Multiple chunks

SCTP Header

Data Chunk 1 Header

Control Chunk 1 Header

Parameter 1

Parameter 2

Parameter 3

Parameter 4

(b) Multiple parameters
per chunk

Fig. 2. SCTP messages

from the IP header. SCTP’s common header is then
parsed to find the verification tag and source and destina-
tion port numbers. There is now enough information to
search the association Look up Table (LT) to see if there
is association state information matching this packet. If
no matching association is found, parsing continues since
this packet may contain an initiating control chunk.

Control chunks are then scanned to find the most
important to the state of the association in the NAT. Only
the most important (in terms of NAT state) is referenced
for processing in the state machine. The ranking of
control chunks, by importance to the NAT, is as follows
(1 is most important):

1) ABORT – Other chunks are meaningless
2) Initiation (INIT) – No other chunks are allowed

in SCTP packet
3) Initiation Acknowledgement (INIT-ACK) – No

other chunks are allowed in SCTP packet
4) Shutdown Acknowledgement (SHUTDOWN-

ACK) – Other chunks are meaningless in SCTP
packet

5) Shutdown Complete (SHUTDOWN-
COMPLETE) – No other chunks are allowed in
SCTP packet

6) Address Configuration (ASCONF) – contains in-
structions to add or delete IP addresses.

7) Address Configuration Acknowledgement
(ASCONF-ACK)

If the packet was initiating a new association, a
new assoc_state structure (see code segment 1) is
created, otherwise the matching assoc_state is used.
This information is passed to the state machine.

If no match was found, an ERROR-M chunk may be
sent to indicate a NAT table look up failure if allowed

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

Idle (ID) for connection of interest

sctp(INIT)
rxInit

sctp(ASCONF-AddIP)
rxAddIP

sctp(other)
Drop

alt

msc ID process

Fig. 4. Initiate dynamic NAT rule

by the current NAT policy (see section VII-B2).

IV. SCTP NAT STATE MACHINE

After enough information has been gleaned from an
incoming SCTP message to determine its associations’
current state in the NAT, the packet is passed to the
relevant part of the state machine (see Figure 1). This
section looks at the mechanism in each of the two main
states (Idle (ID) and UP), and three transitory states (INi,
INa, and CL) which wait for confirmation before moving
to either ID or UP. INi and INa are progressed to from ID
on receipt of an INIT or ASCONF-AddIP respectively.
CL (Closing) is progressed to from UP on receipt of a
SHUTDOWN-ACK.

A. No matching association – Idle (ID)

If there is no matching association, the state for the
arriving message is Idle (ID) (see figure 4). Receipt of an
SCTP message with an INIT chunk, or if permitted an
ASCONF-AddIP chunk, starts the association initialisa-
tion process for the NAT. No other SCTP messages are
permitted to pass through the NAT for this association
while in ID.

CAIA Technical Report 081128A November 2008 page 4 of 17

Code segment 1 The SCTP association state stored in the look up tables
struct sctp_nat_assoc {
uint32_t l_vtag; /**< local side verification tag */
uint16_t l_port; /**< local side port number */
uint32_t g_vtag; /**< global side verification tag */
uint16_t g_port; /**< global side port number */
struct in_addr l_addr; /**< local ip address */
struct in_addr a_addr; /**< alias ip address */
int state; /**< current state of NAT association */
int TableRegister; /**< stores which look up tables association is registered in */
int exp; /**< timer expiration in seconds from uptime */
int exp_loc; /**< current location in timer_Q */
int num_Gaddr; /**< number of global IP addresses in the list */
LIST_HEAD(sctpGlobalAddresshead,sctp_GlobalAddress) Gaddr; /**< List of global addresses */
LIST_ENTRY (sctp_nat_assoc) list_L; /**< Linked list of pointers for Local table*/
LIST_ENTRY (sctp_nat_assoc) list_G; /**< Linked list of pointers for Global table */
LIST_ENTRY (sctp_nat_assoc) timer_Q; /**< Linked list of pointers for timer Q */

//Using libalias locking
};

1) INIT:
When the NAT receives an INIT chunk (Fig-
ure 5), it begins to fill the association state structure
(assoc_state:

• The initiation tag (init tag) parameter is extracted.
SCTP packets flowing in the opposite direction to
the INIT will use this value as their vtag.

• If the INIT is from the global side, and the NAT
is tracking global IP addresses, the IP address
parameters will also be extracted. This presumes
that there are appropriate port forwarding rules.

• Source and destination addresses
• Source and destination ports

If adding the assoc_state to the relevant lookup
table (local or global) will cause a conflict, the NAT
may send an ABORT chunk back to the sender with the
M-bit set to indicate that it was generated by the middle
box [7] (referred to as ABORT-M). This requests that
the initiating host re-initiate the association with a newly
generated init tag and remedy the indexing conflict.

Under extreme load or error conditions the NAT may
have no resources available to add the new association. In
such circumstances it will drop the packet (see Figure 6).

The association will not be considered to be active
(UP) until the the corresponding INIT-ACK is received,
so the association enters the transitory state INi.

2) ASCONF-AddIP:
An extension to the SCTP protocol defined in [8] al-
lows for dynamic address reconfiguration with ASCONF
chunks. Of particular interest to the NAT are the AddIP
and DelIP parameters. To cope with a machine that has
multiple interfaces connected to multiple NAT devices,

a NAT may receive an ASCONF-AddIP chunk even
though it does not have a current association for the
originating IP address [7]. If configured to allow associa-
tion establishment in this manner (see section VII-B3) an
ASCONF-AddIP message is treated in a similar way to
an INIT message to establish an association in the NAT
(see Figure 7). Two key differences with the AddIp in
this context are:

• The AddIP parameter will not contain additional IP
addresses, the source IP address will be used.

• The AddIP parameter will contain both vtags, so
the LT entry can be completely filled.

The association will not be considered to be active
(UP) until a coresponding ASCONF-ACK is received,
so the association enters the transitory state INa.

B. Confirming association initialisation (INi and INa)

INi and INa are transitory states waiting for associa-
tion confirmation in the form of the corresponding INIT-
ACK or ASCONF-ACK, before moving to the UP state.
Figures 8 and 9 give an overview of this process.

If a relayed INIT or ASCONF-AddIP message failed
to reach its destination, the sender may retransmit it on
timeout. The NAT forwards the retransmitted message
and resets timer I T (see Figures 12 and 13). Apart from
retransmissions and the confirmation messages, all other
SCTP messages are not permitted in this context, and
are dropped.

1) INIT-ACK:
When the NAT receives an INIT-ACK it completes
assoc_state (see Figure 12). The additional vtag
and IP address information may conflict with entries

CAIA Technical Report 081128A November 2008 page 5 of 17

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

sctp(INIT)

when LT clash

drop packet

[r sctp(ABORT-M)]

when out of resources

drop packet

otherwise

Save partial
assoc state in LT

{l,g} vtag = init tag

NAT

f sctp(INIT)

I T

Initialising NAT (INi)

alt

msc rxInit

Fig. 5. Initiate dynamic NAT rule

already in the look up table. If this occurs, an ABORT-
M message may be forwarded to the initiating host to
inform it of the clash. Association initiation can then
be restarted. Otherwise, the complete assoc_state is
added to the look up table it has not yet been added to
(local or global). The association is now UP.

2) ASCONF-AddIP:
Receipt of a valid ASCONF-ACK confirms association
initialisation, changing the state to UP (see Figure 13).

NAT parse
NAT P

NAT function
NAT

sctp(*)

Drop
packet

msc Drop

Fig. 6. Action on receipt of an invalid SCTP message

ASCONF chunk parameters have a correlation-ID.
This enables the end host to match the acknowledge-
ments with the address configuration requests. Currently
the NAT does not check the correlation-ID. For the NAT,
a valid confirmation is an ASCONF-ACK chunk that
matches the assoc_state, has an Asconf-Success
parameter, and is travelling in the correct direction. (Note
that the NAT does not check for an ASCONF-ACK if
the association is in the UP state (see section IV-C4).

If the NAT was to check correlation IDs it would need
to store the relevant ASCONF parameters with their
correlation-IDs in a list as part of assoc_state. The
address reconfiguration would then only become active
on receipt of an ASCONF-ACK chunk with an Asconf-
Success parameter with a matching correlation-ID. This
list would need to be timed, so that old unacknowledged
requests are removed. We consider the cost of additional
state space and complexity outweigh the benefits of
incorporating this mechanism into the NAT.

3) Authenticated ASCONF chunks:
ASCONF chunks must be authenticated [8] to guard
against association hijacking attacks. Authentication is
performed through the use of shared keys and the use
of an AUTHENTICATION chunk in the SCTP mes-
sage [9]. In the case of an OOTB ASCONF-AddIP
initialising association state in the NAT, the NAT will
not have the necessary keys to perform the authentica-
tion. Further, authenticating SCTP messages is processor
intensive and may leave the NAT open to a DoS attack.
Instead, the NAT does not authenticate any SCTP mes-
sages. Any problems in authentication are left to the end
hosts to resolve. If the end host does not authenticate the
ASCONF chunk, it will not reply with an ASCONF-

CAIA Technical Report 081128A November 2008 page 6 of 17

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

sctp(
ASCONF-AddIP)

when not
accepting OOTB
ASCONF-AddIP

drop packet

exc

when LT clash

drop packet

[r sctp(ERROR-M)]

when out of resources

drop packet

otherwise

Save full assoc state
(l vtag and g vtag)

NAT

f sctp(
ASCONF-AddIP)

I T

Initialising NAT (INa)

alt

msc rxAddIP

Fig. 7. Initiate dynamic NAT rule from AddIp

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

Initialising NAT (INi)

sctp(INIT-ACK)
rxInitAck

sctp(INIT)
rxRtxInit

sctp(ABORT*)
Abort

sctp(other)
Drop

I T Exp

alt

msc INi process

Fig. 8. Initialising NAT (Init based)

ACK. After I T the association state will be removed
from the NAT (logically now in ID).

Since the NAT does not authenticate or check the
correlation-ID, it may be possible for an attacker to use
ASCONF chunks to modify the state information stored
in the NAT for an existing association in the UP state.
This could lead to valid SCTP messages being dropped
by the NAT, or allow an attacker to send packets to an
internal host. Since an SCTP end host has full state and
will authenticate all ASCONF chunks it receives, as well
as confirming the correlation-IDs of acknowledgements,
any invalid packets admitted by the NAT should not
cause significant problems. However, valid packets that
were errantly discarded by the NAT will cause temporary

CAIA Technical Report 081128A November 2008 page 7 of 17

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

Initialising NAT (INa)

sctp(ASCONF-ACK)
rxAddIpAck

sctp(ASCONF-AddIP)
rxRtxAddIp

sctp(ABORT*)
Abort

sctp(other)
Drop

I T Exp

alt

msc INa process

Fig. 9. Initialising NAT (AddIP based)

problems until the SCTP endpoints discover the loss of
packets. We note that this is only a problem when global
IP addresses are tracked by the NAT (further discussion
in [6]).

C. NAT for association is UP

Once the NAT has all the association state informa-
tion (and in the case of an OOTB ASCONF-AddIP,
the acknowledgement), the association is considered to
be UP for NATing SCTP messages for that particular
association. An SCTP end host will not consider the
association to be fully initiated until after the successful
completion of the cookie exchange, which follows the
INIT ↔ INIT-ACK exchange. However, the cookie

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

sctp(INIT)
I T

NAT

f sctp(INIT)
I T

msc rxRtxInit

Fig. 10. Receiving a retransmitted INIT while in INi

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

sctp(
ASCONF-AddIP)

I T

NAT

f sctp(
ASCONF-AddIp)

I T

msc rxRtxAddIp

Fig. 11. Receiving a retransmitted AddIp while in INa

exchange is transparent to the NAT. The NAT, while en-
hancing security, has a primary purpose of translating IP
addresses. It has all the information necessary to do this
after the INIT ↔ INIT-ACK exchange or ASCONF-
AddIP.

Not waiting until after the cookie exchange does not
significantly diminish the security provided by the NAT.
If the cookie exchange fails, one of the end hosts will
send an ABORT, which will also clear association state
in the NAT. The NAT will however, allow any SCTP
message to traverse it – not just SCTP messages with
COOKIE or COOKIE-ACK chunks.

While in the UP state the association’s state can
only be modified by SHUTDOWN-ACK, ABORT
chunks, timeouts, and when tracking global IP addresses,

CAIA Technical Report 081128A November 2008 page 8 of 17

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

sctp(INIT-ACK)
I T

when LT clash

NAT

[f sctp(ABORT-M)]

Remove assoc state
from LT

Idle (ID) for connection of interest

otherwise

Complete assoc state
in LT

({l,g} vtag = init tag)

NAT

f sctp(INIT-ACK)
U T

NAT established (UP) for association

alt

msc rxInitAck

Fig. 12. Receiving an INIT-ACK while in INi

ASCONF-AddIP and ASCONF-DelIP chunks (see Fig-
ure 14)

1) SCTP message NAT:
Figure 15 shows the traversal of non state changing
SCTP messages, once the association state is UP. The
UP timer (U T) is reset on the receipt of each packet.

2) ASCONF-AddIP:
If we are tracking global IP addresses, then an incoming

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

sctp(ASCONF-ACK)

when wrong direction

drop packet

exc

I T

NAT

f sctp(
ASCONF-ACK)

U T

NAT established (UP) for association

msc rxAddIPAck

Fig. 13. Receiving an AddIPAck while in INa

ASCONF-AddIP may contain additional global IP ad-
dresses that should be added to assoc_state. In this
case, the NAT needs to process the ASCONF-AddIP
(see Figure 16). Provided there are available resources,
the ASCONF chunk is parsed for global IP addresses,
which are added to the list in assoc_state (if they
are not already in the list).

If we are not tracking global IP addresses or the
ASCONF-AddIP is from a local host, the ASCONF
message is simply NATed, and forwarded to its destina-
tion.

3) ASCONF-DelIP:
Figure 17 shows how the NAT processes an ASCONF-
DelIP while an association is UP. Its processing mirrors
that of an ASCONF-AddIP. An additional check must
be made to ensure that at least one valid global IP address
remains in the list of global IP addresses.

4) ASCONF security:
Both the ASCONF-AddIP and ASCONF-DelIP are
processed without authentication, and without waiting
for an ASCONF-ACK with a corresponding correlation-

CAIA Technical Report 081128A November 2008 page 9 of 17

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

NAT established (UP) for association

sctp(SHUTDOWN-ACK)
ShutA

sctp(ABORT*)
Abort

g sctp(ASCONF-AddIP)
AddIP

g sctp(ASCONF-DelIP)
RmIP

sctp(other)
Forward

U T Exp

alt

msc UP process

Fig. 14. NAT up for association

ID. As discussed in section IV-B3, a NAT may not be
able to obtain the necessary information to authenticate
these chunks, and matching correlation-ID is resource
intensive for the NAT.

A retransmitted ASCONF-AddIP or ASCONF-
DelIP, will not present a problem to the NAT’s
state, since only addresses not already stored in
assoc_state can be added, and addresses cannot be
deleted more than once. There is potential for extraneous
SCTP messages to be injected through the NAT by an at-

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

sctp(*)
U T

NAT

f sctp(*)
U T

msc Forward

Fig. 15. Normal NAT after association is up

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

NAT established (UP) for association

g sctp(
ASCONF-AddIP)

U T

when resources
and tracking global

IP addresses

Add global IP
address to

assoc state in LT

opt

NAT

f sctp(
ASCONF-AddIP)

U T

NAT established (UP) for association

msc AddIP

Fig. 16. Action on receipt of AddIpAck

CAIA Technical Report 081128A November 2008 page 10 of 17

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

NAT established (UP) for association

g sctp(
ASCONF-DelIp)

U T

when resources
and tracking global

IP addresses

Remove global IP
addresses from assoc state
in LT (at least one global
IP address must remain)

opt

NAT

f sctp(
ASCONF-DelIP)

U T

NAT established (UP) for association

msc RmIP

Fig. 17. Action on receipt of RmIp

tacker, however the SCTP end hosts will recognise these
as invalid as they maintain complete association state.
An attacker removing IP addresses is more dangerous
and could prevent the NAT from providing service to
valid SCTP associations. To remove a valid IP address
an attacker would need to guess or sniff the correct vtag
and ports, and send the ASCONF-DelIP using an IP
source address that matches a current global IP address
in the assoc_state list. This problem will not occur
if global IP addresses are not tracked.

D. Process of Closing an established NAT association
(CL)

An SCTP association is normally released via a 3-way
handshake of SHUTDOWN, SHUTDOWN-ACK, and

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

NAT Closing (CL) for association

sctp(
SHUTDOWN-COMPLETE) ShutC

sctp(SHUTDOWN-ACK)
ShutA

sctp(ABORT*)
Abort

sctp(other)
Drop

C T Exp

alt

msc CL process

Fig. 18. NAT association closure

SHUTDOWN-COMPLETE chunks. A SHUTDOWN
chunk announces one endpoint’s wish to terminate an
SCTP association. The other endpoint may have more
data to send. However, it is only when the NAT sees a
SHUTDOWN-ACK chunk, that it starts to close support
for that association.

The NAT enters the transitory Closing (CL) state upon
receipt of a SHUTDOWN-ACK (see Figure 18). Within
this state it will only will only allow retransmissions
of the SHUTDOWN-ACK chunk (see Figure 19) or
SCTP messages that contain chunks which will com-
pletely close the association: ABORT or SHUTDOWN-
COMPLETE to pass through.

CAIA Technical Report 081128A November 2008 page 11 of 17

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

UP or CL

sctp(SHUTDOWN
-ACK)

* T

NAT

f sctp(SHUTDOWN
-ACK)

C T

NAT Closing (CL) for association

msc ShutA

Fig. 19. Initiation of association closure under normal conditions

1) Graceful close:
The process of closing an association is completed when
a SHUTDOWN-COMPLETE chunk is received (see
figure 20).

As an alternative, the association may be allowed
to continue for X T time, to allow for end points to
recover a lost SHUTDOWN-COMPLETE chunk. This
is not enabled as a default, but is configurable (see
section VII-B11).

2) Abortive close:
Figure 21 shows the processing of an ABORT chunk. An
Abort has no response, so the association is immediately
removed from the LT. An ABORT is processed by the
NAT regardless of the state of the association.

E. Handling T-flag packets

If an SCTP entity receives an Out Of The Blue packet
(OOTB), that is a packet for which it has no active
association, it may under certain circumstances choose
to NAT this packet.

If an SCTP message containing a SHUTDOWN-
COMPLETE chunk has been lost in transit, the
sender of the SHUTDOWN-ACK will time-out and
resend the SHUTDOWN-ACK, however the receiver
will have closed its association when it sent the lost
SHUTDOWN-COMPLETE. On receipt of the retrans-
mitted SHUTDOWN-ACK, the end host may respond

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

NAT Closing (CL) for association

sctp(SHUTDOWN
-COMPLETE)

C T

NAT

sctp(SHUTDOWN
-COMPLETE)

when holddown_timer == 0

Remove assoc state
from LT

Idle (ID) for connection of interest

otherwise

X T

NAT Closing (CL) for association

alt

msc ShutD

Fig. 20. Association closure complete normal conditions

with another SHUTDOWN-COMPLETE, but since it
now does not know the correct vtag to use, it responds
with its vtag equal to the vtag of the SCTP message
with the SHUTDOWN-ACK chunk. The T flag is set
to indicate that the vtag has been reflected.

In the unlikely event that there is ambiguity for the
NAT as to how it should relay an incoming T-flag packet,
the packet will be dropped. This is improbable, but
possible if two or more associations using the same
<vtag, ports> access different local IP addresses (if
tracking global IP addresses, the global IP address is

CAIA Technical Report 081128A November 2008 page 12 of 17

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

sctp(ABORT*)
* T

NAT

f sctp(ABORT*)

Remove assoc state
from LT

Idle (ID) for connection of interest

msc Abort

Fig. 21. Action on receipt of Abort

NAT function

NAT

* T

Remove assoc state
from LT

ID

msc Exp

Fig. 22. Action on receipt of Abort

also matched).

V. SCTP NAT TIMERS

Four time-out values are used in the SCTP NAT
mechanism:

• I T for timing out the response to the INIT chunk,
• U T for ensuring the association hasn’t dropped out

while up,
• C T for timing out the response to the

SHUTDOWN-ACK chunk,

exp > current

assoc

exp

assoc

exp

assoc

exp

n+1n 1 2

current

Fig. 23. Timer Q mechanism

• and X T for holding the association in the CL state
after the receipt of a SHUTDOWN-COMPLETE
chunk to allow for retransmissions.

Upon receipt of any SCTP packet, the timer queue is
checked. If any association’s timer expires, the corre-
sponding assoc_state is removed from the NAT,
leaving the association in the idle state (ID) (see fig-
ure 22). Since only one timer is active at any one time,
a single timer is used in alias_sctp.c with four
possible values: I T, U T, C T, and X T.

A. Timer Queue

The timer Q is implemented as a circular Q of size
greater than the maximum timer value in seconds. The
timer queue is initialised so that the first element in
the queue is the current time. As time progresses (in
seconds) the table is stepped through (see Figure 23).

Each table entry is a linked list of associations that, at
the time they were inserted, were due to expire at that
particular second. Once a timeout has been set in the
queue it will not be altered in the queue unless it has to
be changed to a shorter time (typically only for aborts
and closing). On a queue timeout, the real expiration
time is checked, and if not less than or equal to the
current time it is re-queued at its later time. This is
especially important for normal packets sent during an
association, since it means that while in the UP state,
the timer queue is only altered every U T (every few
minutes) for a particular association, instead of for each
packet received.

VI. SCTP NAT LOOKUP TABLES

The association state global and local look up tables
are implemented as depicted in Figure 24. An incoming

CAIA Technical Report 081128A November 2008 page 13 of 17

h−1

assoc

state

assoc

state

assoc

state

g1

g2

g3

g1

g2

g1

g2

g3

Hash Table

1

2

3

h

Fig. 24. Look up table structure

packet’s < vtag, ports, [addresses] > tuple is hashed,
and the resulting linked list in the hash table linearly
searched for a match to the association. Assoc_state
contains links to the global and local tables as well as
the TimerQ (see code segment 1). Global addresses, if
tracked, are stored as a linked list within each association
state and are searched linearly.

VII. FREEBSD IMPLEMENTATION SPECIFIC NOTES

Alias sctp has been implemented in FreeBSD through
the libalias kernel module. Alias_sctp uses its own
look up tables, state space, and timers. It relies on
libalias to pass a pointer to the IP packets that con-
tain SCTP messages, and ipfw_nat for processing the
associated SCTP NAT rules that have been configured
using the ipfw command line interface.

A. Libalias interface

The SCTP NAT code is called
from LibAliasInLocked() and
LibAliasOutLocked() found in alias.c.
The following outlines changes or additions to the
libalias and ipfw source.

In sys/netinet/libalias :
1) alias_sctp.h – Additional file, header file for

alias_sctp.c.
2) alias_sctp.c – Additional file, primary source

code for the SCTP NAT
3) alias.h – define _ALIAS_SCTP
4) alias.c –

• include alias_sctp.h
• calls to functions in alias sctp from
LibAliasIn/OutLocked()

5) alias_db.c –

• include alias_sctp.h
• declaration and implementation of
SctpShowAliasStats()

• sctp additions to ShowAliasStats()
• calls to AliasSctpInit() and
AliasSctpTerm() from
LibAliasInit() and
LibAliasUninit().

6) alias_local.h –
• include alias_sctp.h
• additions to struct libalias:
int sctpLinkCount;
struct sctp_nat_timer

sctpNatTimer;
u_int sctpNatTableSize;
LIST_HEAD(sctpNatTableL,

sctp_nat_assoc)

*sctpTableLocal;
LIST_HEAD(sctpNatTableG,

sctp_nat_assoc)

*sctpTableGlobal;
• function prototypes:
void AliasSctpInit(

struct libalias *la);
void AliasSctpTerm(

struct libalias *la);
int SctpAliasIn(

struct libalias *la,
struct ip *ip);

int SctpAliasOut(
struct libalias *la,

struct ip *ip);

In sys/netinet :
1) ip_fw_nat.c – Modifications to allow

ERROR-M and ABORT-M replies by modifying
the passed IP packet.

In sys/modules/libalias/libalias :
1) Makefile – Addition of alias_sctp.c to the

list of source files.
In sbin/ipfw :
1) ipfw.c – Modifications to the ipfw command

line utility so that it recognises SCTP as a valid
protocol for port based NAT rules. Also modifica-
tions so that ports cannot be mapped to different
port numbers with SCTP.

In share/man/man8 :
1) alias_sctp.8 – new man page
2) Makefile – modifications to include new man

page in build/install

CAIA Technical Report 081128A November 2008 page 14 of 17

B. Configurable parameters

Alias sctp has a number of parameters that can be
configured through the sysctl interface. They all have
a prefix net.inet.ip.alias.sctp. Descriptions
and current defaults for the parameters follow.

1) hashtable_size = 2003:
Size of hash tables used for NAT lookups
(100 < prime number > 1000001) This value sets
the hash table size for any future created NAT instance
and therefore must be set prior to creating a NAT
instance (ie ipfw NAT 100 config ...).

The table sizes may be changed to suit specific needs.
If there will be few concurrent associations, and memory
is scarce, you may make these smaller. If there will be
many thousands (or millions) of concurrent associations,
you should make these larger. A prime number is best
for the table size. The sysctl update function will adjust
your input value to the next highest prime number.

2) error_on_ootb = 1:
Defines how the NAT responds to any Out-of-the-Blue
(OOTB) packets. An OOTB packet is a packet that
arrives with no existing association registered in the NAT
AND does not contain an INIT or ASCONF-AddIP:
0− ERROR-M is never sent in response to OOTB

packets
1− ERROR-M is only sent to OOTB packets received

on the local side
2− ERROR-M is sent to the local side and on the

global side ONLY if there is a partial match (ports
and vtags match but the source global IP does not).
This value is only useful if the NAT is tracking
global IP addresses

3− ERROR-M is sent in response to all OOTB
packets on both the local and global side (DoS
risk)

We recommend setting this value to 1 to allow multi-
homed local hosts to function with the NAT. If the
SCTP stacks on the local side hosts do not support this
feature, this value should be set to 0. If tracking global
addresses we recommend setting this value to 2 to allow
global hosts to be informed when they need to (re)send
an ASCONF-AddIP. Value 3 should never be chosen
(except for debugging) as the NAT will respond to all
OOTB global packets, a DoS risk (see [6] for discussion).

3) accept_global_ootb_addip = 0:
Defines how the NAT responds to the receipt of a global
OOTB ASCONF-AddIP:
0− No response (unless a partially matching associ-

ation exists - ports and vtags match but global

address does not)
1− NAT will accept and process all OOTB global

ASCONF-AddIP chunks.

Option 1 should never be selected as this forms a security
risk. An attacker can establish multiple fake associations
by sending ASCONF-AddIPs.

4) initialising_chunk_proc_limit = 2:
Defines the maximum number of chunks in an SCTP
packet that will be parsed when no existing association
exists that matches that packet. Ideally this packet will
only contain an INIT chunk or ASCONF with AUTH
chunk. A higher value may become a DoS risk as
malformed packets can consume processing resources.

5) chunk_proc_limit = 5:
Defines the maximum number of chunks in an SCTP
packet that will be parsed for a packet that matches
an existing association. This value is enforced to be
>= (initialising chunk proc limit). As for the previous
parameter, a high value is a DoS risk yet setting too low
a value may result in important control chunks in the
packet not being located and parsed.

6) param_proc_limit = 25:
Defines the maximum number of parameters within a
chunk that will be parsed in a packet. As for other similar
sysctl variables, larger values pose a DoS risk.

7) track_global_addresses = 0:
Enables/disables global IP address tracking within the
NAT and places an upper limit on the number of ad-
dresses tracked for each association:

0− Global tracking is disabled
> 1− Enables tracking, the maximum number of ad-

dresses tracked for each association is limited to
this value

This variable is fully dynamic, the new value will
be adopted for all newly arriving associations, existing
associations are treated as they were previously. Global
tracking will decrease the number of collisions within
the NAT at a cost of increased processing load, memory
usage, complexity, and possible NAT state problems in
complex networks with multiple NATs (see [6] for a
full discussion). We recommend not tracking global IP
addresses, this will still result in a fully functional NAT.

8) init_timer = 15:
Timeout value (s) while waiting for (INIT-
ACK — AddIP-ACK). This value cannot be 0.

9) up_timer = 300:
Timeout value (s) to keep an association up with no
traffic. This value cannot be 0.

CAIA Technical Report 081128A November 2008 page 15 of 17

10) shutdown_time = 15:
Timeout value (s) while waiting for SHUTDOWN-
COMPLETE. This value cannot be 0.

11) holddown_time = 0: Hold association
in table for this many seconds after receiving a
SHUTDOWN-COMPLETE. This allows endpoints to
correct shutdown gracefully if a shutdown complete is
lost and retransmissions are required. This may be a good
option in high loss environments.

12) log_level = 0:
Level of detail in the system log messages (0 - minimal,
1 - event, 2 - info, 3 - detail, 4 - debug, 5 - max debug)

VIII. IPV6

Currently the libalias kernel module does not
support IPv6, and hence neither does alias_sctp.
When IPv6 support does become available, the following
changes will need to be made to alias_sctp.

A. Address storage

We suggest that the l_addr and a_addr (see code
segment 1) be stored as IPv6 structure with IPv4 ad-
dresses embedded when necessary (See [10]).

For the global IP address lists, there are two reasonable
approaches:

1) Separate lists for IPv4 and IPv6 addresses. IPv4
addresses will only need 4 bytes of storage if
the lists are separate. Also, only the relevant list
will need to be searched to check for a matching
address when tracking global IP addresses.

2) A single IPv6 list with embedded IPv4 addresses.
Two lists will result in slightly more complex code, but
will save memory over a single list.

Note: alias_sctp does not store multiple local IP
addresses.

B. Parsing

IP packets will need to be checked to determine
whether they are IPv4 or IPv6, and the source and desti-
nation addresses extracted and stored accordingly. Also,
currently alias_sctp only searches INIT, INIT-
ACK, and ASCONF chunks for IPv4 addresses. An
additional test for IPv6 addresses will need to be added.

C. NAT

Addresses will need to be translated to the correct IPv4
or IPv6 address. Incoming IPv4 packets to local IPv6
destinations or IPv6 packets to local IPv4 destinations
should be dropped. The SCTP protocol should ensure
that this does not happen.

IX. CONCLUSION

Alias sctp version 0.2 provides a fully functional
SCTP NAT within the Freebsd ipfw/libalias framework.
In particular:

• Modifications to the libalias kernel module to allow
network address translation of SCTP packets

• NAT based on unique verification tag and port
numbers.

• Support for global multi-homing
• Support for T-flagged packets
• Logging and statistics
• Global IP address tracking and management
• Port forwarding
• Supports NAT specific SCTP enhancements recom-

mended in [5] and [7]
• Dynamic parameter configuration through the sysctl

interface
Patches to Freebsd 8.X are available from [11].

ACKNOWLEDGEMENTS

The development of the SCTP NAT enhancements to
libalias is part of the SONATA [1] project and was made
possible in part by a grant from the Cisco University Re-
search Program Fund at Community Foundation Silicon
Valley.

The project benefits from the people and facilities of
CAIA. Of special note are Lawrence Stewart for his
help with svn and freebsd, and CAIA director Grenville
Armitage.

REFERENCES

[1] CAIA, “SONATA SCTP over NAT adaptation,”
viewed 12 June 2008. [Online]. Available: http:
//caia.swin.edu.au/urp/sonata

[2] D. A. Hayes and J. But, “Alias sctp version
0.1: SCTP NAT implementation in IPFW,” CAIA,
Swinburne University, Tech. Rep. 080618A, Jun.
2008. [Online]. Available: http://caia.swin.edu.au/
reports/080618A/CAIA-TR-080618A.pdf

[3] R. Stewart, “Stream control transmission protocol,”
IETF, RFC 4960, Sep. 2007.

[4] Z.120, Message Sequence Chart (MSC), ITU-T,
May 2004.

[5] R. Stewart and M. Tüxen, “Stream control trans-
mission protocol (SCTP) network address transla-
tion,” Internet-Draft, Jul. 2008.

[6] D. A. Hayes, J. But, and G. Armitage, “Issues with
network address translation for SCTP,” CM SIG-
COMM Computer Communication Review, vol. 39,
no. 1, Jan. 2009, (accepted Oct.08, to be published).

CAIA Technical Report 081128A November 2008 page 16 of 17

http://caia.swin.edu.au/urp/sonata
http://caia.swin.edu.au/urp/sonata
http://caia.swin.edu.au/reports/080618A/CAIA-TR-080618A.pdf
http://caia.swin.edu.au/reports/080618A/CAIA-TR-080618A.pdf

[7] M. Tüxen, I. Rüngeler, R. Stewart, and E. P.
Rathgeb, “Network address translation (NAT) for
the stream control transmission protocol (SCTP),”
IEEE Network, vol. 22, no. 5, pp. 26–32, Septem-
ber/October 2008.

[8] R. Stewart, Q. Xie, M. Tüxen, and S. Maruyama,
“Stream control transmission protocol (SCTP) dy-
namic address reconfiguration,” IETF, RFC 5061,
Sep. 2007.

[9] M. Tuexen, R. Stewart, P. Lei, and E. Rescorla,
“Authenticated chunks for the stream control trans-
mission protocol (SCTP),” IETF, RFC 4895, Aug.
2007.

[10] R. Hinden and S. Deering, “IP version 6 addressing
architecture,” IETF, RFC 2373, Jul. 1998.

[11] D. A. Hayes and J. But, “Alias sctp NAT module,”
viewed 24 November 2008. [Online]. Available:
http://caia.swin.edu.au/urp/sonata/downloads.html

CAIA Technical Report 081128A November 2008 page 17 of 17

http://caia.swin.edu.au/urp/sonata/downloads.html

	Introduction
	Terminology
	Packet parser
	SCTP messages
	Parsing mechanism

	SCTP NAT state machine
	No matching association -- Idle (ID)
	INIT
	ASCONF-AddIP

	Confirming association initialisation (INi and INa)
	INIT-ACK
	ASCONF-AddIP
	Authenticated ASCONF chunks

	NAT for association is UP
	SCTP message NAT
	ASCONF-AddIP
	ASCONF-DelIP
	ASCONF security

	Process of Closing an established NAT association (CL)
	Graceful close
	Abortive close

	Handling T-flag packets

	SCTP NAT Timers
	Timer Queue

	SCTP NAT Lookup tables
	FreeBSD implementation specific notes
	Libalias interface
	Configurable parameters
	hashtable_size = 2003
	error_on_ootb = 1
	accept_global_ootb_addip = 0
	initialising_chunk_proc_limit = 2
	chunk_proc_limit = 5
	param_proc_limit = 25
	track_global_addresses = 0
	init_timer = 15
	up_timer = 300
	shutdown_time = 15
	holddown_time = 0
	log_level = 0

	IPv6
	Address storage
	Parsing
	NAT

	Conclusion

