
Capping of cwnd growth in FreeBSD’s NewReno
over high BDP paths

Alana Huebner
Centre for Advanced Internet Architectures, Technical Report 080829A

Swinburne University of Technology
Melbourne, Australia

4087127@student.swin.edu.au

Abstract—This report experimentally validates that inte-
ger division in FreeBSD’s NewReno implementation results
in cwnd being capped on large BDP paths.

Index Terms—NewReno, FreeBSD

I. INTRODUCTION

This report documents an experimental validation of a
corner case involving integer maths in FreeBSD’s current
NewReno implementation. Readers are encouraged to
read CAIA Technical Report 080818A [1] for details of
the testbed and measurement tools used in this experi-
ment.

Under FreeBSD the growth of TCP’s congestion win-
dow (cwnd) during congestion avoidance is determined
by Equation 1.

cwnd+ =
SMSS × SMSS

cwnd
(1)

As a result of integer division, if cwnd is larger than
SMSS2 the right hand side of the expression equals zero
and cwnd will cease to grow. This report will show that
cwnd growth in congestion avoidance mode is capped
when cwnd becomes greater than or equal to SMSS2

bytes.
RFC2581 [2] identifies this issue and suggests that

implementations increase cwnd by 1 byte when cwnd >
SMSS2. The FreeBSD implementation does not take
this approach.

Section 2 will describe the experimental method.
Section 3 will present the results and show how cwnd

growth is capped under FreeBSD.

II. EXPERIMENTAL METHOD

The tests were conducted over the NewTCP [3] testbed
as detailed in [1]. A test involved a single NewReno TCP
flow between two FreeBSD 7.0 hosts. A router between
the hosts simulated a high bandwidth × delay product
(BDP) link with dummynet [4].

Bandwidth 100Mb
Delay (ms) 100, 150, 175, 200, 210, 225, 250
Queue Size 1 BDP

TABLE I
TEST VARIABLES

The SMSS was FreeBSD’s default value of 1448
bytes. A range of link characteristics were tested, shown
in Table I. These characteristics were chosen so that the
BDP of the link was large enough to allow cwnd to grow
beyond SMSS2.

Each test lasted three minutes and was performed
twice for consistency. During the tests the TCP sender’s
cwnd was recorded with SIFTR [5].

The window used by the TCP sender is the minimum
of cwnd, the receiver’s window and the send buffer size.
As the experiment dealt with large BDPs the default size
of the send buffer was inadequate. It was necessary to
configure the send buffer to be larger than the BDP so
that cwnd is the utilised window value. Under FreeBSD,
cwnd is updated during congestion avoidance even if it
is not the minimum value. When this occurs cwnd is not
representative of the TCP window and it will continue
to grow unbounded while packet loss does not occur.

III. RESULTS

Figure 1 shows cwnd for the duration of a three
minute test. After slow start and the first packet loss
occurs TCP enters congestion avoidance mode. Starting
from sshresh, half the maximum cwnd, cwnd increases
linearly according to Equation 1 until it reaches 1448
packets near t = 100 seconds. cwnd growth stops as
a result of integer division at 1448 packets, exactly
SMSS2 bytes.

Figure 2 shows the values at which cwnd was capped

CAIA Technical Report 080829A August 2008 page 1 of 2

mailto:4087127@student.swin.edu.au


0 50 100 150

0
50

0
10

00
15

00

time (secs)

cw
nd

 (
pk

ts
)

Cwnd vs. Time

100Mbps, 100ms delay. 1250000B queue.

flow 1 cwnd

Fig. 1. NewReno Congestion Window

80 100 120 140 160 180 200 220 240 260
0

500

1000

1500

2000

2500

Capped value of cwnd vs Link RTT

RTT (ms)

cw
nd

 (
pa

ck
et

s)

Fig. 2. Capped value of cwnd as BDP increases

for all the links tested. From the 175ms test cwnd is
capped at increasingly large values.

Figure 3 contains a plot of cwnd for the 175ms test.
At this larger BDP cwnd is capped as soon as it is set to
ssthresh after the first packet loss. In this case ssthresh
is greater than SMSS2 and the integer division problem
is encountered on the first congestion avoidance update
of cwnd.

0 50 100 150

0
50

0
10

00
20

00
30

00

time (secs)

cw
nd

 (
pk

ts
)

Cwnd vs. Time

100Mbps, 175ms delay. 2187500B queue.

flow 1 cwnd

Fig. 3. NewReno Congestion Window

IV. CONCLUSION

This report describes experimental evaluation of a
corner case in FreeBSD’s NewReno implementation.
Integer division in the congestion avoidance algorithm
causes cwnd growth to cease when cwnd >= SMSS2.

When ssthresh < SMSS2 cwnd is capped
at SMSS2 bytes or SMSS packets. However if
ssthresh > SMSS2 cwnd is capped at ssthresh bytes.

ACKNOWLEDGEMENTS

This report has been made possible in part by a grant
from the Cisco University Research Program Fund at
Community Foundation Silicon Valley.

REFERENCES

[1] A. Huebner, “Experimental Evaluation of Latency Induced in
Real-Time Traffic by TCP Congestion Control Algorithms,”
CAIA, Tech. Rep. 080818A, August 2008. [Online]. Available:
http://caia.swin.edu.au/reports/080818A/CAIA-TR-080818A.pdf

[2] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control
,” RFC 2581 (Proposed Standard), Apr. 1999, updated by RFC
3390. [Online]. Available: http://www.ietf.org/rfc/rfc2581.txt

[3] “The NewTCP Project,” August 2008, Accessed 8 Aug 2008.
[Online]. Available: http://caia.swin.edu.au/urp/newtcp

[4] L. Rizzo, “Dummynet: a simple approach to the evaluation of
network protocols,” ACM SIGCOMM Computer Communication
Review, vol. 27, no. 1, pp. 31–41, 1997.

[5] L. Stewart, J. Healy, “Characterising the Behaviour and
Performance of SIFTR v1.1.0,” CAIA, Tech. Rep. 070824A,
August 2007. [Online]. Available: http://caia.swin.edu.au/reports/
070824A/CAIA-TR-070824A.pdf

CAIA Technical Report 080829A August 2008 page 2 of 2

http://caia.swin.edu.au/reports/080818A/CAIA-TR-080818A.pdf
http://www.ietf.org/rfc/rfc2581.txt
http://caia.swin.edu.au/urp/newtcp
http://caia.swin.edu.au/reports/070824A/CAIA-TR-070824A.pdf
http://caia.swin.edu.au/reports/070824A/CAIA-TR-070824A.pdf

	Introduction
	Experimental method
	Results
	Conclusion
	References

