
Alias sctp Version 0.1:
SCTP NAT implementation in IPFW

David Hayes, Jason But
Centre for Advanced Internet Architectures, Technical Report 080618A

Swinburne University of Technology
Melbourne, Australia

dahayes@swin.edu.au, jbut@swin.edu.au

Abstract—Alias sctp is part the SONATA[1] project to
develop and release a BSD licensed implementation of a
Network Address Translation (NAT) module that supports
the Stream Control Transmission Protocol (SCTP). Tradi-
tional address and port number look ups are inadequate
for SCTP’s operation. A design of the operational states
and packet handling necessary to achieve SCTP function-
ality are outlined along with the necessary modifications
required to integrate it into FreeBSD’s ipfw/libalias NAT
system. Alias sctp version 0.1 uses unique verification tag
and port numbers for NAT, providing support of global
multi-homing, T-flagged packets, logging and statistics,
timing, and two association shutdown modes.

I. INTRODUCTION

The Stream Control Transmission Protocol (SCTP)[2]
is a reliable transport protocol operating on top of the
Internet Protocol (IP). It was originally designed to
transport telephony signalling but its application is broad,
providing improved UDP and TCP type functionality.

A standard TCP/UDP type NAT implementation has
a number of problems:

• SCTP’s checksum is an improvement on TCP’s, but
requires calculation over the entire packet if any
changes are made (such as port number).

– This increase in work may cause problems in
low-end home routers.

• SCTP allows multi-homing. Endpoints may have
more than one IP address, providing fault tolerance.
Also, there can be a number of associations sharing
the same address and port number.

– Traditional address and port number table look
ups are therefore inadequate.

SCTP has a Verification tag (Vtag), which is used
to differentiate associations. It is randomly generated
by the end-points during the association initialisation
process, making it an ideal index for an association look

up table. In this work, we use a combination of Vtag
and port number to identify associations. This makes
the table look up global address independent, allowing
multi-homing on the outside of the NAT. We also leave
port numbers unchanged, so that there is no need to
recalculate SCTP’s checksum.

This report outlines the SCTP NAT design. Following
a description of alias sctp’s operational states and packet
handling mechanisms is short discussion on T-flagged
packets and multi-homing. The report then describes
the implementation in FreeBSD’s libalias module and
concludes with a summary of achievements and further
work.

II. ALIAS SCTP OPERATIONAL STATES PACKET

PROCESSING

The operational states and packet processing se-
quences in alias sctp are described using ITU-T Message
Sequence Charts (MSC) [3]. In these diagrams it is
assumed the firewall will only pass packets that are
permitted to be address translated.

Figure 1 gives an overview of the SCTP NAT. Packets
arriving are first passed and checked. Following this, the
resulting SCTP messages are processed according to the
recorded state of the particular SCTP association. Table I
describes some of the notation used in the MSCs.

A. Packet parser

Arriving packets are first parsed to obtain their details
(see figure 2). The association database (DB) is then
checked to see if there is a current association for this
packet.

The following items will be stored in a C structure:
1) The SCTP control chunk type (ie Init, InitAck, etc

or Other)
2) pointer to packet

CAIA Technical Report 080618A June 2008 page 1 of 11

mailto:dahayes@swin.edu.au
mailto:jbut@swin.edu.au

Packet Parser

ID INi INa UP CL

Idle InitI InitA Up Close

hmsc SCTP NAT Overview

Fig. 1. SCTP NAT overview

sctp() any sctp message
l sctp() sctp message that has been received

from a local address.
g sctp() sctp message that is from a global

address outside the NAT device.
r sctp() sctp message reply back to the sender,

usually under error. conditions.
f sctp() forward of sctp packet through NAT.
l,gTg Set appropriate local or global verifica-

tion tag
ITg Initiation Tag

T Any timer

TABLE I
MSC SCTP MESSAGE SYNTAX

3) pointer to IP header (to access source and destina-
tion IP addresses)

4) pointer to SCTP common header (to access Vtag
and ports)

5) pointer to chunk being processed
If more than one of the target chunks is present in

the packet, only the highest priority chunk type is to be
stored and processed. The higher the number the lower
the priority:

1) Init (No other chunks are allowed)
2) Abort (Other chunks are meaningless)
3) InitAck (No other chunks are allowed)
4) ShutAck (Other chunks are meaningless)

5) ShutComp (No other chunks are allowed)
6) local AddIp through NAT with no association

(Other chunks are meaningless)
7) global AddIpAck through NAT while in INa (Other

chunks are meaningless)

When processing the different chunks additional in-
formation will need to be extracted. Once the packet is
parsed, the action taken depends on the current state of
the association in the NAT. These actions are outlined in
the following sections.

B. No current association – Idle (ID)

If there is no current association, the state for the
arriving message is Idle (ID) (see figure 3).Verification
Tags and ports are used to index (or hash) the database.
As such, in the very small probability that there is a
collision of these values, the NAT should reply with an
Abort1 chunk with the M-bit set to indicate that it was
generated by the middle box [4]. Subsequent reissuing
of the Init will have a different tag and solve the rare
collision condition. (Note an Init has VT=0).

Under high load or error conditions the NAT may have
no resources available to add the new association. In such

1Version 0.1 does not actually send the Abort packet, only writing
that it should be sent in the log. Future versions will send the AbortM
packet

CAIA Technical Report 080618A June 2008 page 2 of 11

Ipfw In

IpfwIn

NAT parse

NAT P

NAT function

NAT

packet

parse packet to
obtain S/D IP,

SCTP Vtag and port

when in DB

Extract DB entry

when Timer Exp

Remove DB
entry

Idle (ID) for connection of interest

exc

exc

Extract SCTP header
for: Init, InitAck,

l AddIp, g AddIpAck,
Abort,

ShutAck, or ShutComp

sctp()

msc Packet Parser

Fig. 2. Parsing and checking of an arriving packet

circumstances it will respond with an ErrorM2 message
indicating that it is out of resources.

The DB will need to store the following:
• Local Vtag and port
• Global Vtag and port
• Local IP address
• State [ID—INi—INa—UP—CL]

2Alias sctp version 0.1 does not actually send the Error packet,
only writing that it should be sent in the log. Future versions will
send the ErrorM packet

• Timer expiration time

Only one local IP address will be stored. No global IP
addresses will be stored in the NAT. Look up is based on
Vtag/port, if these are correct the NAT will forward the
packet to a local IP address regardless of where it came
from. The local host may check the source address, or a
firewall may block addresses.

An extension to the SCTP protocol defined in [5]
allows for dynamic address reconfiguration with AS-
CONF chunks. Of particular interest to the NAT are the

CAIA Technical Report 080618A June 2008 page 3 of 11

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

Idle (ID) for connection of interest

sctp(Init)
rxInit

l sctp(AddIp)
rxAddIP

sctp(other)
Drop

alt

msc Idle

Fig. 3. Initiate dynamic NAT rule

AddIp and AddIpAck. To cope with a machine that has
multiple interfaces connected to multiple NAT devices,
a NAT may receive an AddIp message even though it
does not have a current association for the originating IP
address [4]. To enable this to work, an AddIp message
coming from a local machine is treated in a similar way
to an Init message to establish an association in the NAT.

Two key differences with the AddIp in this context
are:

• The AddIp SCTP chunk will not contain an IP
address, the source IP address will be used by the
destination instead.

• The AddIp chunk will contain both Vtags, so the
DB entry can be completely filled. (It is not consider
active until the AddIpAck is received)

Figures 4 and 5 give the details of how an Init and
AddIp messages are handled respectively.

C. Initialising the association (INi and INa)

After an Init or local AddIp message has been re-
ceived an InitAck (or AddIpAck) message is required
for the association to be fully established in the NAT.
Figure 6 gives an overview of this process, with details
given in figures 8 and 9.

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

sctp(Init)

when DB clash

drop packet

r sctp(AbortM)

when out of resources

drop packet

r sctp(ErrorM)

otherwise

Save partial
DB struct

{l,g}Tg=ITg

NAT

f sctp(Init)

I T

Initialising NAT (INi)

alt

msc rxInit

Fig. 4. Initiate dynamic NAT rule

CAIA Technical Report 080618A June 2008 page 4 of 11

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

l sctp(AddIp)

when DB clash

drop packet

r sctp(ErrorM)

when out of resources

drop packet

r sctp(ErrorM)

otherwise

Save full DB struct
lTg and gTg

NAT

f sctp(AddIp)

I T

Initialising NAT (INa)

alt

msc rxAddIP

Fig. 5. Initiate dynamic NAT rule from AddIp

If a relayed Init or AddIp message failed to reach its
destination, the sender will retransmit it on timeout. The
NAT could simply relay this message, however, if there
was some change in the messages it might corrupt the
representation of the association in DB. To be safe the
DB entry is rebuilt (see figures 4 and 5).

An Abort message will cause the NAT state to go back
to ID. Any other messages received are not valid in this

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

Initialising NAT (INi)

sctp(InitAck)
rxInitAck

sctp(Init)
rxRtxInit

sctp(Abort)
Abort

sctp(other)
Drop

I T Exp

alt

msc InitI

Fig. 6. Initialising NAT (Init based)

context, and will be dropped. SCTP does define an error
message that could be sent, however it is possible that
all other SCTP messages received at this point could be
part of some sort of malicious attack, so simply dropping
invalid packets prevents the NAT adding to the problem.

D. NAT for association is UP

After the preceding initialisation procedure, the as-
sociation is considered to be up as far as NAT is
concerned. The cookie exchange and subsequent data can
be passed normally. The association may be modified by

CAIA Technical Report 080618A June 2008 page 5 of 11

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

Initialising NAT (INa)

g sctp(AddIpAck)
rxAddIpAck

l sctp(AddIp)
rxRtxAddIp

sctp(Abort)
Abort

sctp(other)
Drop

I T Exp

alt

msc InitA

Fig. 7. Initialising NAT (AddIp based)

the AddIpAck or RmIp messages3. The association may
be disconnected through the receipt of a ShutAck, or an
Abort or timeout (see figure 12).

Figure 13 shows the normal NAT operation for for-
warding SCTP packets. The UP timer (U T) is set on
the receipt of each packet.

E. Closing and established NAT association

An SCTP association is normally released via a 3-way
handshake of shutdown, shutdown-ack, and shutdown-
complete messages. A shutdown message announces one

3Alias sctp version 0.1 does not support this feature in the NAT.
The AddIpAck and RmIp messages will be passed for the endpoints
to deal with

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

sctp(InitAck)
I T

when DB clash

NAT

f sctp(AbortM)

Remove DB
entry

Idle (ID) for connection of interest

otherwise

Complete
DB struct in

DB

NAT

f sctp(InitAck)
U T

NAT established (UP) for association

alt

msc rxInitAck

Fig. 8. Receiving an InitAck while in INi

endpoint’s wish to terminate a SCTP association. The
other endpoint may have more data to send, so it is only
when the NAT sees a shutdown-ack message, that it starts
to close support for that association.

The process of closing an association is completed
when a shutdown complete message (ShutComp) mes-
sage is received (see figure 14.

As an alternative, the association may be allowed to

CAIA Technical Report 080618A June 2008 page 6 of 11

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

g sctp(AddIpAck)
I T

NAT

f sctp(AddIpAck)
U T

NAT established (UP) for association

msc rxAddIPAck

Fig. 9. Receiving an AddIPAck while in INa

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

sctp(Init)
I T

Fix sctp
addressing
and NAT

f sctp(Init)
I T

msc rxRtxInit

Fig. 10. Receiving a retransmitted Init while in INi

continue for X T time, to allow for end points to recover
a lost ShutComp message. This is not enabled as a
default, but is configurable currently through #define
SN_SHUTDOWN > 0.

Figure 16 shows the response to an Abort message.
An Abort has no response, so the association is imme-
diately removed from the DB.

F. Timers

Three timer values are used in the SCTP NAT mech-
anism: I T for timing the response to the Init message,
U T for ensuring the association hasn’t dropped out
while up, and C T for timing the response to the

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

sctp(Init)
I T

NAT

f sctp(AddIp)
I T

msc rxRtxAddIp

Fig. 11. Receiving a retransmitted AddIp while in INa

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

NAT established (UP) for association

sctp(ShutAck)
ShutD

sctp(Abort)
Abort

sctp(other)
Forward

U T Exp

alt

msc Up

Fig. 12. NAT up for association

CAIA Technical Report 080618A June 2008 page 7 of 11

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

sctp()
U T

NAT

f sctp()
U T

msc Forward

Fig. 13. Normal NAT after association is up

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

NAT Closing (CL) for association

sctp(ShutComp)
ShutD

sctp(ShutAck)
ShutD

sctp(Abort)
Abort

sctp(other)
Drop

C T Exp

alt

msc Close

Fig. 14. NAT association closure

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

UP or CL

sctp(ShutAck)
T

NAT

f sctp(ShutAck)
C T

NAT Closing (CL) for association

NAT Closing (CL) for association

sctp(ShutComp)
C T

NAT

f sctp(ShutComp)

Remove
DB entry

Idle (ID) for connection of interest

alt

msc ShutD

Fig. 15. NAT release under normal conditions

ShutAck message. The timer is checked on the receipt of
any SCTP packet directed to the particular NAT instance.
Since only one timer is active at any one time, a single
timer is used in alias_sctp.c with three possible
values: I T, U T, and C T. If any timer expires, the
association is removed and the NAT moves to the idle
state (ID) for that association (see figure 18).

CAIA Technical Report 080618A June 2008 page 8 of 11

NAT parse

NAT P

NAT function

NAT

Ipfw out

OUT

sctp(Abort)
T

NAT

f sctp(Abort)

Remove
DB entry

Idle (ID) for connection of interest

msc Abort

Fig. 16. Action on receipt of Abort

NAT parse
NAT P

NAT function
NAT

sctp()

Drop
packet

msc Drop

Fig. 17. Action on receipt of an invalid SCTP message

G. T-flag packets

If an SCTP entity receives an Out Of The Blue packet
(OOTB), that is a packet for which it has no active
association, it may under certain circumstances respond
to this packet.

If a ShutComp packet has been lost in transit. The
sender of the ShutAck will time-out and resend the
ShutAck, however the receiver will have closed its
association when it sent the lost ShutComp. The SCTP
RFC states that the receiver of the ShutAck may respond
with a ShutComp with its Vtag equal to the Vtag of
the ShutAck (The receiver has closed its association and

NAT function

NAT

T

Remove
DB entry

ID

msc Exp

Fig. 18. Action on receipt of Abort

therefore does not know the correct Vtag to use).
In the unlikely event that there is ambiguity for the

NAT as to how it should relay an incoming T-flag packet,
the packet will be dropped. This is improbable, but
possible if two or more associations use the same Vtag
and port to access different local IP addresses.

H. Multi-homing

Multi-homing is a SCTP feature that allows end points
in an association to register all IP addresses that they may
have. In the event of the path to one of the IP addresses
failing, the association may then use one of the other
registered IP addresses to reach the endpoint.

Mulit-homing can present a problem when one or both
of the machines in the association are behind a NAT.
[4] suggest the following mechanism for handling these
situations:

1) SCTP entities must only advertise their global
addresses inside the Init or InitAck messages
during the initialisation process.

2) SCTP entities may use an AddIp ASCONF chunk
to add additional local interfaces which may be
connected via NATs. An AddIp may be sent out
each of these interfaces after the association has
been established to enable these possible paths.

This revision to the SCTP protocol simplifies the NAT
mechanism. Since no local addresses are stored in asso-
ciation initialisation packets there is no need to rewrite
these with global address, necessitating the recalculation
of the checksum.

The current design does not store the global IP ad-
dresses. This means that multi-homing on a host outside

CAIA Technical Report 080618A June 2008 page 9 of 11

the NAT will work without the need to examine and store
addresses in Init, InitAck and ASCONF messages.

III. IMPLEMENTATION NOTES

The implementation is in general as described
in the message sequence charts. The SCTP NAT
code is called from LibAliasInLocked() and
LibAliasOutLocked() found in alias.c.

A. Libalias interface

Libalias has a facility for allowing the sim-
ple addition of support for new protocols through
libalias modules. Handlers for new protocols are found
through the find_handler() function. Unfortu-
nately, find_handler() is only called for UDP, TCP,
and GRE packets. This facility is mainly for additional
application layer protocol, and SCTP is a transport layer
protocol. Even with modifications, searching the handler
list is slow compared to directly calling the SCTP NAT
functions.

For this work we will keep the SCTP functionality as
separate as possible, but it will need to be part of the
main libalias module. Changes are enclosed in #ifdef
_ALIAS_SCTP statements. Changes are as follows:

1) alias_sctp.h: Additional file.
2) alias_sctp.c: Additional file.
3) alias.h: define _ALIAS_SCTP
4) alias.c:
• include alias_sctp.h
• calls to functions in alias sctp from
LibAliasIn/OutLocked()

5) alias_db.c:
• include alias_sctp.h
• declaration and implementation of
SctpShowAliasStats()

• sctp additions to ShowAliasStats()
• calls to AliasSctpInit() and
AliasSctpTerm() from LibAliasInit()
and LibAliasUninit().

6) alias_local.h:
• include alias_sctp.h
• additions to struct libalias:
int sctpLinkCount;
struct sctp_nat_timer
sctpNatTimer;
LIST_HEAD(sctpNatTableL,

sctp_nat_assoc) *sctpTableLocal;
LIST_HEAD(sctpNatTableG,
sctp_nat_assoc) *sctpTableGlobal;

• function prototypes:
void AliasSctpInit(

struct libalias *la);
void AliasSctpTerm(

struct libalias *la);
int SctpAliasIn(

struct libalias *la,
struct ip *ip);

int SctpAliasOut(
struct libalias *la,

struct ip *ip);

B. Timer Q

The timer Q is implemented as a table of size greater
than the maximum timer value in seconds. The timer
queue is initialised so that the first element in the table
is the current time. As time progresses (in seconds) the
table is stepped through. When the end is reached, the
first element will be next, making it a circular queue.

Each table entry is a linked list of associations that, at
the time they were inserted, were due to expire at that
particular second. Once a timeout has been set in the
queue it will not be altered in the queue unless it has
to be changed to a shorter time (usually only for aborts
and closing). On a queue timeout, the real expiration time
is checked, and if not less than or equal to the current
time it is re-queued at its later time. This is especially
important for normal packets sent during an association
since it means that while in UP state, the timing queue
is only altered every U T (every few minutes) for a
particular association.

IV. CONCLUSION AND FURTHER WORK

Alias sctp version 0.1 provides a functional SCTP
NAT in the Freebsd ipfw/libalias framework. In particu-
lar:

• Modifications to the libalias kernel module to allow
network address translation of SCTP packets;

• NAT based on unique verification tag and port
numbers.

• Support for global multi-homing (single NAT
router);

• Support for T-flagged packets;
• Logging and statistics;
• Association timer queue;
• Association removal on shutdown, or on timeout

after shutdown.
Subsequent versions of alias sctp will include:
• Support for the new ASCONF AddIP address con-

figuration packets. This will add support for com-
plex multi-homing configurations. Currently the nat

CAIA Technical Report 080618A June 2008 page 10 of 11

should work for a multi-homed server on the outside
(public/global) side of the nat, though this has yet
to be fully tested.

• Support for sending AbortM and ErrorM packets
in response to vtag/port collisions. (At the moment
these are just writen to the log file)

• Port forwarding
• There are three main SCTP specific options:

– When to close an association (see section II-E).
– Hash table size.
– Debug level.

Currently these are configured at compile time
through #define statements. This will be en-
hanced so that they are accessible through the sysctl
interface

• Speed Optimisation
• IPv6 support
• Global IP address tracking and management.

ACKNOWLEDGEMENTS

The development of the SCTP NAT enhancements to
libalias is part of the SONATA [1] project and was made
possible through the funding of Cisco.

The project benefits from the people and facilities of
CAIA. Of special note are Lawrence Stewart for his
help with svn and freebsd, and CAIA director Grenville
Armitage.

REFERENCES

[1] CAIA, “SONATA SCTP over NAT adaptation,”
viewed 12 June 2008. [Online]. Available: http:
//caia.swin.edu.au/urp/sonata

[2] R. Stewart, “Stream control transmission protocol,”
IETF, RFC 4960, Sep. 2007.

[3] Z.120, Message Sequence Chart (MSC), ITU-T, May
2004.

[4] M. Tüxen, I. Rüngeler, R. Stewart, and E. Rathgeb,
“Network address translation (NAT) for the stream
control transmission protocol (SCTP),” in Submitted
to the IEEE Network Special Issue on Implications
and Control of Middleboxes in the Internet, 2008.

[5] R. Stewart, Q. Xie, M. Tüxen, and S. Maruyama,
“Stream control transmission protocol (SCTP) dy-
namic address reconfiguration,” IETF, RFC 5061,
Sep. 2007.

CAIA Technical Report 080618A June 2008 page 11 of 11

http://caia.swin.edu.au/urp/sonata
http://caia.swin.edu.au/urp/sonata

	Introduction
	Alias_sctp operational states packet processing
	Packet parser
	No current association -- Idle (ID)
	Initialising the association (INi and INa)
	NAT for association is UP
	Closing and established NAT association
	Timers
	T-flag packets
	Multi-homing

	Implementation Notes
	Libalias interface
	alias_sctp.h
	alias_sctp.c
	alias.h
	alias.c
	alias_db.c
	alias_local.h

	Timer Q

	Conclusion and further work

