
L3DGEWorld 2.3 Hierarchy & Room Reuse
Documentation

Lucas Parry
Centre for Advanced Internet Architectures, Technical Report 080222D

Swinburne University of Technology
Melbourne, Australia
lparry@swin.edu.au

Abstract—L3DGEWorld 2.3, a product of the L3DGE
project, is a data visualisation tool based on the OpenArena
derivative of the Quake III Arena game engine, being used
in the monitoring and control of networks. This technical
report briefly describes some previously undocumented
functionality of L3DGEWorld 2.3. It will describe how we
have implemented a multi-level hierarchy, which could be
used to represent networks, hosts and flows, and the room
re-use technique used to achieve this within the limitations
of the engine.

Index Terms—L3DGEWorld, hierarchy, room re-use.

I. INTRODUCTION

One of the concepts that we wanted to explore us-
ing the L3DGEWorld engine as a part of the L3DGE
project [1], was a multiple level hierarchy as previously
mentioned in [2] and [3].

“To aid simplicity of view, we propose representing
network hierarchy through aggregation. At the highest
level, avatars represent entire subnets (cubes), to further
investigate the operation of a subnet, the user moves
the virtual world camera into the subnet cube object.
Inside the subnet cube all avatars are host objects
(pyramids). Further moving into a host object reveals
the objects representing the particular host’s connections
(cones). With this three tier system an overall view can
be gained of the network, but it also allows for further
detail to be gleaned when required. Where possible,
similar metaphor mappings are used at each level of
the hierarchy. (For example, the size of an avatar repre-
senting a subnet might be proportional to the number of
connections entering or leaving the subnet. This would
be consistent with the use of size to represent the number
of connections in and out of an avatar representing a
host.” [3]

Multi-level hierarchy functionality was first imple-
mented in L3DGEWorld 2.2 [4], but due to time con-

straints, lack of flexibility and a lack of suitable docu-
mentation, it was not an announced feature in the release.

Understanding of this document assumes the reader
has read and understood the L3DGEWorld 2.3 Input &
Output specifications [5].

II. WHY IT’S NEEDED?

A big concern for us throughout development has
been the total amount of data being stored within the
“gamestate”. Gamestate is where everything clients need
to know about the “world” is stored, which includes the
configstrings used by us to get string data to clients.
When a client connects it is sent the entire gamestate,
and from then on is sent incremental updates informing
them what has changed.

During development we found that if the gamestate
grew too large, the inital update that was sent to clients
became too big to fit in a single packet and became
fragmented, and clients did not handle this causing
them to be unable to connect to the server. This would
often occur when using a large number of entities with
moderate amounts of data associated with each of them.

In a model as described in the introduction, the
number of entities required to represent all of the levels
increases exponentially as we add hosts to the various
levels. For example, a map with 3 subnets, each contain-
ing 3 hosts, each containing 3 connections, we would
need 36 hosts and 9 bottom level rooms, but for a map
with 6 subnets, each containing 6 hosts, each containing
6 connections, we would need 258 hosts and 36 bottom
level rooms.

Instead, we can designate a number of identical phys-
ical rooms in a map (which we will refer to as “reusable
rooms”) to be re-used, in order to “virtually” represent
all of the bottom level rooms (which we will refer to as
“virtual rooms”), none of which physically exist in the
map (as seen in Figure 1).

CAIA Technical Report 080222D February 2008 page 1 of 4

mailto:lparry@swin.edu.au


The number of designated reusable rooms also be-
comes the limit for the maximum number of simul-
taneous administrators that can be supported without
breaking the illusion that all the virtual level rooms really
exist. By re-using 4 rooms to represent all of the virtual
rooms in the last example, we reduce the number of
entities required to just 66, and are able to emulate the
36 bottom level rooms with just 4 reusable rooms.

One of the positive side effects of re-using rooms is
that the gamestate only contains configstrings for the
rooms in use, with different configstrings being inserted
into the gamestate as administrators move into different
rooms. This helps keep the size of the gamestate to a
minimum and greatly reduces the likelihood that clients
will receive fragmented gamestate packets.

User 1 User 2 User 3

User 4

Unused Room

Top Level 
Room

Middle Level 
Rooms

Reusable
Rooms

Fig. 1. An diagram of hierarchy with room re-use enabled

III. HOW DOES IT WORK?

The first customisation we needed to make to the
engine to get a hierarchy up and working was the
ability to touch a host and be teleported inside. This
was achieved by setting a “target” key for each entity,
then creating a function to teleport any player who
touches the entity to the misc_teleporter_dest
with that “targetname”. In our implementation, top-level
entities have targets set to “Middle1”, “Middle2”, etc,
corresponding to the middle level rooms they contain.

The upper two levels of the hierarchy are achieved
solely with this modification. Each top-level entity has
a corresponding middle-level room to which it teleports
users to, and all middle level rooms have an exit tele-
porter teleporting users back to the top-level room. We
were also able to make a very small scale three level
hierarchy using only this technique, but the amount of
work creating the maps was very high (with respect to
the small map size) and we were rapidly approaching
the limitations of the gamestate size.

Consequently, we chose a more flexible approach.
Middle-level entities all have their target set to
“L3DGE”, and have an additional key “roomNo” that
specifies the virtual room relating to this entity (starting
from 1 for the first virtual room). When a player touches
a middle-level entity, the function called sees that the
“target” key is set to “L3DGE”, and drops into special
room re-use function.

This function takes the entities “roomNo” key, and
looks through the list of the reusable rooms to see if any
of them are already being used to virtualise it.

If a matching room is found, the player is teleported
into the virtualised room, and a counter used to track the
number of users in that room is incremented.

If a matching room is not found, the first unused room
is selected, the configstrings and entity positions for that
room are updated to correspond to those of the virtual
room and the player is teleported in. The counter tracking
the number of users in the room is set to 1.

If a player leaves a room, dies in a room or disconnects
from the server, the counter tracking number of users is
decremented by 1. When the counter hits 0 the room
is flagged as being unused and can then be re-used to
virtualise another room.

The virtual rooms may be represented by a number
of separate reusable rooms, each in a different location.
Because of this we need to store the entity positions
for virtual rooms as an offset from the entities default
positions. This allows us to correctly position entities
at their custom positions, even though the absolute
positions of the entities are entirely different. To prevent
absolute coordinate files being interpreted as relative
coordinates, we write relative coordinates into a different
directory, ‘hosts/<mapname>-r/’.

The exit teleporters in reusable rooms should have
their target set to “middle”. Each middle level room
has a misc_teleporter_dest with the targetname
“middleX” where X is the middle level room number.
When the teleporter function sees target set to “middle”,
it performs some simple math based on the virtual room
the player is marked as being in and the number of
entities per middle level room, and determines which
middle-level room the player should be returned to.

IV. ENABLING ROOM RE-USE

The demonstration map that is supplied with
L3DGEWorld 2.3 is named “hierarchy-demo”.
“hierarchy-demo”, and any other room reuse compatible
maps will automatically notify the engine that they need
room reuse enabled, and specify the number of entities

CAIA Technical Report 080222D February 2008 page 2 of 4



at each level, number of reusable rooms, etc. Note that
while in room re-use mode, the detailed info window
can only be accessed using the “host inspector” tool.

V. MAKING A MAP

• When an entity has a key/value pair named “tar-
get”, touching that entity will teleport the player to
the misc_teleport_dest specified in the key,
unless it is set to “L3DGE” as discussed in the next
point

• Middle level entities should all have their “target”
set to “L3DGE”. When the L3DGEWorld sees this
it will invoke the code that selects and sets up a
room to be re-used and teleported into.

• Middle level entities should have a key/value pair
named “roomNo” with it’s value set to the virtual
room that corresponds to the entity.

• Exit teleporters in reusable rooms should have their
target set to “middle”

• Reusable room misc_teleporter_dest entry
points should have their “targetname” key set to
“roomX”, where X is the reusable room number.

• Middle level misc_teleporter_dests must
be named “middleX” where X is their middle level
room number.

• Entities in reusable rooms should have a key named
“room” which is also set to the reusable room
number.

• Entities in reusable rooms should also have a key
named “reuseid” set to the entities number within
the room. ie. In a room with 4 entities, the reuseid
for each will enumerate 1 through 4.

• Entities must be in a specific order in the .map
file. Static entities must come before the reusable
entities. We recommend that top level entities come
first, then the middle level entities, and finally the
reusable room entities. This can be done using a
plain text editor. As in all L3DGEWorld maps, the
order that entities occur in the .map file defines the
sequence of host id’s that will be assigned to the
entities in game.

• L3DGEWorld 2.3 supports up to 12 middle level
rooms. Creating a map with more than 12 middle
level rooms will require additional modification to
the L3DGEWorld engine.

• There are several custom key/value pairs that
should be attached to the worldspawn entity.
To enter these in GtkRadiant, select a brush (for
example the floor) then press ‘n’ to bring up the
entities window, then add each of the following

keys.
• “roomReuse” should be set to “1” to let the engine

know this is a room reuse map.
• “numStaticEnts” specifies how many static entities

are on the map (ie. All those not in a reusable room).
• “numEntsPerMiddleLevelRoom” specifies how

many entities are in each middle level room.
• “numEntsPerReusableRoom” specifies how many

entities are in each reusable room.
• “numReusableRooms” specifies how many reusable

rooms exist on the map. L3DGEWorld 2.3 theoret-
ically supports up to 16 reusable rooms on a single
map.

VI. LIMITATIONS AND DISADVANTAGES

The engine needs to know exactly how many real
and re-used entities are on the map, how many entities
are in each reusable room, and how many entity are in
each middle level room, in order to be able to work out
(a) which set of hosts to put in the virtual rooms and
(b) which real, middle level room, to return the player
too when they exit a virtual room. This all has to be
coded into the map by the map maker and is completely
manual.

Middle level rooms must all have the same number
of entities in order to allow users to be returned to the
correct middle level room when leaving a reusable room.
Reusable rooms must all be mapped identically to be able
to convincingly pull of the illusion of many rooms. These
factors make it very difficult to dynamically populate the
rooms based on a detected network.

Room re-use also inherently limits the number of
simultaneous administrators that can collaborate together
to the number of “reusable” rooms. This is because if
there are more administrators than there are reusable
rooms, and they all try to inspect a different virtual room,
there will be no reusable room available to virtualise the
fifth virtual room and the player will be blocked from
entering.

VII. A BETTER SOLUTION

Room re-use as we have implemented was needed to
get around certain limitations of the Quake III Arena
engine. Maps must be completely defined at runtime,
and the entire map is loaded before play begins.

Using an engine in which we could dynamically
create new rooms and entities would alleviate a lot of
the rigidness of the design, and allow rooms to more
accurately represent the things they are supposed to (eg.

CAIA Technical Report 080222D February 2008 page 3 of 4



a dynamic number of entities in rooms depending on
what they represent).

Also, our use of configstrings to get string data to
clients has lead to problems. Because configstring data
is not directly associated with any particular entity or
area of a map, every configstring is sent to every client
rather that just the ones pertaining to the visible entities,
which causes the gamestate to grow and lead to possible
fragmentation of gamestate packets.

Devising a way more efficient way to distribute string
data to clients would also greatly help with our games-
tate size problems. If we were able to have to strings
stored within the entitystate_t structures, then the
engine’s networking would theoretically only tell clients
about entities within their line of sight, allowing us
to make a map equivalent to ‘hierarchy-demo’, without
needing to resort to room re-use.

It should be noted that we did try storing strings in
the entitystate_t structure in early prototypes, but
ran into endian problems when messages went from a
PowerPC based system to an Intel based one. Several
sources had recommended the use of configstrings over
trying to put strings in to entitystate_t, but we’ve
since seen that they aren’t really suitable such large
amounts of data.

VIII. CONCLUSION

This technical report has described the hierarchy and
room re-use features that exist in L3DGEWorld 2.3.

We have documented the method we have used to
achieve hierarchical maps, explained why room re-use
was required and given a description of how it was
implemented.

We have covered how one might go about making a
map that can work in a similar way to our ‘hierarchy-
demo’ example map.

We have outlined the failings and disadvantages of our
implementation and suggested a possibly better avenue
for future hierarchical work.

Our example map that demonstrates these features,
‘hierarchy-demo’ is available as part of L3DGEWorld
2.3 [6].

IX. ACKNOWLEDGEMENTS

L3DGEWorld is being developed is under the direc-
tion of Grenville Armitage and Warren Harrop. This
project has been made possible in part by a grant
from the Cisco University Research Program Fund at
Community Foundation Silicon Valley

REFERENCES

[1] “The L3DGE Project,” February 2008, http://caia.swin.edu.au/
urp/l3dge.

[2] W.Harrop and G.Armitage, “Intuitive Real-Time Network Mon-
itoring Using Visually Orthogonal 3D Metaphors,” in Australian
Telecommunications Networks & Applications Conference 2004
(ATNAC2004), Sydney, Australia, December 2004.

[3] ——, “Real-Time Collaborative Network Monitoring and Con-
trol Using 3D Game Engines for Representation and Interaction,”
in VizSEC’06 Workshop on Visualization for Computer Security,
Virginia, USA, October-November 2006.

[4] “L3DGEWorld 2.2 website,” December 2007, http://caia.swin.
edu.au/urp/l3dge/tools/l3dgeworld 2.2.

[5] L. Parry, “L3DGEWorld 2.3 Input & Output Specifications,”
CAIA Technical Report 080222C, February 2008, http://caia.
swin.edu.au/reports/080222C/CAIA-TR-080222C.pdf.

[6] “L3DGEWorld 2.3 website,” February 2008, http://caia.swin.edu.
au/urp/l3dge/tools/l3dgeworld 2.3.

CAIA Technical Report 080222D February 2008 page 4 of 4

http://caia.swin.edu.au/urp/l3dge
http://caia.swin.edu.au/urp/l3dge
http://caia.swin.edu.au/urp/l3dge/tools/l3dgeworld_2.2
http://caia.swin.edu.au/urp/l3dge/tools/l3dgeworld_2.2
http://caia.swin.edu.au/reports/080222C/CAIA-TR-080222C.pdf
http://caia.swin.edu.au/reports/080222C/CAIA-TR-080222C.pdf
http://caia.swin.edu.au/urp/l3dge/tools/l3dgeworld_2.3
http://caia.swin.edu.au/urp/l3dge/tools/l3dgeworld_2.3

	Introduction
	Why it's needed?
	How Does It Work?
	Enabling Room Re-use
	Making a map
	Limitations and Disadvantages
	A better solution
	Conclusion
	Acknowledgements
	References

