
Over-estimation of game server RTT during FPS
server discovery

Grenville Armitage
Centre for Advanced Internet Architectures, Technical Report 080222B

Swinburne University of Technology
Melbourne, Australia

garmitage@swin.edu.au

Abstract—Online multiplayer first person shooter (FPS)
games typically utilise a client-server architecture, and use
a two-step process to find available game servers. Clients
query a well-known master server for a list of registered
game servers, then probe each listed game server in turn.
This process emits thousands of probe packets over a
short period of time. A client estimates the round trip
time (RTT) to each server based on the time between
emitting a probe and receiving a reply. Using examples
from CounterStrike:Source this report illustrates how an
excessive probe emission rate can artificially inflate the
RTT to individual game servers.

Index Terms—Server discovery, traffic optimisation

I. INTRODUCTION

This report illustrates on how transmitting First Person
Shooter (FPS) game server discovery probe packets too
fast can inflate the RTT estimates reported to the player.

Internet-based multiplayer FPS games (such as Quake
III Arena [1], Half-Life Counterstrike [2], and Half-Life
2 [3]) typically operate in a client-server mode, with
game servers being hosted by Internet service providers
(ISPs), dedicated game hosting companies and individual
enthusiasts. Although individual FPS game servers typ-
ically only host from 4 to around 30+ players, there are
usually many thousands of individually operated game
servers active on the Internet at any given time. Due to
the fast-pace and highly interactive nature of FPS games,
players prefer game servers that exhibit lowround trip
time (RTT, often colloquially known as ’lag’). Published
literature suggests that competitive online FPS game
play requires latencies below 150ms to 200ms [4]. This
presents a challenge - how do game clients locate up-
to-date information about all the servers available at any
given time, such that the player can select a suitable
server on which to play.

Server discovery operates similarly for many FPS
games (due to the decentralised nature of game server

hosting). First, a game client queries a master server
unique to the particular game (pre-configured into the
game client software). The master server returns a list
of thousands (or tens of thousands) of IP addresses
and port numbers representing game servers who have
registered themselves as ‘active’. The client then steps
through this list, probing each listed game server for
information (such as the current map type, game type
and number of players). The probe is typically a brief
UDP packet exchange, which allows the client to also
estimate the RTT between itself and each game server.
All this information is presented to the player (usually
as it is gathered), who then selects a game server to join.

Server discovery is usually triggered explicitly by the
human player running a particular game client. It may
be triggered once or multiple times to refresh the list
of available servers presented to the potential player
by their client-side server browser. A given client will
send out hundreds or thousands of probe packets to find
and join only one game server. Consequently, individual
game servers end up receiving, and responding to, tens
of thousands of probe packets unrelated to the number
of people actually playing (or likely to play) at any
given time. The ‘background noise’ due to probe traffic
fluctuates over time as game clients around the Internet
startup and shutdown [5].

Many clients are connected to the Internet via ‘broad-
band’ connections in the 128Kbps - 2Mbps range (up-
stream). If probes are sent too slowly, it can take many
minutes to probe thousands of servers. However, using
examples from Valve Corporation’s Counterstrike:Source
(CS:S) [6], this report illustrates how an excessive probe
emission rate can artificially inflate the RTT to individual
game servers.

The rest of this report is organised as follows. Sec-
tion II summarises the CS:S server discovery mech-
anism, section III describes the experimental results

CAIA Technical Report 080222B February 2008 page 1 of 5

mailto:garmitage@swin.edu.au


Figure 1. A Steam client discovering CS:S game servers

under three different probing scenarios, and the report
concludes in section IV.

II. VALVE’S CS:S SERVER DISCOVERY PROCESS

A. Server discovery protocol

CS:S was first released in late 2004 by Valve Cor-
poration through their Steam online game delivery sys-
tem. Public CS:S game servers register themselves with
Steam’s master server at hl2master.steampowered.com.
Players initiate server discovery through their Steam
client’s game server browser. Figure 1 illustrates the
key server discovery steps. (Note, Valve have no specific
names for the messages between master server and client,
so getservers, and getserversResponse have been chosen
for clarity. UDP/IP packet formats for server discovery
are available online [7].) As of late 2007, a Steam client
would:

• Issue a getservers query to UDP port 27011 on the
Steam master server

• Receive a getserversResponse packet containing the
<IP address:port> pairs of up to 231 active game
servers

• Send one A2S_INFO Request probe packet to each
game server in order, eliciting an A2S_INFO Reply
packet from every active game server

• Repeat the previous steps until the Steam master
server has no more game server details to return

A2S_INFO Request UDP/IP packets are 53 bytes long
and A2S_INFO Reply packets can average 135 bytes or
longer.

A game server’s estimated RTT is the time between
the client sending an A2S_INFO Request and receiving
the A2S_INFO Reply. Server-specific information in each
A2S_INFO Reply is used to update the Steam client’s
on-screen server browser (along with estimated RTT)

as replies come back. This process allows players to
discover servers on which they might wish to play.

B. Client and master server filtering

Server-side filtering occurs when a player’s initial
getservers query requests game servers of a certain type
(such as “only CS:S game servers”) or servers believed
(by the master server) to be in one of eight broad
geographical regions of the planet (such as “US-West”,
“Europe”, “Asia”, etc). Server-side filtering can reduce
the number of game servers returned by the master
server, reducing the subsequent number of A2S_INFO
Request/Reply probes and the time spent probing.

Client-side filtering (such as not showing servers that
are full or empty, or ranking the servers in order of
ascending RTT) simplifies the server browser’s presen-
tation of information. However, it occurs during or after
each active probe and has limited impact on the traffic
generated during server discovery.

C. Alternative server browsers

Other server browsers may use a different sequence.
Qstat [8] (an open-source server browser) retrieves all
registered servers first (using back to back getserver
queries) before issuing A2S_INFO Request probes. Ul-
timately the same result - RTT to all active servers
is estimated by probing them in the order their <IP
address:port> pairs are returned by the master server.

D. Probing speed

The speed of server discovery is limited by a player’s
network connection. Players may configure their Steam
client to assume a network connection of ‘Modem
- 56K’, ‘DSL > 256K’, etc, thus influencing the
A2S_INFO Requests transmission rate. In late 2007
and early 2008 the Steam master server was returning
around 28-31K CS:S servers, of which ~27K respond
to probes. At a nominal rate of 140 probes per second
(approximating a Steam client configured for ‘DSL >
256K’ network access) CS:S server discovery takes ~230
seconds to complete. Alternative browsers (such as qstat)
also provide mechanisms to adjust their probing rate.

However, too many probes per second can congest
the player’s link, inflating individual RTT estimates or
causing probe packets to be dropped.

III. EXPERIMENTALLY OBSERVED PROBE TRAFFIC

A. Methodology

Two sources of probe traffic were used over a stan-
dard consumer-grade ADSL2+ connection based in Mel-
bourne, Australia.

CAIA Technical Report 080222B February 2008 page 2 of 5



Qstat version 2.11 was used with default settings, and
the Steam client was used at both low speed (“modem
- 56K”) and high speed (“DSL/Cable > 2M”) settings.
The Steam windows client showed the following under
“Help”:

• Built: Jan 9 2008, at 15:08:59
• Steam API: v007
• Steam package versions: 41 / 457.

The ADSL2+ link was a Belkin 4-port bridge and
VoIP ATA, with the physical layer synchronised at 835
Kbps upstream and 10866 Kbps downstream. The link
between home 100Mbps LAN and ISP was via PPPoE,
bridged through the Belkin ADSL2+ modem (rather than
terminating on the Belkin modem itself).

Both Qstat and Steam client ran on a host connected
via 100Mbps ethernet to the ADSL2+ modem.

Each test involved initiating game server discovery
and capturing the resulting A2S_INFO Request and
A2S_INFO Reply packets in each direction. A number
of tests were done using one of three scenarios (Qtstat
default, Steam @ low speed and Steam @ high speed).
Plots of estimated RTT versus time were constructed
using the captured packet traces.

B. Results

Figures 2, 3 and 4 illustrate the estimated RTT to each
game server as measured by Steam @ 35 probes/second
(low speed), Qstat at 54 probes/second (default) and
Steam @ 319 probes/second (high speed). Each dot rep-
resents an individual server being probed. (The average
probe rates were calculated after the fact. Neither the
Steam client nor Qstat allow probe rate to be stipulated
in probes/second.)

The graphs clearly show that overall probe time re-
duces as the probe rate goes up, and that the general dis-
tribution of game servers is relatively consistent between
tests. A small number of servers are within Australia
or Asia (~20ms to ~140ms), a moderate number of
servers are in North America (the ~200ms+ range) and
a far larger community of game servers are in Europe
(~330ms+). The need to jump oceans to reach Asia,
North America and then Europe leads to a distinctly non-
uniform distribution of RTTs.

Of most interest is Figure 4 showing a noticable
‘smearing upwards’ of estimated RTTs belonging to
servers in different regions of the planet.

Recall that the minimum RTT is dictated by speed of
light and geographical path between the client and server.
The maximum RTT depends on the minimum RTT plus
queuing delays along the path. In this experiment, the

only thing being changed is the probe rate from the
client. Figure 4 reveals that at 319 probes/second, a
reasonable percentage of probes are incurring additional
delay (relative to the RTTs seen in Figures 2and 3).

0 100 200 300 400 500 600 700 800 900
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Standard probes vs time: Steam−35pps 

Seconds since first probe
R

T
T

 (
se

co
nd

s)

28972 valid probes (at ~35.2/sec)

Figure 2. Estimated RTT versus time - Steam client at low speed
(“modem - 56K”) setting

0 100 200 300 400 500 600 700
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Standard probes vs time: Qstat−54pps 

Seconds since first probe

R
T

T
 (

se
co

nd
s)

30110 valid probes (at ~54.1/sec)

Figure 3. Estimated RTT versus time - Qstat client at default settings

The degree of RTT inflation can be more clearly
seen in Figure 5 - a CDF of the RTT distributions of
each test scenario. The Steam @ 319 probes/second
curve is clearly inflating the RTTs of any servers in
each geographical region. (Interestingly, the Steam @
35 probes/second curve shows a slight increase in RTTs
relative to the Qstat curve, even though Qstat was trans-
mitting at a slightly higher number of probes/second.)

CAIA Technical Report 080222B February 2008 page 3 of 5



0 10 20 30 40 50 60 70 80 90 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Standard probes vs time: Steam−319pps 

Seconds since first probe

R
T

T
 (

se
co

nd
s)

28263 valid probes (at ~319.2/sec)

Figure 4. Estimated RTT versus time - Steam client at low speed
(“DSL/Cable > 2M”) setting

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0

10

20

30

40

50

60

70

80

90

100

Game server RTTs as seen from 3 clients

RTT (seconds)

C
D

F
 (

%
)

Steam−319pps

Steam−35pps

Qstat−54pps

Figure 5. Distribution of estimated RTTs for each test scenario

C. Hypothesis

Queuing delay tends to occur when a sudden burst of
packets converge on a network link and they cannot all
be transmitted promptly. A queue holds excess packets
waiting to be transmitted. A probe packet arriving when
a queue is empty will experience shorter transit time
than a packet arriving when a queue already has some
packets in it. The size of the additional delay will depend
on how many packets are already in the queue waiting
for transmission.

Traffic between an online game client and remote
servers will encounter packet queues in any locations
- such as routers, switches, bridges and modems. This
particular experiment is most likely triggering queuing
in the consumer ADSL2+ modem. On one side of

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
0

10

20

30

40

50

60

70

80

90

100

Distribution of inter−probe intervals as seen from 3 clients

inter−probe interval (seconds)

C
D

F
 (

%
)

Steam−319pps

Steam−35pps

Qstat−54pps

Figure 6. Distribution of inter-probe intervals from each test scenario

the modem is a 100Mbps home LAN, on the other
side an asymmetric PPPoE link running one to two
orders of magnitude slower (downstream and upstream
respectively).

It is not sufficient that packets arrive over the modem’s
local LAN interface at an average rate below that of the
modem’s upstream ADSL2+ link. The pattern of individ-
ual packet arrivals is important. Groups of back-to-back
probe packets cause more queuing than a smooth, regular
stream of probe packets sent at short (yet regular) time
intervals.

Figure 6 reveals that the Steam client is quite agres-
sive in sending back-to-back bursts of outbound probe
packets.

Each CDF reflects the distribution of time intervals
between successive A2S_INFO Request packets during
each test scenario. When running in “DSL/Cable > 2M”
mode, over 90% of the probes emitted by the Steam
client are less than 1ms apart. The resulting bursts of
outbound probe packets would almost certainly create
transient queues in the modem, adding to the measured
RTT.

Note that it is not simply sufficiengt to ‘slow down’
the client. Even in “modem - 56K” mode (and one
tenth the average probe rate) the Steam client emits 70%
of its probe packets less than 1ms apart. In contrast,
Qstat makes a modest attempt to ‘pace’ the transmission
of probe packets, and thus the inter-probe intervals are
spread over a relatively wide range. This might explain
why Steam @ 35 probes/second in Figure 5 seems to
have slightly higher RTTs on average than Qstat at 54
probes/second.

A good FPS client should attempt to smoothly pace

CAIA Technical Report 080222B February 2008 page 4 of 5



out the transmission of probe packets, in addition to
ensuring the average probe packet rate does not exceed
the player’s available upstream network capacity.

IV. CONCLUSION

FPS game clients typically probe thousands of remote
game servers during server discovery. Each probe is
used to estimate the RTT to a single game server. By
probing thousands of Counterstrike:Source game servers
this report illustrates how an excessive (and bursty) probe
emission rate can artificially inflate the estimated RTT
to individual game servers. Consequently, game clients
ought to smooth out their transmission of probe packets
in order to minimise the RTTs reported during server
discovery.

REFERENCES

[1] id Software, Quake III Arena, http://www.idsoftware.com/, as of
April 29th 2007.

[2] Valve Corporation, CounterStrike: Source, http://counter-
strike.net/, accessed February 8th 2008.

[3] ——, Half-Life 2, http://half-life2.com/, as of April 29th 2007.
[4] G. Armitage, M. Claypool, and P. Branch, Networking and

Online Games - Understanding and Engineering Multiplayer
Internet Games. United Kingdom: John Wiley & Sons, Ltd.,
June 2006.

[5] S. Zander, D. Kennedy, and G. Armitage, “Dissecting server-
discovery traffic patterns generated by multiplayer first person
shooter games,” in Proceedings of ACM Networks and System
Support for Games (NetGames) Workshop, October 2005.

[6] Valve Corporation, CounterStrike: Source, http://counter-
strike.net/, accessed February 8th 2008.

[7] ——, Server Queries, http://developer.valvesoftware.com/wiki/Server_Queries,
as of February 7th 2008.

[8] QStat, http://www.qstat.org/, accessed February 8th 2008.

CAIA Technical Report 080222B February 2008 page 5 of 5


	Introduction
	Valve's CS:S Server Discovery process
	Server discovery protocol
	Client and master server filtering
	Alternative server browsers
	Probing speed

	Experimentally observed probe traffic
	Methodology
	Results
	Hypothesis

	Conclusion
	References

