
Characterising the Behaviour and Performance of
SIFTR v1.1.0

Lawrence Stewart, Grenville Armitage, James Healy
Centre for Advanced Internet Architectures, Technical Report 070824A

Swinburne University of Technology
Melbourne, Australia

lastewart@swin.edu.au, garmitage@swin.edu.au, jhealy@swin.edu.au

Abstract— Experimental research into TCP behaviours
requires an in depth view of the networking stack’s internal
state held for each TCP connection of interest. SIFTR
(Statistical Information For TCP Research) [1] is a recently
released, freely available FreeBSD 6.2 kernel module that
intercepts TCP packets as they traverse the network
stack within the kernel. The performance characteristics
of SIFTR were obtained by stress testing the software
under a range of conditions. This information can be
used as a basis for estimating experimental error inherent
in collected SIFTR data, as well as broadly determining
whether SIFTR might be suitable for a particular task. The
experimental methodology is also completely described,
so that SIFTR’s operational limitations can be measured
on different testbeds. With SIFTR running on 2004-era
commodity PC hardware, configured with maximum data
logging granularity, up to 100 TCP flows can achieve
aggregate throughput of at least 204Mbps with a worst case
skip rate of 16.2 skipped packets per Mbps throughput.
SIFTR was also evaluated on a second testbed consisting of
much newer 2007-era dual core commodity PC hardware.
With SIFTR running on this hardware, configured with
maximum data logging granularity, up to 100 TCP flows
can achieve aggregate throughput of at least 565Mbps with
a worst case skip rate of 31.1 skipped packets per Mbps
throughput.

Index Terms— Experimental research, TCP, FreeBSD,
SIFTR

I. INTRODUCTION

Experimental research into TCP behaviours requires
an in depth view of the networking stack’s internal state
held for each TCP connection of interest. Obtaining such
state information is tricky, and relies on an in depth
knowledge of the operating system’s kernel and low-level
programming skills to extract the relevant information.

Projects relevant to this type of TCP research are
few and far between, with the most prominent being
the web100 [2] kernel patch and libraries for the Linux

operating system. Unfortunately, web100 does not yet
support other open source operating systems commonly
used for networking research (such as the BSD variants).

CAIA’s NewTCP project [3] mandated the use of
the FreeBSD [4] operating system as the platform for
performing our TCP research. Background research un-
dertaken at the beginning of the project revealed no
equivalent to web100 for FreeBSD, and the effort re-
quired to port web100 to FreeBSD was deemed to be
too large a task for us to undertake. We came to the
conclusion that writing our own FreeBSD kernel code
to export the necessary information required to perform
our research was the most feasible option.

SIFTR (Statistical Information For TCP Research) [1]
is a recently released, freely available FreeBSD 6.2 ker-
nel module that intercepts TCP packets as they traverse
the network stack within the kernel. On interception, a
log message is generated containing information about
the TCP connection the packet relates to, and written
to a plain text log file on the computer’s hard drive.
It provides the ability to make highly granular measure-
ments of TCP session state information. This is achieved
by inserting a new function into the path of AF INET
(IPv4) 1 packets traversing the FreeBSD network stack.
IP packets carrying TCP traffic are scrutinised by this
function to extract detailed information about the TCP
connection the packet is associated with. This detailed
information is then written to a log file on the computer’s
file system for post analysis.

The module has only been tested on FreeBSD 6.1-
RELEASE and 6.2-RELEASE thus far, but should work
with all FreeBSD 6.x releases, and possibly earlier (5.x)
or up and coming (7.x) releases.

Using SIFTR in experimental research requires the

1IPv6 support could be added with minimal effort, perhaps in a
future release

CAIA Technical Report 070824A August 2007 page 1 of 11

mailto:lastewart@swin.edu.au
mailto:garmitage@swin.edu.au
mailto:jhealy@swin.edu.au

researcher to be able to quantify the error introduced
by the measurement tool on the experiments. This report
aims to identify the key operational limitations of SIFTR
and quantify them for two specific testbeds. This is
achieved by examining the performance of the testbeds
with and without the presence of SIFTR in various
configuration states. The experimental methodology is
also completely described, so that SIFTR’s operational
limitations can be measured on different testbeds.

This report is structured as follows: section II broadly
introduces SIFTR, section III describes the configuration
of the experimental testbed, section IV outlines the
testing methodology used to critically evaluate SIFTR,
section V analyses the testing results, and finally section
VI concludes with a summary of key findings and
outlines possible further work.

II. INTRODUCING SIFTR

SIFTR works by inserting itself between the IPv4
and TCP layers in the FreeBSD TCP/IP network stack.
Figure 1 provides a high level overview of the FreeBSD
TCP/IP stack and Figure 2 illustrates where SIFTR
inserts itself.

Packets enter the stack from the various data link layer
drivers present in the system. Assuming they are IPv4
packets, they are passed to the ip input() function for
IP decoding. If the IP packet is destined for the host
and contains a TCP segment, the segment is passed to
the tcp input() function for processing. For each TCP
connection the host is an endpoint for, a TCP protocol
control block is maintained in the kernel’s memory. The
control block holds all of the necessary state required
to maintain a valid TCP connection. The tcp input()
function queries and possibly updates the values in the
control block the packet is associated with. After the
TCP layer has processed the segment, any payload will
be made available to the application consuming the data
via the sockets application programming interface (API).

Payload generated by an application flows down the
stack, first through the sockets API, then through the
transport layer tcp output() function, through the net-
work layer ip output() function and finally out of the
machine via the network driver operating at the data link
layer.

SIFTR uses inbound and outbound TCP packet events
to trigger a capture of the state of the TCP control block
related to the packet. In effect, it samples the state of
the control blocks of active TCP connections at intervals
related to the frequency with which packets are being
sent or received for the connection.

Socket API

ip_input() ip_output()

tcp_input() tcp_output()

L2 In L2 Out

User
Space

Kernel
Space

Application

TCP Control Block

src_port: 80
dst_port: 54677
cwnd: 4380
rtt: 100
...

TCP Control Block

src_port: 80
dst_port: 54677
cwnd: 4380
rtt: 100
...

TCP Control Block

src_port: 80
dst_port: 54677
cwnd: 4380
rtt: 100
...

TCP Control Block

src_port: 80
dst_port: 54677
cwnd: 4380
rtt: 100
...

query/update

Fig. 1. Overview of the FreeBSD TCP/IP network stack

SIFTR

IPv4 In IPv4 Out

TCP In TCP Out

L2 In L2 Out

Fig. 2. SIFTR in the kernel

CAIA Technical Report 070824A August 2007 page 2 of 11

SIFTR was designed to minimise the delay introduced
to packets traversing the network stack. This design
called for a highly optimised and minimal hook function
that extracted the minimal details necessary whilst hold-
ing the packet up, and passing these details to another
thread for actual processing and logging.

Figure 3 illustrates the multithreaded internal flow of
execution within SIFTR.

Packets enter SIFTR via a hook function at the IPv4
layer of the network stack. Assuming the packet is TCP,
the TCP control block corresponding with the flow the
packet belongs to is obtained using a hash table lookup.
The current state of the control block is then copied into
a generic pkt node structure. This structure is passed by
the network thread marshalling the packet through the
network stack to the SIFTR pkt manager thread by way
of a shared queue. Once the pkt node has been inserted
into the queue, the network thread exits the hook function
and continues processing the packet as required. It is then
up to SIFTR’s pkt manager thread to pull the pkt node
structures from the queue and process them in its own
time.

This multithreaded design does introduce contention
issues when accessing the shared queue between the
threads of operation. When the hook function tries to
enqueue a pkt node structure, it must first acquire an
exclusive lock to access the queue. Likewise, when
the pkt manager thread attempts to dequeue a pkt node
structure, it must also acquire an exclusive lock to do
so. If one thread holds the lock, another thread cannot
access the queue.

To minimise delay, the SIFTR hook function will only
attempt to acquire the lock once, and if it fails, will
drop the pkt node structure and allow the IP packet to
exit the hook function. SIFTR refers to this outcome
as a “skipped packet”, because the copied control block
details triggered by the packet will not be processed by
the pkt manager thread. Note that SIFTR always ensures
that IP packets are allowed to exit the hook function
and continue through the stack, even if they could not
successfully trigger a pkt node structure to be added to
the queue.

The number of flow packets that trigger a log message
to be generated for that flow is controlled by the SIFTR
packets-per-log (PPL) configuration variable. As a result
of SIFTR performing its processing in a separate thread,
this variable only applies to packets that successfully
insert a pkt node structure into the shared queue. If a
packet is skipped (does not successfully insert a pkt node
structure into the shared queue), SIFTR currently has

Packet

src_ip: 1.1.1.1
src_port: 1
dst_ip: 2.2.2.2
dst_port: 2
...

TCP Control Block

src_port: 1
dst_port: 2
cwnd: 4380
rtt: 100
...

lookup

pkt_node

copy stats

attempt lock
acquisition

fail

enqueue
pkt_node unlock

dequeue
pkt_node

counter == 0?

generate & write
log message

counter =
(counter % ppl)

get flow’s
counter

del pkt_node

true

false

pkt_manager
thread

network
thread

packet enters
hook function

packet exits
hook function

possible lock
contention

Legend

counter++

TCP Packet?
false

true

Fig. 3. SIFTR internal operations

CAIA Technical Report 070824A August 2007 page 3 of 11

no means of knowing which flow the skipped packet
belonged to. For example, if PPL was set to 5 and
the fourth packet of a particular flow was skipped, the
pkt manager thread would count the pkt node struct
generated by packet 5 as if it was triggered by packet
four. Therefore, the sixth packet will actually trigger
the log message instead of the fifth. This behaviour is
discussed further in section V-C.

On the other side of the queue processing the pkt node
structures is the SIFTR pkt manager thread. The thread
performs an (almost) infinite loop, starting with ac-
quiring the shared queue lock. If the lock is already
held by a network thread in the hook function, the
pkt manager thread will wait for the lock to become
available. Once acquired, the pkt manager thread will
dequeue a pkt node structure from the queue and then re-
lease the lock so that other network threads can continue
adding pkt node structures to the queue. It then performs
a hash table lookup to obtain the packet counter for the
appropriate flow and increments the counter. The counter
is then assigned the value of the remainder of the counter
divided by the SIFTR PPL variable. If the remainder is
not 0, the memory allocated to the pkt node structure is
released and the loop begins again. If the remainder is
0, a log message is generated and buffered for writing
to disk prior to releasing the pkt node’s memory.

Network threads tied to TCP connections are the only
network threads that will attempt to acquire the shared
lock, as non TCP network threads exit the hook function
at the start. Some experimentation revealed that access to
the hook function by all network threads is not serialised
i.e. multiple separate network threads can be executing
within the hook function code at the same time. This
has the effect of increasing the likelihood of contention
for the shared queue lock with increasing numbers of
TCP network threads. This behaviour and its impact on
skipped packets is discussed further in section V-C.

One might ask why the SIFTR hook function actually
processes every packet for every TCP flow instead of
only the packets required to meet the log message
quota dictated by the SIFTR PPL setting. We found that
inserting the code into the hook function that is necessary
to identify the flow a packet belongs and decide if the
packet should trigger a log message significantly impairs
the kernel’s ability to process network data. Given that
the hook function is in the fast path of packets traversing
the network stack, every additional bit of processing
adds up when it is performed on a per packet basis.
This performance impairment is what prompted us to
investigate a multithreaded design that moved as much

X-over
cable

Host A
(Iperf client)
10.0.0.1/24

Host B
(Iperf server)
10.0.0.3/24

em0

em0

Fig. 4. SIFTR Testbed

of the processing away from the fast path as possible.
More details about SIFTR can be found in the

README, which is included in the SIFTR source dis-
tribution available at [1].

III. EXPERIMENTAL SET UP

Figure 4 illustrates the simple testbed layout that was
used to test SIFTR. Two different sets of hardware were
used to evaluate SIFTR’s performance (refer to Table I
and Table II for specifications). Each set of hardware
used two identical PCs as host A and B, connected
via a 2m CAT5e cross-over cable between their PCI
Intel NICs. The onboard NICs were disabled during the
testing.

All four PCs were configured identically except that
testbed 2’s PCs ran a symmetric multi-processing (SMP)
kernel to take advantage of the CPU’s two cores. The
testbed configuration details are provided in Table III.
Configuration options not explicitly stated in Table III
should be assumed to have been left at their default
values. The testbed PCs also had the kernel modification
relating to the TCP host cache as discussed in [5]
applied, with the prune time lowered to 5 seconds. This,
combined with the net.inet.tcp.hostcache.expire sysctl
variable being set to 1, ensured that the host cache was
emptied within 5 seconds of a TCP flow terminating.
Therefore, subsequent connections between the two hosts
were not affected by the host cache and proceeded as
though the two hosts had never communicated previ-
ously.

IV. TESTING METHODOLOGY

The way SIFTR inserts itself into the network stack
affects the system’s networking performance in two

CAIA Technical Report 070824A August 2007 page 4 of 11

Motherboard HP Compaq D530C
CPU Intel Pentium 4 2.66GHz
RAM 1GB (1 x 1GB) PC3200 DDR-400

HDD Maxtor 40GB 6E040L0
UDMA100

NIC
Broadcom BCM5705 PCI gigabit
Ethernet (onboard)
Intel PRO/1000 GT 82541PI PCI
gigabit Ethernet

TABLE I
TESTBED 1 PC SPECIFICATIONS

Motherboard Intel Desktop Board DG965WH

CPU Intel Core2 Duo E6320 1.86GHz
4MB L2 Cache

RAM 1GB (1 x 1GB) PC5300 DDR2-
667

HDD Seagate 250GB ST3250410AS
SATA II

NIC
Intel 82566DC PCIe gigabit Ether-
net (onboard)
Intel PRO/1000 GT 82541PI PCI
gigabit Ethernet

TABLE II
TESTBED 2 PC SPECIFICATIONS

ways. Firstly, the PFIL [6] [7] architecture used by
SIFTR places hook functions in the path of packets
traversing the stack, as opposed to providing the hook
functions with a copy of the packet and allowing the
packet to continue on its way. This forces packets to
wait in the stack while the hook function processes the
packet. Secondly, SIFTR uses processor time to perform
its operations, which reduces the processor’s ability to
handle NIC interrupts and network stack operations
amongst other things.

The decision was made to measure SIFTR’s impact in
terms of the throughput achievable by the system. Initial
exploratory testing on testbed 1’s PCs showed a direct
relationship between SIFTR, its configuration variables
and the test system’s achievable TCP throughput.

The Iperf [8] network testing software was used to
generate the TCP flows across the testbed. The Iperf
client and server were run on Host A and Host B
respectively. Data flowed from the client to the server
and acknowledgments flowed in the reverse direction.

A set of test cases was devised to investigate how
SIFTR affected the throughput when run on the Iperf

OS FreeBSD 6.2-RELEASE

Kernel Configura-
tion

Used the GENERIC kernel
configuration file for both
testbeds with the “i486”,
“i586” and “makeoptions
DEBUG=-g” options removed.
The testbed 2 PCs had
“options SMP” added to their
configuration.

Boot loader tuning
kern.ipc.nmbclusters=100000
vm.kmem size=524288000
vm kmem size max=524288000

Sysctl tuning

kern.ipc.maxsockbuf=10485760
net.inet.tcp.sendspace=1048576
net.inet.tcp.rescvspace=2097152
net.inet.tcp.hostcache.expire=1
net.inet.tcp.inflight.enable=0

Intel NIC driver
version 6.2.9

Intel NIC media 1Gbps (autoselect)
TCP MSS 1460 bytes

TCP benchmark
tool

Iperf v2.0.2 with the CAIA
patch (downloadable from [1])
applied

TABLE III
TESTBED PC CONFIGURATION

client (data sender), server (data receiver), and both at the
same time, with differing numbers of concurrent flows
and levels of data gathering granularity. The granularity
was controlled by the net.inet.siftr.ppl SIFTR packets-
per-log sysctl configuration option. Results are presented
for PPL values of 1, 2, 5, 10, 50 and 100. Values greater
than 100 were tested, but produced too few data points
in the SIFTR log file to be worthwhile in any sort
of experiment, and have been omitted. The number of
concurrent flows was controlled using Iperf’s -P option,
with results presented for 1, 2, 5, 10, 50 and 100 flows.
Note that tests with a single flow did not specify the -P
option, as Iperf defaults to use of a single flow.

The Iperf command run on the server was:
iperf -f b -s
The Iperf command run on the client varied, but was

of the form:
iperf -f b -t 60 [-P x] -c 10.0.0.3

where 10.0.0.3 was the IP address of the Iperf server,
and [-P x] was specified when more than a single flow
was required.

Each test case was run for sixty seconds and repeated
ten times, with a minimum six second pause between

CAIA Technical Report 070824A August 2007 page 5 of 11

Client Throughput (bps)
No. Flows Testbed 1 Testbed 2
1 632715591.7 562767781.6
2 626038744.4 560847578.0
5 623709119.7 558416317.8
10 624715981.7 556940496.9
50 620669551.4 556278503.2
100 614400388.1 553566126.1

TABLE IV
MULTIFLOW, NO SIFTR BASELINE THROUGHPUT RESULTS

each repetition and the start of a new test case. This
pause ensured the host cache did not influence results as
previously discussed.

For each test case repetition, the number of bytes
transferred and throughput reported by both the client
and server were recorded. For test cases that utilised
SIFTR, the SIFTR log file was also archived for post
analysis with a file name identifying the test case and
repetition number the log belonged to.

V. PERFORMANCE ANALYSIS

A. Testbed baseline

A set of baseline test cases were run to establish
each testbed’s throughput with 1, 2, 5, 10, 50 and
100 concurrent flows between client and server without
SIFTR running. The results for testbed 1 and testbed 2
are presented in Table IV.

The maximum throughput of testbed 1 is 632Mbps,
and testbed 2 is 562Mbps. As the number of flows
increases, the aggregate throughput decreases, at worst
by an amount of approximately 2.9% on testbed 1 and
1.6% on testbed 2 when 100 concurrent flows are active.
This gradual drop can be attributed to the proportional
increase in user-space processing requirements to handle
each of the flows, as well as the contention for processing
and network resources on the testbed systems. The
reduced drop on testbed 2 is likely attributable to the
kernel’s use of SMP to distribute the load between both
CPUs concurrently.

Testbed 2 was expected to outperform testbed 1 given
that its hardware was significantly newer. However, this
is observed not to be the case. Some further investigation
revealed a combination of factors caused this outcome.
Firstly, the speed of the CPU cores on the testbed 2
machines is actually lower than the testbed 1 machines.
The newer CPUs utilise larger layer 2 caches, better

Client Throughput (bps)
SIFTR
Unloaded

SIFTR Loaded
and Disabled

Testbed 1 632715591.7 632564556.2
Testbed 2 562767781.6 562802693.7

TABLE V
SINGLE FLOW, SIFTR UNLOADED VS SIFTR LOADED AND

DISABLED THROUGHPUT RESULTS

memory access and more processing cores to provide
a more seamless multitasking experience. However, in
situations like our baseline test cases, where there is
only one main user process running, the newer CPUs
appear unable to perform as well as the older, faster
CPU. Secondly, FreeBSD SMP network performance is
known to have some room for improvement compared
to uni-processing network performance [9]. FreeBSD 6’s
SMP performance is significantly better than FreeBSD
5, but there are still improvements being made for the
upcoming FreeBSD 7 release [10].

These results should be taken into consideration for
comparison with the results obtained in the test cases
that utilise SIFTR.

Given that SIFTR must run on the communicating
TCP end-points in order to extract connection data, we
did not test above 100 concurrent flows. A test scenario
involving monitoring more than 100 flows originating
from a single host is unlikely to be capable of achieving
full performance. We therefore deemed 100 flows to be
a reasonable limit, given the the majority of tests are
likely to involve fewer than 10 flows from a single TCP
end-point.

We also measured the throughput of the testbed for
a single TCP flow when SIFTR was loaded into the
kernel, but not enabled i.e. the sysctl net.inet.siftr.enabled
variable was set to 0. The results are presented in Table
V. Iperf will routinely report throughputs that differ by
up to 1Mbps between test runs under the same test
conditions, which is the cause of the minor differences in
throughput results. We can therefore state that there is no
significant difference between the testbed’s performance
when SIFTR is not in the running kernel at all, versus
when SIFTR is loaded in the running kernel but not
enabled. This is to be expected based on the actual design
of the SIFTR software. It is therefore safe to load SIFTR
into a running kernel without enabling it, as this will not
affect the TCP throughput achievable by the kernel.

CAIA Technical Report 070824A August 2007 page 6 of 11

1 10 100
200

250

300

350

400

450

500

550

600

Client Throughput vs SIFTR PPL,
1 Flow

SIFTR packets per log

T
h
ro

u
g

h
p

u
t

(M
b
p

s)

Fig. 5. Testbed 1 Client Throughput vs SIFTR packets-per-log

B. SIFTR granularity testing

The SIFTR packets-per-log (PPL) net.inet.siftr.ppl
sysctl configuration variable controls how often SIFTR
logs connection state. The logging is based on inbound
and outbound TCP packet events. For example, setting
net.inet.siftr.ppl to 1 causes a log message to be gener-
ated for each inbound and outbound packet belonging
to a particular flow, that captures the TCP connection
state for that flow. The frequency of this logging affects
the amount of processing load placed on the system by
SIFTR, and therefore affects the achievable throughput.
For these series of tests, SIFTR was run solely on the
Iperf client machine (data sender).

Figures 5 and 6 show the throughput vs SIFTR PPL
results as reported by the Iperf client for a single flow
on testbeds 1 and 2 respectively.

With SIFTR at its highest granularity setting of 1
packet per log on testbed 1, the client host is ca-
pable of achieving a throughput of almost 205Mbps.
The achievable throughput grows reasonably consistently
with increasing PPL, up to the point where there is
negligible gain in throughput as PPL surpasses 50.

Testbed 2 exhibits vastly different characteristics. Run-
ning SIFTR actually improved the throughput perfor-
mance of the testbed compared to the baseline tests. The
client host achieved an average throughput of 574Mbps
with SIFTR at its highest granularity setting of 1 packet
per log, compared to the baseline of 562Mbps. This

result was repeatable, and there were no anomalies in
the data from the individual test runs on either the Iperf
client or Iperf server that skewed the results.

Further investigation of the data sender’s SIFTR log
files revealed that the congestion window was collapsing
back to one segment size at a fairly regular rate. This
indicates scattered packet loss events occured during the
test runs, which triggered TCP congestion avoidance
behaviour. Whilst we have no retrospective way of being
sure that packet loss events were occurring in the base-
line tests, the evidence suggests that they were. SIFTR’s
design causes it to introduce a small, additional delay to
each packet handled by the hook function. For the test
results utilising SIFTR to exhibit higher throughput than
the baseline tests, this would indicate that more TCP
loss events were occurring in the baseline tests than the
SIFTR enabled test cases. We can therefore suggest that
the additional delay introduced by SIFTR was somehow
reducing the strain on whatever bottleneck within the
system was causing these packet loss events.

To test this hypothesis, we constructed a test kernel
module with a hook function that simply iterated through
an empty for loop ten thousand times and then allowed
the packet to continue on its way. This module caused
the throughput reported by Iperf during testing to exhibit
the same behaviour as the SIFTR tests i.e. with the
module loaded, the throughput reported by Iperf is higher
than the baseline throughput when no kernel module
is loaded. This does allow us to conclude that it is
not SIFTR’s code that is responsible for the unexpected
results. Rather, some underlying hardware or software
bottleneck (buffer perhaps?) is occassionally dropping a
packet, but does so less frequently when packet inter-
arrival times are widened by a small amount. A hook
function holding a packet up for a few additional mi-
croseconds seems to be enough to allow better aggregate
throughput due to a reduced number of loss events. This
certainly warrants further investigation, but does explain
the unusual test results.

Repeating the test cases shown in Figures 5 and 6
for varying numbers of concurrent flows produced the
results shown in Figures 7 and 8 respectively.

For testbed 1, Figure 7 demonstrates that the through-
put achieved by the client when SIFTR is in use is not
overly coupled with the number of concurrent flows.
In some cases, we even see a marginal increase in
throughput when more concurrent flows are running with
the same SIFTR PPL value. The reason for this marginal
increase is unknown; perhaps the minor delay introduced
by SIFTR in the networking stack causes the flows to

CAIA Technical Report 070824A August 2007 page 7 of 11

1 10 100
562
563
564
565
566
567
568
569
570
571
572
573
574
575

Client Throughput vs SIFTR PPL,
1 Flow

SIFTR packets per log

T
h
ro

u
g
p
h

u
t

(M
b

p
s)

Fig. 6. Testbed 2 Client Throughput vs SIFTR packets-per-log

1 10 100
200

250

300

350

400

450

500

550

600

650

Client Throughput vs Concurrent Flows

No SIFTR

PPL = 1

PPL = 2

PPL = 5

PPL = 10
PPL = 50

PPL = 100

Number concurrent flows

T
h
ro

u
g

h
p

u
t

(M
b

p
s)

Fig. 7. Testbed 1 Client Aggregate Throughput vs Number Concur-
rent Iperf Flows

be less synchronised and therefore they maintain a more
fluid transfer rate. Despite this, the conclusion can be
drawn that SIFTR is more than able to process up to 100
concurrent TCP flows without reducing the throughput
capacity of the testbed 1 machines.

Once again, testbed 2 exhibits different characteristics.
Increasing PPL and numbers of concurrent flows both
reduce the aggregate client throughput. This does suggest
that throughput is negatively affected by the number of
concurrent flows when running SIFTR in SMP kernels
with high data rates. However, throughput for values of
PPL up to 50 and for up to 100 concurrent flows is still,

1 10 100
552.5

555

557.5

560

562.5

565

567.5

570

572.5

575

Client Throughput vs Concurrent Flows

No SIFTR

PPL = 1

PPL = 2

PPL = 5

PPL = 10

PPL = 50

PPL = 100

Number concurrent flows

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Fig. 8. Testbed 2 Client Aggregate Throughput vs Number Concur-
rent Iperf Flows

for most combinations tested, better than the baseline
results (the “No SIFTR” plot line in Figure 8).

C. SIFTR skipped packet testing

There are a number of potential causes of skipped
packets in the SIFTR code that are summarised and
accounted for in the SIFTR unload log message. How-
ever, viewing the unload log messages for the test cases
showed that lock contention accounted for more than
99% (and in most cases 100%) of all skipped packets.
We will therefore only discuss skipped packets caused
by lock contention in this section.

SIFTR’s design as shown in Figure 3, coupled with the
knowledge that access to the SIFTR hook function is not
serialised by the kernel, implies that lock contention, and
therefore packet skip rate, is likely to be affected by two
main factors: the number of active TCP network threads
executing within the hook function, and the rate at which
packets are entering the hook function.

An example will help illustrate the affect of the first
factor on the probability of skipping a packet. If two
network threads are executing in the hook function, and
one acquires the lock and still holds the lock when the
second thread attempts to acquire the lock, the second
thread will skip enqueuing the pkt node, and therefore a
skipped packet event is recorded. It is therefore expected
that the skipped packet rate will increase as the number
of TCP network threads increases.

The second factor’s affect on the probability of skip-
ping a packet is a little more obvious. Increasing the
packet rate increases the amount of work imposed on

CAIA Technical Report 070824A August 2007 page 8 of 11

the packet processing thread, which has to acquire and
release the shared queue lock each time it dequeues a
pkt node structure. This leads to an increased probability
that another network thread attempting to enqueue a
pkt node structure will be denied the lock and therefore
skip the packet.

Figures 9 and 10 use a metric of “skipped packets
per throughput” on the y-axis, to capture the relation-
ship between throughput (essentially another way of
representing packet rate) and the probability of skipping
a packet. The number of concurrent Iperf flows does
directly translate into an equivalent number of concurrent
kernel network threads. As a result of varying PPL
in these tests, we inadvertently vary throughput, which
results in both skip rate factors affecting tests at the same
time.

Figure 9 plots the SIFTR skipped packets per through-
put vs the number of concurrent Iperf flows for dif-
ferent values of PPL on testbed 1. As predicted in
the preceeding behavioural analysis, we see a changing
skip rate as both the number of concurrent flows and
PPL vary. Referring back to Figure 7, we observe that
increasing PPL results in an increase in the achievable
throughput on account of lowered processing load. We
would therefore expect to see Figure 9 demonstrate an
increase in skip rate as PPL, and therefore throughput,
increase, which is the case. We also observe that as
the number of concurrent flows increases the increased
concurrent contention for the shared queue lock increases
the skip rate. As a result of both skip rate factors
affecting the tests simultaneously, the increase in skip
rate follows a multiplicative rather than additive trend as
throughput and number of concurrent flows increases.

The highest level of granularity with a single flow
corresponds with the lowest skipped packet rate of 2.1
skipped packets per Mbps throughput. High granular-
ity logging and large numbers of active flows or low
granularity logging and small numbers of active flows
will ensure the skipped packet rate remains below 20
skipped packets per Mbps throughput on testbed 1 style
hardware.

Figure 10 plots the SIFTR skipped packets per
throughput vs the number of concurrent Iperf flows for
different values of PPL on testbed 2. As with testbed
1, the highest level of granularity with a single flow
corresponds with the lowest skipped packet rate, which
is 25.7 skipped packets per Mbps throughput for testbed
2.

Figure 8 demonstrates that increasing PPL has a
negative effect on the throughput of testbed 2. As such,

1 10 100
0

50

100

150

200

250

300

350

400

450

500

550

Skipped Packets Per Throughput
vs Concurrent Flows

PPL = 1

PPL = 2

PPL = 5

PPL = 10

PPL = 50

PPL = 100

Iperf Flows

S
ki

p
p
e
d
 P

a
ck

e
ts

 P
e
r

M
b
p
s

T
h
ro

u
g
h
p
u
t

Fig. 9. Testbed 1 Client Skipped Packets per Mbps Throughput vs
Number Concurrent Iperf Flows

we would expect Figure 10 not to exhibit an increase in
skip rate as PPL increases. However, this is not the case.
Referring back to Figure 3, we note that setting PPL
greater than 1 allows the pkt manager thread to avoid
generating log messages for every PPL − 1 pkt node
structs processed by the thread. For testbed 2, this
actually results in the pkt manager thread acquiring the
shared queue lock many more times per second, which
in turn increases the probability of skipping a packet.
This explains the significant jump in skipped packet rate
for PPL=1 and PPL=2 from 25.7 to 68.8 skipped packets
per Mbps throughput.

These results indicate that further optimisation of the
pkt manager thread may be possbile to reduce the skip
rate.

D. SIFTR end-point testing

Whilst running SIFTR on the data sender will, in most
cases, provide more useful data than on the data receiver,
it is possible to use it on one or the other or both.

Figure 11 plots throughput vs PPL on testbed 1 for a
single flow with SIFTR running on the sending host, re-
ceiving host, and both at the same time. Running SIFTR
on the receiver clearly results in better throughput. This
would indicate that sending data places more load on
the testbed 1 systems than receiving it. Running SIFTR
on either the sender or both sender and receiver exhibits
similar results, though a slight throughput advantage is

CAIA Technical Report 070824A August 2007 page 9 of 11

1 10 100
20

30

40

50

60

70

80

90

100

110

Skipped Packets Per Throughput
vs Concurrent Flows

PPL = 1

PPL = 2

PPL = 5

PPL = 10

PPL = 50

PPL = 100

Iperf Flows

S
ki

p
p
e
d
 P

a
ck

et
s

P
e
r

M
b
p
s

T
h
ro

u
g
h
p
u
t

Fig. 10. Testbed 2 Client Skipped Packets per Mbps Throughput vs
Number Concurrent Iperf Flows

1 10 100
150

200

250

300

350

400

450

500

550

600

650

Client Throughput vs SIFTR PPL,
1 flow

SIFTR on sender

SIFTR on receiver

SIFTR on both

SIFTR packets per log

T
h
ro

u
g

h
p
u
t

(M
b
p
s)

Fig. 11. Testbed 1 Client Throughput vs SIFTR packets-per-log

had by running only on the sender. However, for PPL
values greater than or equal to 10, the two cases converge
and exhibit identical throughput results. If the data
gathered from the receiver is sufficient for a test case, it
is clearly advantageous to run SIFTR on the receiver for
optimal throughput on testbed 1 style hardware.

Figure 12 plots throughput vs PPL on testbed 2 for
a single flow with SIFTR running on the sending host,
receiving host, and both at the same time. Testbed 2
shows the receiver to be the processing bottleneck, rather
than the sender as was the case with testbed 1. This
is illustrated by the fact that the throughput grows as

the value of PPL is increased when SIFTR is running
on the receiver. Increasing PPL lowers the processing
requirements on the host, and as this was the only
change made between data points, we can attribute the
increase in throughput to the increasing value of PPL.
These results indicate that it is preferrable to run SIFTR
on the data sender to achieve optimal throughput on
testbed 2 style hardware. This is favourable given that
we noted running SIFTR on the sender typically yields
more interesting data anyway.

1 10 100
556

558

560

562

564

566

568

570

572

574

576

Client Throughput vs SIFTR PPL,
1 flow

SIFTR on sender

SIFTR on receiver

SIFTR on both

SIFTR packets per log

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Fig. 12. Testbed 2 Client Throughput vs SIFTR packets-per-log

VI. CONCLUSION AND FURTHER WORK

SIFTR intercepts TCP packets as they traverse the
network stack within the FreeBSD kernel, logging a
message containing information about the TCP connec-
tion the packet relates to. SIFTR’s primary use is for
empirical research into TCP behaviour, and as such is
aimed at experimental researchers working with real
systems and protocol implementations.

We have measured SIFTR’s impact on the TCP
throughput achieved by two different test systems. With
SIFTR running on 2004-era commodity PC hardware,
configured with maximum data logging granularity, up
to 100 TCP flows can achieve aggregate throughput of
at least 204Mbps over gigabit Ethernet with a worst case
skip rate of 16.2 skipped packets per Mbps throughput.
This represents the most processor intensive test case
run, and therefore sets an upper bound on the throughput
conditions SIFTR can accommodate on similar hard-
ware.

SIFTR was also evaluated on a second testbed con-
sisting of much newer 2007-era dual core commodity
PC hardware. With SIFTR running on this hardware,

CAIA Technical Report 070824A August 2007 page 10 of 11

configured with maximum data logging granularity, up
to 100 TCP flows can achieve aggregate throughput of
at least 565Mbps over gigabit Ethernet with a worst case
skip rate of 31.1 skipped packets per Mbps throughput.

Further work needs to be undertaken to investigate
why testbed 2 demonstrated increased TCP throughput
when SIFTR was enabled in the kernel, compared to the
baseline tests.

The results presented in this report have highlighted
areas for possible further optimisation within SIFTR, and
also constitute ongoing further work.

VII. ACKNOWLEDGMENTS

This report has been made possible in part by a grant
from the Cisco University Research Program Fund at
Community Foundation Silicon Valley.

The authors would also like to acknowledge the help
of the FreeBSD community, namely Pawel Jakub Daw-
idek for creating the kernio code used in SIFTR, and
the users on the freebsd-hackers mailing list for the help

and support they provided us during the creation of the
SIFTR software.

REFERENCES

[1] “NewTCP project tools,” June 2007, http://caia.swin.edu.au/urp/
newtcp/tools.html.

[2] “The Web100 Project,” June 2007, http://web100.org/.
[3] “The NewTCP Project,” June 2007, http://caia.swin.edu.au/urp/

newtcp.
[4] “The FreeBSD Project,” June 2007, http://www.freebsd.org/.
[5] L. Stewart, J. Healy, “Tuning and Testing the FreeBSD 6 TCP

Stack,” CAIA, Tech. Rep. 070717B, July 2007, http://caia.swin.
edu.au/reports/070717B/CAIA-TR-070717B.pdf.

[6] FreeBSD Hypertext Man Pages, “PFIL,” June 2007, http://www.
freebsd.org/cgi/man.cgi?query=pfil&sektion=9.

[7] L. Stewart, J. Healy, “An Introduction to FreeBSD 6 Kernel
Hacking,” CAIA, Tech. Rep. 070622A, July 2007, http://caia.
swin.edu.au/reports/070717B/CAIA-TR-070717B.pdf.

[8] , “Iperf - The TCP/UDP Bandwidth Measurement Tool,” June
2007, http://dast.nlanr.net/Projects/Iperf/.

[9] “FreeBSD Network Performance Project (netperf),” August
2007, http://www.freebsd.org/projects/netperf/.

[10] Robert Watson, “FreeBSD Network Performance Project (net-
perf),” August 2007, http://www.watson.org/∼robert/freebsd/
netperf/freebsd7.txt.

CAIA Technical Report 070824A August 2007 page 11 of 11

http://caia.swin.edu.au/urp/newtcp/tools.html
http://caia.swin.edu.au/urp/newtcp/tools.html
http://web100.org/
http://caia.swin.edu.au/urp/newtcp
http://caia.swin.edu.au/urp/newtcp
http://www.freebsd.org/
http://caia.swin.edu.au/reports/070717B/CAIA-TR-070717B.pdf
http://caia.swin.edu.au/reports/070717B/CAIA-TR-070717B.pdf
http://www.freebsd.org/cgi/man.cgi?query=pfil&sektion=9
http://www.freebsd.org/cgi/man.cgi?query=pfil&sektion=9
http://caia.swin.edu.au/reports/070717B/CAIA-TR-070717B.pdf
http://caia.swin.edu.au/reports/070717B/CAIA-TR-070717B.pdf
http://dast.nlanr.net/Projects/Iperf/
http://www.freebsd.org/projects/netperf/
http://www.watson.org/~robert/freebsd/netperf/freebsd7.txt
http://www.watson.org/~robert/freebsd/netperf/freebsd7.txt

	Introduction
	Introducing SIFTR
	Experimental set up
	Testing methodology
	Performance analysis
	Testbed baseline
	SIFTR granularity testing
	SIFTR skipped packet testing
	SIFTR end-point testing

	Conclusion and Further Work
	Acknowledgments
	References

