
Server Discovery for Quake III Arena, Wolfenstein
Enemy Territory and Quake 4

G. Armitage
Centre for Advanced Internet Architectures, Technical Report 070730A

Swinburne University of Technology
Melbourne, Australia

garmitage@swin.edu.au

Abstract—This report briefly summarises the server-
discovery protocol used by Quake III Arena, Wolfenstein
Enemy Territory and Quake 4. When requested by the
player, a game client issues a query to a well-known
‘master server’, which replies with a list of registered (and
nominally active) game servers. The client then probes
each game server in sequence, presenting the player with
information about each game server as replies come back.
Game servers participate in this process by registering
with the master server when they start up. The server
discovery process is similar for all three games, based on
short UDP packet exchanges. A discussion of UDP traffic
between game servers and clients during connection and
actual game-play is beyond the scope of this report.

Index Terms—Quake III Arena, Wolfenstein Enemy
Territory, Quake 4

I. I NTRODUCTION

Internet based multiplayer First Person Shooter (FPS)
games typically operate in a client-server mode, with
game servers being hosted by internet service providers
(ISPs), dedicated game hosting companies and individual
enthusiasts. Although individual FPS game servers typ-
ically only host from 4 to around 30+ players, there are
usually many thousands of individually operated game
servers active on the Internet at any given time. This
presents a challenge - how do game clients locate up-
to-date information about all the servers available at any
given time, such that the player can select a suitable
server on which to play. This report summarises the
sequence of events that makes up server discovery for
Quake III Arena (Q3A) [1], Wolfenstein Enemy Territory
(ET) [2] [3], and Quake 4 (Q4) [4]. (Further details of
the UDP traffic between game servers and clients dur-
ing subsequent connection and actual interactive game-
play is beyond the scope of this report. Details of the
Quake III Arena engine’s network protocol may be found
at http://hobbshouse.org/wiki/index.php/ [5], along with

notes on theioquake3 variant of the GPL’d Quake III
Arena source code.)

Server discovery operates similarly for many FPS
games, due to the decentralised and ad-hoc nature of FPS
game server hosting. First, a game client queries a master
server unique to the particular game (a server whose IP
address is pre-configured into the game client software).
The master server returns a list of hundreds (or thou-
sands) of IP addresses and port numbers representing
game servers who’ve registered themselves as ‘active’.
The client then steps through this list, probing each listed
game server for information (such as about current map
type, game type and number of players - typically a
brief UDP packet exchange). As a side-effect of this
probe the client also estimates the RTT between itself
and each game server. All this information is presented
to the player (usually as it is gathered), who then selects
a game server to join.

Server discovery is usually triggered explicitly by the
human player running a particular game client. It may
be triggered once or multiple times to refresh the list
of available servers presented to the potential player by
their client-side server browser. A given client will send
out hundreds or thousands of probe packets to find and
join only one game server.

This report is organised as follows. SectionII de-
scribes the server discovery process and packet ex-
changes for Quake III Arena, whilst sectionIII describes
the similar server discovery process for Wolfenstein
Enemy Territory. SectionIV describes the closely-related
server discovery process and packet exchanges for Quake
4. The report concludes in SectionV.

II. QUAKE III A RENA

Quake III Arena was released in December 1999,
and was primarly focussed on multiplayer online game
play. First we will review the sequence of events from

CAIA Technical Report 070730A July 2007 page 1 of8

mailto:garmitage@swin.edu.au

Fig. 1. A Quake III Arena client’s discovery and probing of registeredgame servers

the perspective of Q3A, then the formats of command
packets used during server discovery. This discussion
assumes a Q3A client patched to version 1.32.

A. Q3A server discovery sequence

Public Q3A game servers automatically register them-
selves atmaster.quake3arena.com:27950, the Q3A mas-
ter server. This master server becomes a rendezvous
point for Q3A clients around the planet who wish to
know what Q3A game servers are available at any point
in time.

Figure 1 illustrates a Q3A client’s server discovery
process.

• The client sends a shortgetservers request packet
to master.quake3arena.com on port 27950, eliciting
one or moregetserversResponse packets (typically
well within 2 seconds). ThesegetserversResponse
packets contain all the currently registered Q3A
game servers. (The Q3A master server returns mul-
tiple getserversResponse packets in quick succes-
sion when the list of registered game servers is too
long to fit in a single UDP payload.)

• After getserversResponse packets are received the
game client begins issuinggetinfo probes to each
listed game server. Game servers are probed in
the order in which they were listed in the master
server’sgetserversResponse packet(s).

• Each game server’s reply comes back in aninfoRe-
sponse packet. The game client populates its on-
screen ‘server browser’ using information contained
in eachinfoResponse packet and the game server’s
round trip time (RTT, estimated from the time

between sending agetinfo and receiving a matching
infoResponse).

• At any time during (or after) thegetinfo / infoRe-
sponse process the player may chose a specific
game server to play on from the information pre-
sented in the onscreen server browser.

From a Q3A game server’s perspective, within minutes
of registering with the master server it will begin seeing
an influx of getinfo probe packets. These probes come
from active Q3A clients around the Internet (Figure2)
and automated game server monitoring systems (such as
ServerSpy [6]). The flow of player-triggered probe traffic
will fluctuate with a 24-hour period [7], but rarely ever
stop while the Q3A game server remains registered.

After establishing basic information about all regis-
tered game servers, Q3A clients may additionally issue
a getstatus request to one or more selected game servers.
This elicits a more comprehensive set of information
about the game server in astatusResponse reply.

B. Q3A server discovery packet formats

Q3A uses UDP packets for all communication be-
tween master server, game servers and game clients.
Command messages (such as the server discovery mes-
sages shown in Figure1) are distinguished by their UDP
payload beginning with 0xFFFFFFFF, indicating a Q3A
out-of-band (OOB) command. The ASCII text following
the 0xFFFFFFFF bytes indicates the command message
itself. The UDP payload length indicates where the
command message ends (no explicit termination bytes
are used).

The following list describes the contents of the UDP

CAIA Technical Report 070730A July 2007 page 2 of8

Fig. 2. Individual game servers experiencegetinfo probes coming
from clients all around the Internet

payload after the 0xFFFFFFFF bytes for each of the
OOB command packets in Figure1.

• getservers packets consist of the ASCII text ‘get-
servers NN’ or ‘getservers NN empty full’. The
value NN indicates the network protocol level of
the client (for example, a client patched to version
1.32 has a network code of 68). The master server
returns only those game servers who previously
registered with the same network protocol level.
If the client’s in-game server browser has “show
empty” and “show full” set, thegetservers string
contains the additional words ‘empty full’. (How-
ever, when tested in July 2007 it does not appear
that the master server reacts any differently to these
additional words being present.)

• getserversResponse packets consist of the ASCII
text ‘getserversResponse‘ immediately followed by
a variable number of 7-byte fields and the trailing
text ‘\EOT’. Each 7-byte field contains the charac-
ter ‘\’ (one byte), an IPv4 address (4 bytes) and
UDP port number (2 bytes) of a registered game
server. EachgetserversResponse packet may carry
up to 112 game servers (810 bytes of UDP payload
per getserversResponse packet).

• getinfo packets consist of the ASCII text ‘getinfo
xxx’. ‘xxx’ is the challenge string - either literally
three ‘x’ characters, or an arbitrary numberic string,
that is returned as the challenge token value in sub-
sequentinfoResponse replies. (Alternatively, there
may be no challenge string provided, and the UDP
payload simply contains the ASCII text ‘getinfo’
and a trailing 0x0A byte.)

• infoResponse packets consist of the ASCII text
‘infoResponse’, a single byte 0x0A, and then a vari-

able length ASCII ‘infoString’ carrying game-server
specific details. The details (in ‘\token\value’ form)
include information such as the server’s name, cur-
rent map, current and maximum number players,
etc. An example looks like:

\game\osp\punkbuster\0
\pure\1\gametype\0
\sv_maxclients\20
\clients\5\mapname\jof3dm1
\hostname\EDs LAN Party
\protocol\68\challenge\xxx

(If the preceding getinfo packet lacked the
‘ xxx’ then the infoResponse reply will lack the
‘\challenge\xxx’ pair)

• getstatus packets consist of the ASCII text ‘getsta-
tus’ terminated by a trailing 0x0A byte.

• statusResponse packets consist of the ASCII text
‘statusResponse’, a single byte 0x0A, and then a
variable length ASCII infoString carrying additional
game-server specific details (much more than in the
infoResponse reply).

There are no sequence numbers ingetserversResponse
packets. The client simply collects and decodes all
getserversResponse packets it receives after sending a
getservers command to the master server.

Both getinfo and getstatus packets may contain an
optional challenge string, which the probed game server
should return as a ‘\challenge\xxx’ pair in the infoString
of the matchinginfoResponse or statusResponse reply.

Figure 3 illustrates the OOB packet format using an
Ethernet frame carrying ainfoResponse. The first byte in
Figure3 is the first byte of the Ethernet frame’s header,
and the UDP payload begins at offset 0x2A (42 bytes)
from the Ethernet frame’s start. ThisinfoResponse was
coming back from a game server at 68.88.65.185:1336 to
a Q3A client at 10.1.1.2:27960 (the frame was captured
behind a NAT box between the Q3A client and the
Internet).

C. Q3A game server registration

Individual Q3A game servers intially register with
the Q3A master server by sending aheartbeat packet
to master.quake3arena.com:27950, and then repeating
this heartbeat every 5 minutes while the game server
is up. Figure4 shows an Ethernet frame carrying a
heartbeat packet from a public Q3A game server at
192.147.236.5.27960 to to the Q3A master server at
192.246.40.56.27950. The UDP payload contains the
string ‘heartbeat QuakeArena-1’, terminated by 0x0A.

CAIA Technical Report 070730A July 2007 page 3 of8

0000 00 16 e6 8c 0b 3a 00 12 bf 12 ab 7a 08 00 45 30:.....z..E0
0010 00 b9 ae b6 00 00 75 11 05 3a 44 58 41 b9 0a 01u..:DXA...
0020 01 02 05 38 6d 38 00 a5 0f 88 ff ff ff ff 69 6e ...8m8........in
0030 66 6f 52 65 73 70 6f 6e 73 65 0a 5c 67 61 6d 65 foResponse.\game
0040 5c 63 70 6d 61 5c 70 75 6e 6b 62 75 73 74 65 72 \cpma\punkbuster
0050 5c 30 5c 70 75 72 65 5c 31 5c 67 61 6d 65 74 79 \0\pure\1\gamety
0060 70 65 5c 31 5c 73 76 5f 6d 61 78 63 6c 69 65 6e pe\1\sv_maxclien
0070 74 73 5c 38 5c 63 6c 69 65 6e 74 73 5c 32 5c 6d ts\8\clients\2\m
0080 61 70 6e 61 6d 65 5c 70 72 6f 2d 71 33 64 6d 36 apname\pro-q3dm6
0090 5c 68 6f 73 74 6e 61 6d 65 5c 57 65 6c 63 6f 6d \hostname\Welcom
00a0 65 20 44 55 45 4c 20 53 65 72 76 65 72 5c 70 72 e DUEL Server\pr
00b0 6f 74 6f 63 6f 6c 5c 36 38 5c 63 68 61 6c 6c 65 otocol\68\challe
00c0 6e 67 65 5c 78 78 78 nge\xxx

Fig. 3. A hex and ASCII dump of an Ethernet frame containing a Quake III Arena game server’sinfoResponse reply

0000 45 00 00 37 29 80 00 00 40 11 bb 6e c0 93 ec 05 E..7)...@..n....
0010 c0 f6 28 38 6d 38 6d 2e 00 23 47 a3 ff ff ff ff ..(8m8m..#G.....
0020 68 65 61 72 74 62 65 61 74 20 51 75 61 6b 65 41 heartbeat.QuakeA
0030 72 65 6e 61 2d 31 0a rena-1.

Fig. 4. A hex and ASCII dump of an Ethernet frame containing a Quake III Arena game server’sheartbeat registration packet

The Q3A master server derives each game server’s IP
address and port number from the source IP address and
port number fields of the receivedheartbeat IP packet.
This ensures the correct ‘public’ IP address and port
information is recorded, even if the Q3A game server
itself is located behind a NAT box.

While a Q3A game server is registered with
the master server, another process running onmas-
ter.quake3arena.com begins regularly probing the game
server (acting like a Q3A client). Every 5 minutes a
getstatus message is sent frommaster.quake3arena.com
to the Q3A game server. The Q3A game server is
then expected to respond with matchingstatusResponse
message.

The infoString of each game server’sstatusResponse
allows the master server to track that particular game
server’s network protocol level. This allows the master
server to respond appropriately togetservers requests
that specify a particular client network protocol level.

III. W OLFENSTEINENEMY TERRITORY

ET was released in 2003 as an online-only team-
play FPS game, and still has an active online player
community. The ET server discovery sequence is very
similar to that of Q3A (as the ET game engine is derived
from Q3A code).

A. ET server discovery sequence

Public ET game servers automatically register them-
selves atetmaster.idsoftware.com:27950, the ET master
server. This master server becomes a rendezvous point
for ET clients around the planet who wish to know what
ET game servers are available at any point in time.

The ET client’s server discovery sequence is essen-
tially the same as that described for Q3A and shown in
Figure1, with a few differences.

• The client sends a shortgetservers request packet
to etmaster.idsoftware.com on port 27950, eliciting
one or moregetserversResponse packets within 2
seconds [8].

• As getserversResponse packets are received the
game client begins issuinggetinfo probes to each
listed game server.

As a small optimisation, an ET client partially overlaps
the reception ofgetserversResponse packets and the
emission ofgetinfo probes. The first 16 game servers
are probed in sequence as soon as the firstgetserver-
sResponse packet arrives from the master server, with
additional getinfo probes sent as previous probes are
answered. No more than 16 probes remain outstanding
(unanswered) at any one time.

From an ET game server’s perspective, within minutes
of registering with the master server it will begin seeing

CAIA Technical Report 070730A July 2007 page 4 of8

an influx of getinfo probe packets. These probes come
from active ET clients around the Internet (Figure2)
and automated game server monitoring systems (such as
ServerSpy [6]). The flow of player-triggered probe traffic
will fluctuate with a 24-hour period [7], but rarely ever
stop while the ET game server remains registered.

After establishing basic information about all regis-
tered game servers, the player may discover additional
information about a particular game server by pressing
the “Server information” button in the client’s server
selection browser. This triggers agetstatus request to
the selected game server, eliciting additional information
about the selected game server in astatusResponse reply.

B. ET server discovery packet formats

ET uses the same OOB control packet format as Q3A,
starting each UDP packet with 4 bytes of 0xFFFFFFFF.

• getservers packets consist of the ASCII text ‘get-
servers NN’, where NN indicates the network pro-
tocol level of the client (for example, an ET client
patched to version 2.60 has a network code of 84).
The master server returns only those game servers
who previously registered with the same network
protocol level.

• getserversResponse packets consist of the ASCII
text ‘getserversResponse‘ immediately followed by
a variable number of 7-byte fields and the trailing
text ‘\EOT’. Each 7-byte field contains the charac-
ter ‘\’ (one byte), an IPv4 address (4 bytes) and
UDP port number (2 bytes) of a registered game
server. EachgetserversResponse packet may carry
up to 112 game servers.

• getinfo packets consist of the ASCII text ‘getinfo
xxx’.

• infoResponse packets consist of the ASCII text
‘infoResponse’, a single byte 0x0A, and then a vari-
able length ASCII ‘infoString’ carrying game-server
specific details. The details (in ‘\token\value’ form)
include information such as the server’s name, cur-
rent map, current and maximum number players,
etc. An example looks like:
\challenge\xxx\protocol\84
\hostname\myServerName
\serverload\0
\mapname\fun_tennis
\clients\0
\sv_maxclients\10\gametype\2
\pure\1\game\etpro
\sv_allowAnonymous\0
\friendlyFire\0

\maxlives\0\needpass\0
\punkbuster\1\gamename\et
\g_antilag\1\weaponstrict\100
\balancedteams\1

• getstatus packets consist of the ASCII text ‘getsta-
tus’.

• statusResponse packets consist of the ASCII text
‘statusResponse’, a single byte 0x0A, and then a
variable length ASCII infoString carrying additional
game-server specific details (much more than in the
infoResponse reply).

There are no sequence numbers ingetserversResponse
packets. The client simply collects and decodes all
getserversResponse packets it receives after sending a
getservers command to the master server.

C. Other ET game client behaviour

The ET client (as of version 2.60) is a little more
‘chatty’ than the Q3A client on which it is based.
Upon startup, and before the player has explicitly asked
the client to do anything, the client is already passing
information to online servers.

When the ET client first starts, it displays a splash
screen and then shows the available options in the top
left corner of the screen (to initiate play online, set
local configuration options, etc). While in this mode,
behind the scenes the client communicates withet-
master.idsoftware.com:27951 (rather than the usual port
27950) to establish one’s player number.

The sequence is:

• Client sends agetmotd OOB packet toetmas-
ter.idsoftware.com:27951, consisting of the ASCII
text ‘getmotd ’ (the trailing space is required)
followed by a variable length ASCII infoString
carrying some client-specific details.

• Server responds with amotd OOB packet, consist-
ing of the ASCII text ‘motd ’ (the trailing space
is required) followed by a variable length ASCII
infoString carrying a ‘message of the day’ from the
ET master server.

(Note: As with regular control packets, the above also
begin the UDP payload with 0xFFFFFFFF.)

As of July 2007 a clientgetmotd message carries an
infoString similar to this:

"\challenge\29862\renderer
\GeForce 7900 GS/PCI/SSE2
\version\ET 2.60 win-x86
Mar 10 2005"\n

CAIA Technical Report 070730A July 2007 page 5 of8

(In this case revealing to the master server information
about my client’s graphics card.)

The server’smotd reply carries an infoString similar
to this:

"challenge\29862
\motd\Welcome to Enemy Territory
player 1025240255!!!\"

Note that in each case the quotation marks are ex-
plicitly included in the UDP payload. (Inspection of
various control messages also suggests that a trailing
0x0A, rendered in ASCII as ‘\n’, is optional - ASCII
strings may end with 0x0A or simply end at the last
byte in the UDP payload.)

Additionally, in July 2007 the version 2.60 ET
client was observed resolving the IP address of
au2rtcw2.activision.com and then sending a command
message toau2rtcw2.activision.com:27960 at the same
time it was performing thegetmotd/motd exchange. The
client transmitted agetUpdateInfo OOB message, whose
payload was:

getUpdateInfo "ET 2.60" "win-x86"\n

For unknown reasons the server at
au2rtcw2.activision.com:27960 was unavailable and the
client received an ICMP ‘port unreachable’ message in
response.

D. ET game server registration

Individual ET game servers intially register with
the ET master server by sending aheartbeat packet
to etmaster.idsoftware.com:27950, and then repeating
this heartbeat every 5 minutes while the game server
is up. Figure 5 shows an Ethernet frame carrying
a heartbeat packet from a public ET game server
at 136.186.229.32:27961 to the ET master server
at 192.246.40.60:27950. The UDP payload contains
the string ‘heartbeat EnemyTerritory-1’, terminated by
0x0A.

The ET master server derives each game server’s IP
address and port number from the source IP address and
port number fields of the receivedheartbeat IP packet.
This ensures the correct ‘public’ IP address and port
information is recorded, even if the ET game server itself
is located behind a NAT box.

While ever an ET game server is registered with
the master server, another process running onetmas-
ter.idsoftware.com begins regularly probing the game
server (acting like an ET client). Every 4 minutes (or
some integer multiple of 4 minutes) a sequence of

getchallenge, getstatus and getinfo messages are sent
(back to back) frometmaster.idsoftware.com to the ET
game server. The ET game server is then expected to re-
spond with matchingchallengeResponse, statusResponse
and infoResponse messages.

The infoString of each game server’sinfoResponse
allows the master server to track that particular game
server’s network protocol level. This allows the master
server to respond appropriately togetservers requests
that specify a particular client network protocol level.

(Note: the ET master server doesn’t appear to care
about ordering -getstatus is sent beforegetinfo, and the
master server does not wait for astatusResponse before
sending thegetinfo.)

If the ET game server shuts down gracefully it will
send anETFlatline message to the master server. This
is similar to aheartbeat, but the UDP payload contains
the string ‘heartbeat ETFlatline-1’, terminated by 0x0A.

IV. QUAKE 4

Quake 4 (Q4) was released in October 2005 using
an entirely new game engine based on Doom 3. Server
discovery is conceptually similar to that used by Q3A,
but Q4 introduces a new, incompatible packet format and
some extra steps in the client’s relationship to the Q4
master server.

First we will review the sequence of events from the
perspective of Q4, then the formats of command packets
used during server discovery. This discussion assumes a
Q4 client patched to version 1.4.2.

A. Quake 4 server discovery sequence

Public Q4 game servers automatically register them-
selves atq4master.idsoftware.com:27650, the Q4 master
server. This master server becomes a rendezvous point
for Q4 clients around the planet who wish to know what
Q4 game servers are available at any point in time.

A Q4 client’s server discovery process comprises the
following steps:

• The client sends a shortgameAuth request packet
to q4master.idsoftware.com:27650, carrying the
client’s ‘CD Key’ in clear text. This elicits an
immediateauthKey response from the master server.

• The client then sends a shortgetServers request
packet toq4master.idsoftware.com:27650, eliciting
one or moreservers packets in reply (typically well
within 2 seconds). Theseservers packets contain
all the currently registered Q4 game servers. (The
Q4 master server returns multipleservers packets in

CAIA Technical Report 070730A July 2007 page 6 of8

0000 45 00 00 3b dd 98 00 00 40 11 46 0c 88 ba e5 20 E..;....@.F.....
0010 c0 f6 28 3c 6d 39 6d 2e 00 27 9c 48 ff ff ff ff ..(<m9m..’.H....
0020 68 65 61 72 74 62 65 61 74 20 45 6e 65 6d 79 54 heartbeat.EnemyT
0030 65 72 72 69 74 6f 72 79 2d 31 0a erritory-1.

Fig. 5. A hex and ASCII dump of an Ethernet frame containing a Enemy Territory game server’sheartbeat registration packet

quick succession when the list of registered game
servers is too long to fit in a single UDP payload.)

• After servers packets are received the game client
begins issuinggetInfo probes to each listed game
server. Game servers are probed in the order in
which they were listed in the master server’sservers
packet(s).

• Each game server’s reply comes back in aninfoRe-
sponse packet. The game client populates its on-
screen ‘server browser’ using information contained
in eachinfoResponse packet and the game server’s
round trip time (RTT, estimated from the time
between sending agetInfo and receiving a matching
infoResponse).

• At any time during (or after) thegetInfo / infoRe-
sponse process the player may chose a specific
game server to play on from the information pre-
sented in the onscreen server browser.

Aside from the initial gameAuth/authKey sequence,
the Q4 process looks broadly like the Q3A sequence
shown in Figure1.

As with Q3 and ET, the list of game servers returned
by the master server may span multipleservers packets.

A Q4 client sendsgetInfo probes in bursts of 32
back to back packets, then pauses for a few hundred
milliseconds before sending out another back to back
burst of 32getInfo probe packets.

The amount of information returned ininfoResponse
messages has grown (relative to Q3A and ET), and
now includes active player details. This can cause the
infoResponse message to be fragmented across two IP
packets. (In such circumstances the fragmentation is
performed at the IP layer, hidden from the Q4 client
or server.)

B. Quake 4 server discovery packet formats

There are three main differences between Q4 and
Q3A control messages: The UDP payload for OOB mes-
sages begins with 0xFFFF (rather than 0xFFFFFFFF),
infoString token and value fields are deliminted by
0x00 (rather than ‘\’) and there are some additional
binary encoded fields (whose meanings are not precisely

detailed in this report). Figures6, 7 and 8 illustrate some
of these differences.

Figure 6 shows a 63 byte Ethernet frame carrying a
Q4 getServers request packet. This particular packet was
coming from a Q4 client at 10.1.1.2:1590 to the master
server at 192.246.40.28:27650.

Figure 7 shows the first 96 bytes and the final 62
bytes of a 1438 byte Ethernet frame carrying a Q4
servers reply packet. Up to 231 game servers may be
returned in a singleservers reply packet. The list of
game servers begins at offset 0x34, immediately after
the null-terminated ‘servers’ string.

This particular packet came from the Q4 master server
at 192.246.40.28:27650 to the Q4 client at 10.1.1.2:1590,
in response to thegetServers request in Figure6. The
first listed game server is 85.236.101.43:28014 (starting
at offset 0x34 the55 ec 65 2b represents the game
server’s IPv4 address and6e 6d indicates the game
server’s port). Additional game servers are listed in
subsequent 6-byte fields.

Figure 8 shows the first 172 bytes and the final
55 bytes of a 919 byte Ethernet frame carrying a Q4
infoResponse reply packet. This particular packet was
coming back from a Q4 game server at 69.65.15.4:28004
to a Q4 client at 10.1.1.2:1590.

C. Q4 game server registration

The process by which a Q4 game server registers with
the Q4 master server is not covered by this report.

V. CONCLUSION

This report has provided some brief descriptions of
the game server discovery sequence utilised by clients
of Quake III Arena, Wolfenstein Enemy Territory and
Quake 4 multiplayer online games. Discussion of the
discovery sequence has been augmented by examples of
actual packet payloads, sufficient for future developers
to write their own packet parsing code.

REFERENCES

[1] id Software,Quake III Arena, http://www.idsoftware.com/, as of
July 21st 2007.

[2] ——, Wolfenstein Enemy Territory, under “Downloads” at
http://www.enemyterritory.com/main.html, as of July 21st 2007.

CAIA Technical Report 070730A July 2007 page 7 of8

0000 00 12 bf 12 ab 7a 00 16 e6 8c 0b 3a 08 00 45 00z.....:..E.
0010 00 31 a2 25 00 00 80 11 a4 81 0a 01 01 02 c0 f6 .1.%............
0020 28 1c 06 36 6c 02 00 1d ef 0a ff ff 67 65 74 53 (..6l.......getS
0030 65 72 76 65 72 73 00 55 00 02 80 00 00 00 00 ervers.U.......

Fig. 6. A hex and ASCII dump of an Ethernet frame containing a Quake 4client’s getServers request

0000 00 16 e6 8c 0b 3a 00 12 bf 12 ab 7a 08 00 45 30:.....z..E0
0010 05 90 00 00 40 00 36 11 4b 18 c0 f6 28 1c 0a 01@.6.K...(...
0020 01 02 6c 02 06 36 05 7c 62 f1 ff ff 73 65 72 76 ..l..6.|b...serv
0030 65 72 73 00 55 ec 65 2b 6e 6d 55 ec 65 2b 64 6d ers.U.e+nmU.e+dm
0040 d5 fb ad 20 c8 6d d5 fb ad 20 65 6d c2 74 52 05m... em.tR.
0050 64 6d 55 ec 64 3c 2c 6e 45 1c dc 03 64 6d 90 8c dmU.d<,nE...dm..
[...lines elided for clarity...]
0560 c8 6d c3 7a 87 48 64 6d 55 15 25 13 ca 6d 08 09 .m.z.HdmU.%..m..
0570 03 9b 64 6d d5 72 b6 c7 64 6d c3 0d 3e 1e dc 69 ..dm.r..dm..>..i
0580 c3 0d 3e 12 94 75 c3 0d 3e 12 c8 6d 48 05 f9 2e ..>..u..>..mH...
0590 64 6d c3 0d 3e 3a 08 6b c3 0d 3e 3a 48 71 dm..>:.k..>:Hq

Fig. 7. A hex and ASCII dump of an Ethernet frame containing a Quake 4master server’sservers reply

0000 00 16 e6 8c 0b 3a 00 12 bf 12 ab 7a 08 00 45 30:.....z..E0
0010 03 89 3d f8 00 00 77 11 a2 f4 45 41 0f 04 0a 01 ..=...w...EA....
0020 01 02 6d 64 06 36 03 75 8a 16 ff ff 69 6e 66 6f ..md.6.u....info
0030 52 65 73 70 6f 6e 73 65 00 01 00 00 00 55 00 02 Response.....U..
0040 00 6e 65 74 5f 73 65 72 76 65 72 44 65 64 69 63 .net_serverDedic
0050 61 74 65 64 00 31 00 66 73 5f 67 61 6d 65 5f 62 ated.1.fs_game_b
0060 61 73 65 00 00 66 73 5f 67 61 6d 65 00 71 34 6d ase..fs_game.q4m
0070 70 00 73 76 5f 70 75 6e 6b 62 75 73 74 65 72 00 p.sv_punkbuster.
0080 31 00 73 69 5f 76 65 72 73 69 6f 6e 00 51 75 61 1.si_version.Qua
0090 6b 65 34 20 20 56 31 2e 34 2e 32 20 77 69 6e 2d ke4 V1.4.2 win-
00a0 78 38 36 20 4a 75 6e 20 31 35 20 32 30 30 37 00 x86 Jun 15 2007.
[...lines elided for clarity...]
0360 73 69 5f 6e 75 6d 50 72 69 76 61 74 65 50 6c 61 si_numPrivatePla
0370 79 65 72 73 00 30 00 67 61 6d 65 6e 61 6d 65 00 yers.0.gamename.
0380 51 34 4d 50 20 31 2e 34 2e 32 00 00 00 20 07 00 Q4MP 1.4.2... ..
0390 00 00 00 00 00 00 01

Fig. 8. A hex and ASCII dump of an Ethernet frame containing a Quake 4game server’sinfoResponse reply

[3] (fan site), Wolfenstein Enemy Territory, http://www.enemy-
territory.com/, as of July 21st 2007.

[4] id Software,Quake 4, http://www.quake4game.com/, as of July
21st 2007.

[5] ioquake3Wiki, http://hobbshouse.org/wiki/index.php/MainPage,
as of July 21st 2007.

[6] ServerSpy - Online PC Gaming Statistics,
http://www.serverspy.net/, as of July 21st 2007.

[7] S. Zander, D. Kennedy, and G. Armitage, “Dissecting server-

discovery traffic patterns generated by multiplayer first person
shooter games,” inProceedings of ACM Networks and System
Support for Games (NetGames) Workshop, October 2005.

[8] G. Armitage, C. Javier, and S. Zander, “Measuring
a wolfenstein enemy territory master servers response
to game client queries,” CAIA Technical Report
060410A, http://caia.swin.edu.au/reports/060410A/CAIA-
TR-060410A.pdf, April 2006.

CAIA Technical Report 070730A July 2007 page 8 of8

	Introduction
	Quake III Arena
	Q3A server discovery sequence
	Q3A server discovery packet formats
	Q3A game server registration

	Wolfenstein Enemy Territory
	ET server discovery sequence
	ET server discovery packet formats
	Other ET game client behaviour
	ET game server registration

	Quake 4
	Quake 4 server discovery sequence
	Quake 4 server discovery packet formats
	Q4 game server registration

	Conclusion
	References

