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Abstract— Tuning an operating system’s network stack
is crucial in order to achieve optimum performance from
network intensive applications. This report discusses some
of the key factors that affect network performance of
FreeBSD 6.x based hosts. It then goes on to explain how
to tune the FreeBSD 6.x network stack and how to easily
test and evaluate the changes made.

Index Terms— FreeBSD, TCP, Tuning, Networking, Per-
formance

I. INTRODUCTION

The widely used FreeBSD UNIX-like operating sys-
tem provides a mature, stable and customisable platform,
suitable for many tasks including hosting network inten-
sive applications and telecommunications research. The
operating system’s network stack plays one of the most
important roles in internetworking, as it is the avenue
through which all packets enter and exit a device on the
network.

Current TCP/IP stacks have evolved along with the
various incremental additional standards documents that
have appeared over the years, further increasing the com-
plexity of an already sophisticated part of the operating
system. Most of the standards have been optional addi-
tions to the protocol stack, and have been implemented
as such in most operating systems.

CAIA’s NewTCP project [1] mandated the use of the
FreeBSD [2] operating system as the platform for per-
forming our TCP research. As such, we performed some
investigative research into how the FreeBSD TCP/IP
stack operates. This report aims to capture the informa-
tion learnt during this process for the benefit of future
experimental TCP research using FreeBSD.

Whilst FreeBSD 6.2-RELEASE was used for the
FreeBSD TCP/IP stack research we undertook, most of
the technical information in this report will be applicable
to all FreeBSD 6.x releases, and possibly to earlier (5.x
and 4.x to a lesser extent) or up and coming (7.x and
beyond) releases.

II. CONFIGURABLES

A. The TCP Host Cache

The host cache is used to cache connection details
and metrics to improve future performance of connec-
tions between the same hosts. At the completion of a
TCP connection, a host will cache information for the
connection for some defined period of time. If a new
connection between the same 2 hosts is initiated before
the cache has expired the entry, the connection will use
the cached connection details to “seed” the connection’s
internal variables. This allows the connection to reach
optimal performance significantly faster, as TCP does
not need to go through its usual steps of learning what
the optimal parameters for the connection are.

The cached details include the Round Trip Time (RTT)
estimate to the remote host, path Maximum Transmission
Unit (MTU) slow start threshold, congestion window and
bandwidth-delay product (BDP). The hc metrics struct
found in <netinet/tcp hostcache.c> lists the full set of
connection details stored in the host cache.

The FreeBSD sysctl variables that affect the TCP host
cache and their default values are shown in Listing 1.

Listing 1
net.inet.tcp.hostcache.cachelimit: 15360
net.inet.tcp.hostcache.hashsize: 512
net.inet.tcp.hostcache.bucketlimit: 30
net.inet.tcp.hostcache.count: 4
net.inet.tcp.hostcache.expire: 3600
net.inet.tcp.hostcache.purge: 0

net.inet.tcp.hostcache.cachelimit specifies the
maximum number of cache entries that can be
stored in the host cache. It is calculated as the
product of the net.inet.tcp.hostcache.hashsize and
net.inet.tcp.hostcache.bucketlimit variables. If the host
cache ever reaches capacity, it simply begins overwriting
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previous entries, which is not detrimental to the working
of the system at all.

net.inet.tcp.hostcache.count lists the number of entries
currently in the host cache.

net.inet.tcp.hostcache.expire lists the default time out
value (in seconds) for cache entries. After initial creation,
a cache entry will expire net.inet.tcp.hostcache.expire
seconds after creation if a new connection to the same
host is not made before the expiration. If a new con-
nection is made, the corresponding cache entry’s expiry
timer is updated as well.

net.inet.tcp.hostcache.purge will force all current en-
tries in the host cache to be removed next time the cache
is pruned. After the prune is completed the value will be
reset to 0.

In FreeBSD, the host cache is checked for stale
entries every 5 minutes by default. This value can be
modified by changing the <netinet/tcp hostcache.c>
source file and recompiling the kernel. The
“TCP HOSTCACHE PRUNE” define specifies the
period between checks for stale cache entries.

Under normal circumstances, the default of 5 min-
utes is fine. However, when doing experimental re-
search, we ideally limit or remove the affect of vari-
ables other than the one being studied. Given that
cached connection settings can alter the dynamics of a
TCP connection, it is advisable to nullify the effects
of the host cache. This can be easily achieved by
changing “TCP HOSTCACHE PRUNE” to, for exam-
ple, 5 seconds, recompiling the kernel, and then setting
net.inet.tcp.hostcache.expire to 1.

This will ensure all cache entries are removed within
5 seconds of the cache entry being created at the termi-
nation of the connection. It is then simply a matter of
ensuring you wait at least 5 seconds between test runs
to ensure the host cache is not affecting results. If this
is too long a wait, you can decrease the time between
checks even further.

During our investigation of the affects of the host
cache on connections, we uncovered a quirk in the
FreeBSD 6.2-RELEASE TCP stack. When a connection
is made to a new host (one for which no host cache
entry exists), and the RFC3390 TCP configuration op-
tion is enabled (see section II-B), the initial congestion
window should be, and is in fact set to 4380 bytes, as
recommended in RFC3390. However, when a host cache
entry does exist, the initial congestion window is set by
a different piece of code.

This piece of code is supposed to use the congestion
window value from the host cache to seed the congestion

window for the new connection. However, we discovered
this does not occur correctly due to an incorrect assump-
tion in the code, resulting in the congestion window
always being set to 1 segment. The discussion on the
FreeBSD “net” mailing list regarding this matter is
archived here [3]. The end result of this is that use
of the host cache for seeding the initial congestion
window actually degrades the performance of subsequent
connections between hosts, and obscures the intended
behaviour of RFC3390. It is therefore advised that
changing the value of “TCP HOSTCACHE PRUNE”
and net.inet.tcp.hostcache.expire as previously described
be carried out to mitigate the quirk, in situations where
this may be problematic e.g. experimental research.

Note that setting the net.inet.tcp.hostcache.cachelimit
tuner variable to 0 does not disable the host cache, and
instead causes the kernel to panic whenever it goes to
add a cache entry.

B. TCP Extensions

A range of additional extensions to TCP have been
proposed since the initial TCP standard was released.
RFC4614 [4] provides an excellent summary of these
various proposals and references to the various Request
For Comment (RFC) documents that propose them.

For the extensions supported by FreeBSD, the sysctl
interface [5] provides a way of enabling or disabling the
extension and any applicable configuration variables. For
the context of the following discussion unless explicitly
stated otherwise, enabling a sysctl variable means setting
the variable to a value of “1”, and disabling means setting
the variable to a value of “0”. For example, to enable
the TCP SACK extension, you would run the following
command in a shell:
sysctl net.inet.tcp.sack.enable=1

The most relevant FreeBSD sysctl variables that affect
the TCP stack and their default values are shown in
Listing 2.

The full range of sysctl variables affecting FreeBSD’s
TCP stack can be found by running the following com-
mand in a shell:
sysctl -a | grep tcp

net.inet.tcp.sack.enable enables selective acknowledg-
ments [6], [7] and [8]. Enabling SACK does not guar-
antee it will be used with all TCP connections, as it is
a negotiated option that both sides must support. It is
advised that this variable be enabled.

net.inet.tcp.rfc1323 enables support for the window
scaling TCP extension [9]. This should be enabled to
facilitate high bandwidth transfers. As with SACK, this
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Listing 2
net.inet.tcp.sack.enable: 1
net.inet.tcp.rfc1323: 1
net.inet.tcp.rfc3042: 1
net.inet.tcp.rfc3390: 1
net.inet.tcp.slowstart flightsize: 1
net.inet.tcp.local slowstart flightsize: 4
net.inet.tcp.delayed ack: 1
net.inet.tcp.delacktime: 100ms
net.inet.tcp.inflight.enable: 1
net.inet.tcp.inflight.rttthresh: 10ms
net.inet.tcp.newreno: 1
net.inet.tcp.path mtu discovery: 1

is a negotiated option and will only be utilised if both
sides of the connection support it. It is advised that this
variable be enabled.

net.inet.tcp.rfc3042 enables support for the limited
transmit mechanism [10]. This option is typically use-
ful over lossy, small bandwidth-delay product paths to
trigger fast recovery behaviour in circumstances where
3 duplicate ACKs have not been received. It is advised
that this variable be enabled.

net.inet.tcp.rfc3390 enables the stack to automatically
select an initial congestion window size larger than 1
segment [11]. If this sysctl variable is not enabled,
the sysctl variables net.inet.tcp.slowstart flightsize and
net.inet.tcp.local slowstart flightsize can be used to man-
ually control the initial size of the congestion window
for both remote (off subnet) and local hosts respectively.
The values are specified in multiples of the segment size.
The rfc3390 option is enabled by default and should only
be disabled if manual control of the initial congestion
window is required.

Note that if the host cache contains an entry relevant
to a new connection, the initial congestion window will
be set as a function of the cache entry, not the three
sysctl variables decribed above.

Enabling net.inet.tcp.delayed ack allows the host to
hold off sending an acknolwedgement for a specified
period of time, instead of immediately after receiving
a TCP segment, as described in [12]. This allows the
host to wait for more data to arrive, which it can then
potentially send a combined acknowledgement for.

The usefullness of this variable diminishes as the RTT
between communicating hosts decreases, to the point
where use of delayed ACKs can actually cause harm to
connection performance in some rare situations. Connec-
tions over networks with sub 10ms RTTs can experience

reduced throughput as a result of delayed ACKing if
non-zero packet loss is present. This behaviour occurs
if the connection’s congestion window ever becomes
equivalent to 1 segment size. This can occur if there is no
data in flight after exiting fast recovery mode or during
initial startup of the connection. A congestion window of
1 segment will result in the sending host sending only 1
segment, which will not be ACKed by the receiver using
delayed ACKs until the delayed ACK timer expires. On
a low RTT network, waiting for this timer to expire can
dramatically reduce throughput on account of not being
able to transmit data whilst waiting for the ACK.

For the majority of connection scenarios though,
leaving this variable enabled will not cause significant
performance issues, and it is therefore recommended it
remain enabled.

The amount of time to wait before sending an ac-
knowledgment when delayed ACKing is enabled is
controlled by the net.inet.tcp.delacktime sysctl variable,
which defaults to 100ms.

net.inet.tcp.inflight.enable enables support for BDP
estimation and subsequent TCP window limiting based
on the estimated BDP. Enabling this variable will cause
FreeBSD to limit the amount of inflight data to the
estimated path BDP. This actively attempts to avoid
TCP saturating the path and falling into the cyclical
behaviour of increasingly probing the path, backing
off and repeating. In theory, this should allow better
aggregate throughput. However, enabling this option will
obscure the behaviour of the TCP congestion control
mechanism “at work” and should probably be disabled
for TCP research purposes, unless you know you have a
specific need for this option.

The RTT above which the inflight mechanism will
begin to affect TCP connections is controlled by the
net.inet.tcp.inflight.rttthresh sysctl variable, and defaults
to 10ms.

net.inet.tcp.newreno enables support for the new reno
congestion control modification [13]. This improves the
performance of a flow when multiple packets are lost
in a single window. It is advised that this variable be
enabled.

net.inet.tcp.path mtu discovery enables discovery of
the maximum transmission unit, as described in [14].
It is advised that this variable be enabled.

C. Buffers

A number of different buffers are used within the
kernel for network stack related operations. Listing 3
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shows the relevant loader tunables and sysctl variables
that can be used to tune these buffers.

Listing 3
kern.ipc.nmbclusters
kern.ipc.maxsockbuf
net.inet.tcp.sendspace
net.inet.tcp.recvspace

kern.ipc.nmbclusters defines the maximum number of
mbuf clusters that can be in use by the network stack at
any one time. Being a loader tunable, it must be set in
/boot/loader.conf and requires a system restart in order
to take effect. However, this variable is auto-tuned by
FreeBSD if not explicitly overridden in /boot/loader.conf,
and will be sufficiently sized for most situations. See [15]
for more information.

kern.ipc.maxsockbuf defines the maximum size, in
bytes, that can be allocated to a socket send or re-
ceive buffer i.e. it places an upper bound on the val-
ues net.inet.tcp.sendspace and net.inet.tcp.recvspace can
take.

net.inet.tcp.sendspace defines the default buffer size,
in bytes, for use with outbound data sent using a TCP
socket. This variable must be set to a value smaller than
kern.ipc.maxsockbuf. Applications can manually override
the size of the send buffer when they create a socket
using the setsockopt() system call. Tuning this variable
will affect the host’s ability to service TCP windows ad-
vertised by other hosts. For example, tuning this variable
to 1MB will likely constrain our ability (subject to other
parameters like bandwith, processing ability, etc.) to send
data to a host that has advertised a window of 2MB. That
is of course assuming the application has not explicitly
overridden the send space buffer size using setsockopt().

net.inet.tcp.recvspace defines the default buffer size,
in bytes, for use with inbound data received using a
TCP socket. This variable effectively caps the maxi-
mum TCP window size the kernel will advertise to
other hosts, and must be set to a value smaller than
kern.ipc.maxsockbuf. Applications can manually override
the size of the receive buffer when they create a socket
using the setsockopt() system call. Tuning this variable
will affect the host’s ability to receive data from other
hosts. For example, tuning this variable to 1MB will
likely constrain our ability (subject to other parameters
like bandwith, processing ability, etc.) to receive data
from a host that is capable of servicing a window of
2MB. That is of course assuming the application has not
explicitly overridden the receive space buffer size using

setsockopt().
Tuning kern.ipc.maxsockbuf, net.inet.tcp.sendspace

and net.inet.tcp.recvspace are of particular importance to
ensuring optimal TCP performance. For example, limit-
ing the receive space buffer, and therefore the maximum
advertised TCP window, to 64KB in a gigabit Ethernet
environment with 10ms of delay will artifically limit
your TCP throughput to 52Mbps. It is therefore impor-
tant to set these values appropriately for your situation,
using BDP calculations relevant to your network to guide
you.

D. MTU

The underlying network interface’s maximum trans-
mission unit can have a significant impact on the effi-
ciency and throughput of network traffic handling. Faster
packet per second rates of smaller packets places a
larger load on the system than lower packet per second
rates of larger packets. This is typically only useful for
communications between hosts on a common local area
network, as jumbo frames across the Internet does not
yet have widespread support.

Using an MTU greater than 1500 bytes requires a net-
work interface card and driver that both support jumbo
frames. Intel based gigabit ethernet cards using the “em”
driver seem to have the best jumbo frame support in
FreeBSD. We used PCI Intel PRO/1000 GT cards with
a MTU of 16110 bytes without any problems. Based on
some simple testing, we found that the optimum MTU
was about 10000 bytes on a 2.8GHz P4, but this is likely
to differ across hardware configurations.

Changing the MTU of an interface is simple. An
example is shown in Listing 4. Specifying the network
interface’s IP address in the ifconfig command will en-
sure the routing table is updated to reflect the new MTU.
This is important, as FreeBSD uses the routing table to
determine which MTU it should use to communicate to a
particular host with. In this way, a FreeBSD host capable
of transmitting jumbo frames can coexist on a LAN with
hosts that can only receive standard 1500 byte frames, by
using its routing table to determine which frame size to
use for a particular host. Running “netstat -i” will show
you if your new MTU has been reflected in the routing
table. You can manually add routes to control the MTU
used for certain hosts using the “route” command [16].

Listing 4
ifconfig em0 10.0.0.1 mtu 9000

If your network interface card or driver do not support
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jumbo frames, attempting to set an MTU greater than
1500 will result in ifconfig generating an error similar
to: “ifconfig: ioctl (set mtu): Invalid argument”.

III. TESTING TOOLS

Numerous tools have been developed over the years
to test various aspects of network performance. Here
we describe a selection that we have used, and provide
references to sources of additional information.

A. Iperf

Of the tools we evaluated, Iperf [17] v2.0.2 has to be
the easiest to use. It provides a full featured C++ based
TCP and UDP network testing application that runs on a
large range of platforms. Iperf uses a client and server to
perform tests, with data being sent from client to server
in typical unidirectional tests.

To perform a basic throughput test, install Iperf on two
machines reachable via an IP network. On one machine,
start an Iperf server, by running the command “iperf
-s”. After starting the server, start the Iperf client by
running the command “iperf -c <server ip>”, where
<server ip> is the IP address of the machine running
the Iperf server. This will commence a 10 second test,
which will print the overall amount of data transferred
and throughput achieved on completion.

There are a whole range of options to tweak, which
can be found by running “iperf -h”. Of particular interest
for TCP testing are the “-F”, “-t” and “-w” options. The
“-F” option allows you to specify a data file to transmit
as the payload, instead of using Iperf’s default repeating
number payload. The “-t” option allows you to specify
the length of the test to run. The “-w” option allows you
to specify the TCP window size used by Iperf.

Due to an oddity in Iperf v2.0.2, the “-w” switch when
used in client mode does not actually affect the TCP
window size, and instead modifies the send space buffer
of the TCP socket rather than the receive space buffer.
We have released a patch against the Iperf v2.0.2 source
that addresses this issue. The patch can be downloaded
from here [18], along with a readme explaining how to
use it.

B. nttcp

We also used nttcp [19] to validate the results Iperf
was giving us. Similar to Iperf, nttcp uses a client and
server to perform tests, with data being sent from client
to server in typical unidirectional tests.

To perform a basic throughput test, install nttcp on two
machines reachable via an IP network. On one machine,

start a nttcp server, by running the command “nttcp -
i”. After starting the server, start the nttcp client by
running the command “nttcp -T <server ip>”, where
<server ip> is the IP address of the machine running
the nttcp server. This will commence an untimed test
that will complete when 8388608 bytes have been trans-
ferred. A test summary will be printed to screen on
completion.

There are a whole range of options to tweak, which
can be found by running “nttcp” without any arguments.
Of particular interest for TCP testing are the “-w”, “-
l” and “-n” options. The “-w” option allows you to
specify the size of the send buffer used by the nttcp
TCP socket. The “-l” option allows you to specify the
size of the buffers transmitted by nttcp during the test.
The “-n” option allows you to specify the number of
buffers transmitted by nttcp during the test. The product
of the buffer size (specified using “-l”) and number of
buffers (specified using “-n”) equates to the number of
bytes transmitted during the test.

C. SIFTR

SIFTR [18] is a new tool we developed to give TCP
researchers using FreeBSD access to kernel-level details
from the network stack about active TCP connections.
Using SIFTR in combination with a testing tool like
Iperf or nttcp and a traffic capture utility like Tcpdump,
you can gain access to almost every important piece of
information required to see exactly what the test tool and
operating system are doing and actually putting on the
wire. You can also gain insights into the network stack’s
perception of the network the test flow is traversing,
by having access to data like the kernel’s RTT and
bandwidth estimations for the flow.

D. More info

The 3 tools we have described above are only a small
fraction of those that exist. The following references
should provide further avenues for learning about generic
and FreeBSD specific information and tools related to
TCP performance and research: [20] [21] [22] [23] [24].

IV. CONCLUSION

Having outlined and discussed some of the key factors
influencing TCP/IP performance in FreeBSD 6.x, you
should now have a better understanding of TCP tuning in
general and how to go about it on your own equipment.
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