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Abstract—This technical report gives details on the
results obtained from evaluating the ANGEL Flow Clas-
sifier (FC) performance. Evaluation metrics comprise of
accuracy, timeliness, stability, processing speed, and the
efficiency of hardware resources usage.

I. INTRODUCTION

The ANGEL Flow Classifier (FC) is one of the
three main components of the ANGEL architecture. The
primary tasks of the Flow Classifier are:

• Classify flows based on the packet statistics pro-
vided by any Flow Meters (FM) within the system

• If a new flow is classified as requiring priotisation or
changes its priority level, signal the Client Manager
(CM) with this information

• Purge stored flow information when that flow ter-
minates

With these responsibilities, requirements for the FC
include:

• Accuracy
This performance factor measures the accuracy of
the FC in detecting game flows based on the infor-
mation provided by the FM.
Accuracy is measured in terms of Recall and Preci-
sion rates. These metrics are often used to evaluate
the performance of Machine Learning (ML) classi-
fication algorithms.
If a classifier is trained to identify members of class
X then these metrics are defined as:

– Recall: the proportion of class X’s instances
which are correctly classified as belonging to
class X.

From February 2007 and July 2010 this report was a confidential
deliverable to the Smart Internet Technologies CRC. With permission
it has now been released to the wider community.

– Precision: the proportion of the instances that
truly belong to class X amongst all those clas-
sified as class X.

Both metrics range from 0 (bad) to 100% (optimal).
These metrics can be related to the traditional
networking/security metrics of False Negatives and
False Positives. If we define False Negative as
the percentage of class X’s instances which are
incorrectly classified as not belonging to class X,
and False Positive as the percentage of the instances
which are not belonging to class X among all those
classified as class X. In this case Recall is (1 - False
Negatives) and Precision is (1 - False Positives).
For deployment of the classifier within ANGEL, it
is desired to have high Recall and Precision rates (of
>= 95%) i.e. low False Positive and False Negative
rates ( <= 5%) of all the flows being classified.

• Timeliness
ANGEL is a real-time system. The FC therefore
must reach the decision quickly enough so that
classification results can be sent promptly to the
CM for appropriate QoS actions at the CPE.
The timeliness of flow classification is affected by
a number of factors:

– FM processing time: Time taken by the FM
to extract packet information, and to bundle
packets for delivery to the FC.

– Packet inter-arrival time: The FC needs to wait
for a full window of packets to calculate sta-
tistical parameters and perform classification.
This waiting time is affected by the packet
arrival rate of the application. For example,
with ET traffic during actual game play, the
packet rate for a bi-directional flow (client to
server and server to client) is approximately
50PPS. In the current FC implementation, we
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use a classification window of 25 packets. This
would result in 0.5 seconds for the FC to fill
the window prior to making a classification
decision.

– FC processing time: Time taken by the FC
to do statistical computation for the window
of packets, and to apply the ML classification
model to make a classification decision.

For the purpose of evaluating the performance of
the FC we primarily focus on the FC processing
time component. It is acceptable if the classifier can
identify traffic flow within 1 second of receiving a
flow’s packets at the FC.

• Stability
As the flow classifier will monitor the flow classi-
fication for its lifetime (re-classify at every check-
point interval) we would like to minimise the flap-
ping in flow’s classification as much as possible
during its lifetime, so that QoS implementation
at the CPE will be more stable, and to minimise
the data transfers from the FC to the CM and
subsequently to the customer CPE. The ideal case
is the flow state is maintained stably for the flow’s
duration.
This metric will be measured by the number of flow
state changes per single game flow for all tested
game flows for the duration of the flow.

• Scalability
This metric measures the FC’s performance within
the constraints of physical resources. We need to
see how quickly the FC deals with a large number
of concurrent flows and Packet Per Second (PPS)
rates.

• Efficiency of hardware resources usage
This measures CPU and Memory usage when the
FM and FC capture and classify live traffic in real
time, especially with high packet and flow rates.

In this report, we outline the results obtained from
testing the performance of ANGEL FC with the above
evaluation metrics. As the project’s scope is limited to a
prototype, the classification model was built as a proof-
of-concept only. Tuning methods and parameters are
included in the report for future work on the classifier
model optimisation if desired.

II. TRAFFIC CLASSIFICATION APPROACH

Traditional techniques for the identification of Internet
applications are typically based either on the use of
well known registered port number, or on payload-based
protocol reconstruction. However, applications can use

un-registered ports or encryption to obfuscate packet
contents. Further governments may impose privacy regu-
lations constraining the ability of third parties to lawfully
inspect packet payloads. State-of-the-art approaches clas-
sify traffic by learning and recognising statistical patterns
in externally observable attributes of the traffic (such as
packet lengths and inter-packet arrival times).

The ANGEL FC employs the technique of IP traffic
classification using Machine Learning (ML). An intro-
duction to ML concepts and the deployment of super-
vised ML algorithms in the ANGEL FC are addressed
in [1] and in [2].

The ANGEL FC is implemented using a simple Naive
Bayes algorithm [3]. The algorithm provides an ap-
proach for classification based on probabilistic knowl-
edge. It is designed for use in supervised classification,
in which the goal is to accurately predict the class of
unseen data using a classification model built on sample
training instances.

The algorithm can be summarised briefly as following.
Let C be the random variable denoting the class of an
instance and let X = X1, X2, Xn be a vector of random
variables denoting the observed attribute values. If c is
a particular class and x is an instance to be classified.
The algorithm makes statistical conclusions about the
probability of instance x belonging to a class c based
on:

• the conditional probability of observing the occur-
rence of each class’s instance in the training set
(so-called the posterior probability and is denoted
by P(C=c))

• and the probability for the instance x given c.
The calculation follows the Bayes’ rule:

p(C = c|X = x) =
P (C = c)P (X = x|C = c)

p(X = x)
(1)

Based on the outcome the classifier predicts the most
probable class.

The algorithm relies on two important simplifying
assumptions:

• the instance’s attributes are independent given the
class and within each class

• the values of numeric attributes are normally (or
Gaussian) distributed.

For detail implementation information of the model, the
readers are referred to [1] and [4].

III. TESTING AND EVALUATION METHOD

There are a number of component tests before the
overall performance of the FC is evaluated. Figure 2
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illustrates the overall interaction between the ANGEL
FC and other ANGEL components. They include the
flow statistical properties calculations (feature calcula-
tions) and the classification model.

ANGEL FM

Packet Information

ANGEL FC
Client

Manager

Classification Result

Fig. 1. Overall Architecture

Figure 2 illustrates the primary tasks of the ANGEL
FC. The Flow Classifier was originally designed to use
multiple processes to potentially take advantage of a
distributed platform implementation in a scalable imple-
mentation. However, initial testing indicated problems
with the underlying IPC (Interprocess Communication)
messaging scheme. The problem description and solution
are detailed in [4]. For testing purposes the FC was re-
coded to use a single thread for all flow classification
purposes rather than multiple individual processes. In
doing so, the FC implementation is under heavier load
than in the original implementation. As such, our test
results indicate the lower bound of the FC’s performance.

Feature Calculations Classification Model

Captured Traffic
(Offline data)

Live Traffic

Fig. 2. Components of ANGEL FC

We start the testing process with a performance
evaluation of the Naive Bayes model built by the FC
implementation. To test the data processing component,
we test the FC while the FM reads off-line traffic from
pre-recorded tcpdump files. And finally, we test the FC
while the FM captures live traffic from the network
interface.

The testbed setup for each test is illustrated in Figure
3, Figure 4 and 5.

ANGEL Flow Classifier

Training Dataset

Testing Dataset

Classification
Results

Fig. 3. Test ANGEL classification model only

Test components specifications and configurations can
be found in Table I. PCAP buffer sizes (default and
maximum) are set to 512KB and 1MB respectively as
suggested in the FM Performance Test Report.

ANGEL Flow ClassifierANGEL Flow Meter
(Reads Tcpdump files)

Classification
Results

Fig. 4. Test FC with offline traffic analysis

ANGEL Flow ClassifierANGEL Flow Meter

Classification
Results

Traffic Generator
(TcpReplay)

Fig. 5. Test FC with live traffic capture

A. Training and Testing Dataset

The classification model is built using the Synthetic
Multiple Sub-Flow Pairs approach [5] [6]. We train the
ML classifier using statistical features calculated over
multiple short sub-flows and its synthetic pair extracted
from full-flow generated by the target game application
and a number of common interference traffic. The knowl-
edge gained from this training process is classification
rules so that the classifier can differentiate game traffic
and other traffic in real-time and operating networks.

For testing purpose, we utilise a hypothetical classifi-
cation scenario where real-time flows belonging to online
multiplayer games must be detected and trigger the prio-
tising process. The classifier should also recognise other
traffic from a number of common Internet applications
and differentiate them from the game traffic.

The applications we chose to test include:
• Game Traffic: Wolfenstein Enemy Territory (ET)

[7] and Half-Life 2 Death Match (HL2DM)
• Other Traffic: Web (HTTP), DNS, P2P (Kazza and

Bittorent), SMTP
The training dataset consists of game traffic of a

month-long trace collected during May 2005 at a public
server in Australia [8]. Our interfering traffic came from
a 24-hour trace collected by the University of Twente,
Germany, on February 6th 2004 [9] at an aggregated
1Gbps link.

The testing dataset is specifically constructed for each
different test as described in the next section.

B. Testing the Classification Model

To test the functionality of ANGEL classification
model, we choose to compare the model built by ANGEL
implementation to the model built with the WEKA
implementation [10] [11]. WEKA is a free, open-
source ML and data mining toolkit in Java, implemented
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TABLE I
TEST COMPONENT SPECIFICATIONS/CONFIGURATIONS

Test Component Detail Specifications/ Configurations
Flow Meter Intel Pentium 4 3.00GHz with Hyper-

Threading, 1GB (2 x 512MB) DDR2
533 RAM, Seagate ST380817AS 80GB
SATA HDD, Asus P5LD2-VM mother-
board, Running FreeBSD 6.1

PCAP lipcap release version 0.9.5
PCAP Buffer Setting sysctl net.bpf.bufsize=524288, sysctl

net.bpf.maxbufsize=1048576
Angel FM Angel FM as of 26 Oct. 2006
Traffic Generator Intel Pentium 4 3.00GHz with Hyper-

Threading, 1GB (2 x 512MB) DDR2
533 RAM, Seagate ST380817AS 80GB
SATA HDD, Asus P5LD2-VM mother-
board, Running FreeBSD 6.1

TcpReplay version 2.0
FLow Classifier Intel Celeron 2.8GHz, 1GB (2 x 512MB)

DDR2 533 RAM, Seagate ST380817AS
80GB SATA HDD, Asus P5LD2-VM
motherboard, Running FreeBSD 6.1

and made available by the university of Waikato, New
Zealand.

With the same training dataset, we calculate flow
features by modifying the framework of the Netmate tool
[12] and build classification models using both ANGEL
and WEKA architectures. We compare the two models
in terms of model build time, CPU usage and memory
usage.

We use the same dataset to test the two models. The
dataset consists of ET traffic of a month-long trace
collected during September 2005 at a public server
in Australia [8]. Our interfering traffic came from a
24-hour trace collected by the University of Twente,
Germany, on February 7th 2004 [9] at an aggregated
1Gbps link. (Flow features are calculated by modifying
the framework of the Netmate tool [12])

We compare the models performance in terms of
accuracy, processing speed, CPU and memory usage.

C. Testing the Performance of the FC with Offline Traffic
Analysis

To evaluate the performance of the ANGEL classi-
fication model (built in the preceded test) with offline
data classification, we modify the FM to read directly
from pre-recorded Tcpdump files and pass the captured
packet information to the FC for traffic classification.
The FM reads the tcpdump files as fast as it can,

however, packet’s original properties e.g. packet time-
stampings are preserved.

The tcpdump files consists of ET traffic collected over
a LAN network by the SONG project [13] and Web,
DNS, P2P (Kazza and Bittorent), SMTP extracted from
a 6-hour trace collected over an aggregated 1Gbps link
by the University of Twente (loc4-20040207-2001) [9].
As payloads were missing we inferred application type
from the port numbers (judged an acceptable approach
because our primary criteria for interfering traffic is that
it was not ET).

We evaluate the performance of the FC in terms of
Accuracy, Timeliness, Stability, Processing Speed and
Robustness. These evaluation metrics are defined in
section I above.

D. Testing the Performance of the FC with Live Traffic
Capture

To evaluate the performance of the ANGEL classifi-
cation model (built in the preceded test) with real-time
data capture, we use TcpReplay tool [14] to re-play pre-
recorded tcpdump files at the original capture rate. The
FM is used to capture the traffic for classification by the
FC.

For game traffic, we use a number of short traces of
ET and HL2DM collected over a LAN network by the
SONG project [13]. We also emulate the live capture of
Kazaa, SSH, Email and DNS traffic from the same trace
as in the Offline Traffic Analysis test.

IV. TEST RESULTS AND ANALYSIS

A. The Classification Model

Firstly we compare the model build time between AN-
GEL implementation and WEKA implementation. We
use a training dataset consisting of sample data from 4
selected sub-flows as specified in [5] [6]. Each sub-flow
consists of 25 consecutive packets extracted at different
points during the original data flow lifetime. They were
selected using ML clustering algorithms such that the
classifier has the sample of (desirably all) possible traffic
characteristics even when the flow statistical properties
vary over its lifetime [5]. It enables the classifier to
detect and monitor flow classification state in real-time
using classification windows as small as 25 packets.

Results are tabulated in table II, ANGEL builds the
models more quickly (takes approximately 60% of time
needed by the WEKA implementation).

We next compare how accurately the models classify
test datasets. Figure 6 shows the Recall for ET traffic as
classified by WEKA and ANGEL models. M represents
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TABLE II
MODEL BUILD TIME

Sub-Flows Total
Instances

ANGEL (sec) WEKA (sec)

4 22,320 3 4.55

the number of packets that the classifier might miss
from the beginning of the original game flow. As can
be seen, at the early stage of game flows, Recall by
the WEKA model is higher than the ANGEL model (by
approximately 2%). As the classifying window moves
beyond the early state (M >= 2000), the models have
similar Recall.
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Fig. 6. Recall for WEKA and ANGEL models

Figure 7 shows the Precision for ET traffic while
being classified by both ANGEL and WEKA models.
Both models demonstrate similar results in Precision of
97.5-98%.
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Fig. 7. Precision for WEKA and ANGEL models

In terms of accuracy, though slightly worse than

the WEKA model, ANGEL classifier model meets the
requirement of accuracy >= 95%.

Next, we compare classification speed of WEKA and
ANGEL models while testing the same dataset. As
shown in Table III, the ANGEL trained model classifies
flows approximately 40% faster than the WEKA model
when trained with the same data.

TABLE III
CLASSIFICATION SPEED

Sub-Flows Total
Instances

ANGEL
(classifica-
tions per
sec)

WEKA
(classifica-
tions per
sec)

4 147,249 29,499 21,036

Figures 8 and 9 show CPU and Memory usage when
classifying the test dataset by both ANGEL and WEKA
classification models. The ANGEL classifier model has
similar processing requirements to the WEKA model, at
the same time as requiring far fewer memory resources
(approximately 12% of memory resource used by the
WEKA model).
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Fig. 8. CPU usage for models trained with 4SF

In summary, the ANGEL classifier implementation
is better than WEKA in terms of model build time,
classification speed and memory usage. It is slightly
worse than the WEKA model in terms of accuracy. CPU
usage of both models are comparable.

B. Performance of the FC with Offline Traffic Analysis

This section reports on the performance of the FC
when classifying offline traffic. Statistical properties of
the testing traces are summarised in Table IV.
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Fig. 9. Resident memory usage for models trained with 4SF

TABLE IV
TEST DATATRACE PROPERTIES

Data Trace Number of
Flows

Number of
Packets

Trace Size

ET - 4 players 4 20,000 1.1M
ET - 5 players 5 25,000 1.4M
ET - 6 players 6 30,000 1.7M
ET - 7 players 7 35,000 1.9M
ET - 8 players 8 40,000 2.2M
ET - 9 players 9 45,000 2.5M
Kazaa 7,887 279,334 19M
Bittorrent 1,925 63,243 4.3M
Web 32,215 600,545 41M
SMTP 133 1,283 93K
DNS 1,196 2,818 193K
SSH 80 27,768 2.1M

1) Game Traffic: Accuracy
For ET traffic, we test six traces sourced from the

SONG database, with a combined total of 39 game flows.
Using the ANGEL model built in the previous test, we
classify the traffic flows sent by the FM. The FM reads
and process packet properties from the tcpdump files.
Alhough the tcpdump files only contain ET traffic, they
were collected in real-time, from an operating network.
As such the flow statistical properties of inter-leaving
flows are preserved. We evaluate the accuracy of the
classifier in terms of Recall.

A test script has been written so that it keeps records
of the flow hashes which have been identified as game
flows, as well as flapping results (changes in classifi-
cation) during the flow lifetime (as the classifier re-
classifies traffic flow every window of 25 packets -
the classification result might fluctuate during the flow
lifetime).

Figure 10 shows the final classification result for
each game flow in the trace. It shows that the classifier
correctly identified all 39 game flows (Recall of 100%).
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Fig. 10. ET Accuracy

Timeliness
Since we are reading from tcpdump files, the packet

information is extracted and sent to the FC faster than
the actual data speed in real networks. Figure 11 shows
how long it takes the classifier to identify a game flow
from the time the FC receives the first packet of each
individual flow. For all 39 flows, it takes less than
50msec for the classifier to detect the game traffic.
(Please note that in this test, the FM reads packet’s
information from a tcpdump file, so it excludes the
packet inter-arrival component discussed in section I.
However, the FM and FC processing components still
exist. So the result provides an upper bound on the FC
processing time for classification decisions).
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Fig. 11. ET Timeliness

Stability
15 out of 39 flows ( 38%) flapped state from one to

six times during their flow lifetime (see Figure 12).
Figure 13 shows the flapping duration for each of

these 15 flows. With high speed of reading from a
tcpdump trace, maximum flapping duration is 200msec.

2) Other Traffic: We investigate the performance of
the FC with other Non-Game traffic. It is desirable that
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Fig. 12. Changes in classification result (flapping) for ET traffic
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Fig. 13. ET Flapping Duration

the FC correctly identify Non-Game flows and therefore
will not notify the CM about these flows. As for the
above test, we let the FM read from Tcpdump traces that
contains Web, Kazaa, Bittorent, SSH , DNS and SMTP
traffic. We report results for each type of application in
the followed sections.

Web Traffic
Figure 14 shows a total of 617 flows (out of 32,215

flows) (1.9%) that were falsely classified as game traffic
at their initial classification. However, 439 flows (71%)
of these had flapping classification results, before being
finally detected as Non-Game traffic. Hence the final
false positive rate for web traffic is 0.55% (i.e. Precision
rate of 99.5%).

Figure 15 shows the amount of classification flapping
per flow. 90% of these flows had <= 3 classification
flaps during their lifetime. One exceptional flow had
flapped 322 times during its lifetime. (It is worth noting
here that we consider flows with destination port of 80
to be Web traffic, but actually it can be other types of
traffic tunnelled through this port).
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Fig. 14. Web Traffic - False Positive and Flows with Flapping
Classifications
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Fig. 15. Web Traffic - Flapping Times

Figure 16 shows the duration of classification flapping
per flow, for flows where the classification flapped more
than once.
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Fig. 16. Web Traffic - Flapping Duration

Kazaa Traffic
The first graph of Figure 17 (from left) shows a total

number of 91 flows (out of 7,887 flows) that were falsely
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classified as game traffic at their initial classification.
However, 66 flows (72.5%) of these flows had flapping
classification results before being finally detected as
Non-Game traffic. Hence the final false positive rate for
Kazaa traffic is 0.32% (i.e. Precision rate of 99.68%).

The middle graph of Figure 17 shows the amount of
classification flapping per flow. 90% of these flows had
<= 8 classification flaps during their lifetime. One flow
flapped a total of 51 times during its lifetime.

The last graph (from left) shows the duration of
classification flapping per flow where the classification
flapped more than once. Again, these results are with the
speed of reading data from tcpdump file instead of real
traffic capture. In real-time traffic capture, the duration
may be longer.

BitTorrent Traffic
The first graph of Figure 18 (from left) shows a total

number of 10 flows (out of 1,925 flows) that were falsely
classified as game traffic at their initial classifications.
However, 7 flows (70%) of these flows had flapping
classification results before being finally detected as
Non-Game traffic. Hence the final false positive rate for
BitTorrent traffic is 0.15% (i.e. Precision rate of 99.85%).

The middle graph of Figure 18 shows the amount
of classification flapping per flow. 70% of these flows
had only one classification flapping (from Game to Non-
Game) during their lifetime.

The last graph (from left) shows the duration of
classification flapping per flow, where the classification
flapped more than once. Again, these results are with the
speed of reading data from tcpdump file instead of real
traffic capture. In real-time traffic capture, the duration
may be much longer.

SSH Traffic
The first graph of Figure 19 (from left) shows the total

number of 28 flows (out of 80 flows) that were falsely
classified as game traffic at their initial classifications.
However, 8 flows (28.6%) of them had flapping classifi-
cation results, before being finally detected as Non-Game
traffic. Hence the final false positive rate for SSH traffic
is 25% (i.e. Precision rate of 75%). The reason for the
low accuracy rate for SSH traffic is that we only have
a few sample instances of SSH traffic in the training
dataset. To improve the performance of the FC toward
identifying SSH traffic, we need to collect more SSH
traffic sample flows for training.

The middle graph of Figure 19 shows the number of
classification flapping per flow. 90% of those flows had
up to 33 classifications flapping during their lifetime.

The last graph (from left) shows the duration of

classification flapping per flow. It only shows results of
flow with flapping times of greater or equal to once.
Again, these results are with the speed of reading data
from tcpdump file instead of real traffic capture. In real-
time traffic capture, the duration may be much longer.

DNS and SMTP Traffic
With DNS traffic, there were only 2 false positive

flows out of total 1196 flows (0.17%), hence a Precision
of 99.83%. For SMTP traffic, there was no false positive
flow out of the total 133 flows tested.

In summary, the accuracy of traffic classification met
the requirement of the ANGEL architecture (except for
SSH traffic that requires improvement in training the
classifier model). However, the flapping rate per flow
for all traffic is very high.

To minimise the flapping state and make the classifi-
cation more stable, we propose a method of confirming
the classification result before sending an update to
the CM. The FC only updates the flow classification
result and signals the CM if it sees two new, identical,
consecutive classifications. In effect, the classification
result would be held back by at least one classifying
window for confirmation. The algorithm is described in
greater detail in [1] and [4]. The improvement in term
of classification stability by deploying the ‘confirmed
classification’ scheme is evaluated in section IV-C.

3) CPU and Memory Usage: As the FM reads packet
information from tcpdump files, the equivalent packet
rates as if it sniffs packets in real-time are estimated in
Figure 20.
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Fig. 20. Reading Tcpdump - PPS

However, since the FM combines roughly 97 packets’
information in one single UDP packet to the FC, the
incoming packet rate at the FC is much lower (see Figure
21).

With these packet rates, the FC CPU usage for all tests
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Fig. 17. Kazaa Traffic Classification
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Fig. 18. BitTorrent Traffic Classification
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Fig. 19. SSH Traffic Classification
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Fig. 21. Reading Tcpdump - PPS at FC

stayed at a negligible value 0%. Figure 22 shows the
memory usage for all tests. The total memory usage was
less than 5MB for all tests.
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Fig. 22. Memory Usage

C. Improve the stability of the FC by state-confirmation
method

This section shows results for the employment of
our ‘confirmed classification’ scheme. We compare the
performance of the FC in terms of flapping rate and
accuracy between the use /no-use of the scheme for ET,
Kazaa, Web and SSH traffic.

Figure 23 shows the results for ET traffic. The first
graph (from left) shows that the ‘confirmed classifica-
tion’ scheme helped to reduce the total flapping flows
by 87% (from 38% to 5%). The last graph (from left)
shows that the number of flaps per flow also have been
reduced from one to six times per flow to only one flow
that flaps twice (Game - Non-Game - Game) out of 39
game flows. The trade-off is the timeliness of the flow
detection, which has increased from sub-second flow
detection to up to 1.7 seconds.

Figure 24 shows the results for Kazaa traffic. The
first graph (from left) shows that the ‘confirmed clas-
sification’ scheme helped to reduce the total flapping
flows by ∼87% (from 1.15% to 0.15%). The middle
graph shows that the number of flaps per flow during its
lifetime have been reduced from maximum of 50 times to
maximum of 6 times. As a result, the maximum flapping
rate of more than 120 flaps per flow per second has been
reduced to ∼ once per flow per second (the last graph
from left).

Figure 25 shows the results for Web traffic. The first
graph (from left) shows that the ‘confirmed classifica-
tion’ scheme helped to reduce the total flapping flows by
∼ 81% (from 1.91% to 0.36%). The middle graph shows
that the number of flaps per flow during its lifetime have
been reduced from maximum of more than 300 times to
maximum of 83 times, 99th percentile of 51 times to
4 times. The maximum flapping rate of more than 380
flapping per flow per second has been reduced to ∼ 21
times per flow per second (the last graph from left).

Figure 26 shows the results for SSH traffic. The first
graph (from left) shows that the ‘confirmed classifica-
tion’ scheme helped to reduce the total flapping flows by
46.4% (from 35% to 18.75%). The middle graph shows
that the number of flaps per flow during its lifetime
also have been reduced from maximum of 75 times to
maximum of 4 times. Similarly, the flapping rate per flow
per second has been reduced significantly (the last graph
from left).

D. Performance of the FC in Live Traffic Capture

1) Game Traffic: We use two different game applica-
tions for the live traffic capture test: ET and HL2DM.

For ET traffic, test 6 traces of SONG (ET) traffic, with
total of 39 game flows.

Figure 27 shows the final classification result for
each game flow in the trace. It shows that the classifier
correctly identified all 39 game flows (Recall of 100%).

Figure 28 shows how long it takes the classifier to
identify the game flow from the time it received the first
packet of the traffic flow.

For 37 out of 39 flows (95% flows), game traffic is
classified in under 0.75 second. For only two outliers,
it takes up to 2.8 seconds. Compared to the results
presented in Figure 11 (that shows the time taken to
detect ET flows when the FM reads from tcpdump files),
these outliers are suspected due to the actual packet inter-
arrival time of the particular flows.

Upon examination of the pre-recorded tcpdump files,
we found that these two exceptional flows are captured at
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Fig. 23. FC stability with and without classification-state-confirmation approach - ET traffic
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Fig. 24. FC stability with and without classification-state-confirmation approach - Kazaa traffic
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Fig. 25. FC stability with and without classification-state-confirmation approach - Web traffic
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Fig. 26. FC stability with and without classification-state-confirmation approach - SSH traffic
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the same client machine in two different traffic capture
instances. These flows have longer packet inter-arrival
times for the first few packets compared to other flows
captured at other clients. Figure 29 shows the inter-
arrival times of the first 50 packets of an outlier flow
versus three other flows captured at different clients in
the same traffic trace.(We need information of 50 packets
(2 windows) for a confirmed classification result when
using the state-confirmation method). As can be seen in
the figure, Client4 (the outlier) flow has a much higher
packet inter-arrival time compared with other flows. The
mean packet inter-arrival time is 50msec, i.e. it takes
approximately 2.5 seconds to collect 50 packets. This
agrees with the 2.8 seconds flow detection time found
above.

All 39 flows (100%) maintained their classification
results stably during their flow lifetimes .

For HL2DM traffic, we test 8 traces of SONG traffic,
with total of 50 game flows.

Figure 30 shows the final classification result for
each game flow in the trace. It shows that the classifier
correctly identified all 50 game flows (Recall of 100%).
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Fig. 29. Live Capture: ET packet inter-arrival time
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Figure 31 shows how long it takes the classifier to
identify the game flow from the time it received the first
packet information from the FM.
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For 48 out of 50 flows (96% flows), game traffic is
classified in under 1 second. There were two outliers
that take up to 10.8 and 44.2 seconds for flow detection.
Reasons for these two outliers are similar to ET traffic
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discussed above. They are due to the actual packet inter-
arrival time of the particular flows.
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Fig. 32. Live Capture: HL2DM packet inter-arrival time

Upon examination of the pre-recorded tcpdump files,
we find that these flows have longer packet inter-arrival
time for the first few packets compared to other flows
captured at other clients. Figure 32 shows the inter-
arrival times of the first 50 packets of the outlier flow
with 44.2 seconds flow detection versus three other flows
captured at different clients in the same traffic trace. As
can be seen in the figure, Client4 (the outlier) flow has
much higher packet inter-arrival time compared to other
flows. The mean packet inter-arrival time is at 876msec,
i.e. it takes approximately 43.8 seconds to collect 50
packets. This agrees with the slow flow detection seen
with the flow. Similar results with a lower mean packet
inter-arrival time we seen for the other outlier.
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Fig. 33. LiveCapture HL Flapping States

50 out of 50 flows (100%) maintained their classifica-
tion results stably during their flow lifetimes (see Figure
33).

2) Other Traffic: Kazaa Traffic Figure 34 shows
the results for Kazaa traffic. The first graph (from left)

shows a total number of 12 flows (out of 7,887 flows)
that were falsely classified as game traffic at their initial
classification. However, 5 flows of these had flapping
classification results, and finally were detected as Non-
game traffic. Hence the final false positive rate for Kazza
traffic is 7/7887 = 0.09% (i.e Precision rate of 99.91%).
Among flapping flows there were maximum of 6 flapping
times per flow during its lifetime (middle graph). The last
graph (from left) shows the duration where the flappings
occurs in real-time for 7 flows that flap more than once.
The mean duration of flapping times is 222 seconds.

SSH Traffic
Figure 35 shows the results for SSH traffic. The

first graph (from left) shows the total number of 15
flows (out of 31 flows) that were falsely classified as
game traffic at their initial classification. However, 2
of these had flapping classification results before being
finally detected as Non-Game traffic. Hence the final
false positive rate for web traffic is 13/31 = 41.9% (i.e.
Precision rate of 58.1%). Among flapping flows there
were maximum of 2 flapping times per flow during its
lifetime (middle graph). The last graph (from left) shows
the duration where the flapping occurs in real-time for 4
flows that flap more than once.

Since the trace file is 6-hour long, we do not run
live capture test for other traffic. However, the accuracy
for these traffic is expected to be the same as off-line
traffic capture (when the FM reads from tcpdump files
and preserves packet original information).

E. Scalability of FC in Live Traffic Capture

Using the Tcpreplay tool, we create a synthetic ET
trace file of 350 unique flows (∼35000PPS) from the
original trace of 7 ET flows with a PPS rate of ap-
proximately 500PPS by varying the flow’s port numbers.
We replicate the synthetic 350-flows tracefile once to 50
times. This gives us an approximate PPS arriving at the
FM of 2500PPS to 25000PPS.

In terms of accuracy, all the synthetic flows are
correctly identified as game traffic (100% Recall) with
no flapping classifications for all flows. This suggests
that for up to 25000 PPS (no packet loss at the FM
(FM Performance Test Report)), the classification result
is preserved.

With these packet rates, the maximum FC CPU usage
for all tests stayed at a negligible value of less than 0.2%
(Figure 36). Figure 37 shows the max memory usage
for all tests. Total memory usages are of less than 5MB
for all tests.
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Fig. 34. Live Capture - Kazaa traffic
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Fig. 35. Live Capture - SSH traffic
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With a typical ET flow of 70PPS (averaged over the 39
ET flows in test dataset), we extracted one single ET flow
from the 7-players trace, and use tcpplay and Mergecap
[15] tool to replicate it and create a trace containing 50
unique, concurrent flows. We duplicate the 50-flow trace
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Fig. 37. Memory Usage per Packet Rate

from twice to 10 times, to simulate traffic rate of 100,
150, 200, ..., 500 concurrent flows. The equivalent PPS
are approximately 7000, 10050, 14000,17500,..., 35000
PPS.

In terms of accuracy, all the synthetic flows are
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correctly identified as game traffic (100% Recall) with no
flapping classifications for all flows. This suggests that
up to 500 concurrent flows, the classification accuracy is
reserved.

With these flow rates, the maximum FC CPU usage
for all tests stayed at a negligible value of less than 0.2%
(Figure 38). Figure 39 shows the maximum memory
usage for all tests. Total memory usages are less than
5MB for all tests.
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V. CONCLUSION

The performance of the FC in terms of accuracy,
timeliness, stability, scalability and CPU and memory
usages when classifying Game and Non-Game traffic has
been tested and reported.

The test of ANGEL Naive Bayes Classification model
implementation shows that while being comparable to
the WEKA model in terms of CPU usage, it is better in
terms of model build time (40% faster than the WEKA
model), classification speed (faster by 40%) and memory

usage. On the other hand, the test results show a slightly
worse accuracy rate (of up to 2% for the specific model
and test dataset).

The test of the ANGEL FC with offline traffic analysis
shows that FC can correctly classified all game flows
with Recall rate of 100% for the test dataset used.
The timeliness of the FC is achieved by using a small
classification window of 25 packets. The FC can detect
game traffic within 50 msec. However, as a trade-off,
there were the cases when the flow’s classification results
flap during their lifetime. To overcome the problem and
maintain the stability of the FC, we design the FC with
‘confirmed classification’ method. This has proven to
be very effective by reducing the flapping rate by up
to 87%. The false positive rate of Web, P2P, Email,
DNS traffic are very low (of less than 0.4%), except
SSH traffic (of 25%). This suggests the need of training
the classification model with more samples of SSH
traffic. With the maximum packet rate while reading
from tcpdump files of 50,000PPS, the FC maintains its
CPU usage of 0% and memory usage of below 5MB for
all tests.

The test of the ANGEL FC with live traffic capture
shows that with the two types of game applications tested
(Enemy Territory and Half-Life2) the FC correctly iden-
tified 100% of the game flows mostly within a second
with no flapping result. These results are recorded with
the FC implementation with ‘confirmed classification’
scheme.

The scalability test shows that with packet rates of up
to 25,000PPS (FM performance test shows that higher
packet rates result in packet loss at the FM) and maxi-
mum number of 500 concurrent flows per second, the FC
maintains its classification accuracy, keeps the memory
usage to under 5MB and CPU usage to less than 0.15%.
The test trace files used are limited to very short duration
of ∼1 minute. Other trial runs on longer combination
trace files show that the memory usage increases with
respect to running time. However the increase is quite
small and with slow changes.

Future work include the optimisation of the FC model
in terms of the choice of sub-flows to train, greater
instances of training data, variance of application types,
classification window size, and the combination of the
classification window size and the minimum number
of delayed windows for the ‘confirmed classification’
scheme.

Future test might include the robustness test of the
FC when classifying traffic with the presence of network
delay, jitter and packet loss.
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