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Abstract—This technical report gives detail on the re-
sults obtained from evaluating the ANGEL Flow Meter
(FM) performance. Evaluation metrics include packet loss,
CPU and memory usage and the robust of the hash
algorithm employed. It has been shown that the FM’s
suffered packet loss (more than 10%) when coping with
approximately more than 30,000 packets per second and
30,000 flows per second. There has been a small number of
collisions found for the hash generating mechanism when
dealing with millions of flows coming from a small range of
source IP addresses (∼ 0.015% per 1million unique flows -
which is considered to be acceptable for the deployment of
the hash algorithm in the FM architecture). We also tested
the underlying redundancy system with the deployment of
CARP protocol. Test results showed a handover time of ∼
3 seconds in case of master FM power failure.

I. INTRODUCTION

The ANGEL Flow Meter (FM) is one of the three
main components of the ANGEL architecture. It is
responsible for monitoring a copy of all network traffic at
a monitor point in the network, filtering captured traffic
into individual flows, and forwarding packet (timestamp,
IP packet size) and flow (five-tuple flow identification:
source and destination IP addresses, ports and protocol)
information to the ANGEL Flow Classifier.

In order to minimise the volume of traffic delivered
to the flow classifier, a 32-bit hash of the five-tupple
flow information values is used as flow identification.
The SuperFashHash algorithm [1] is employed in the
current FM implementation.

As the output of the FM will be used as input for the
flow classifier, it is required to meet a certain Packet Loss
Rate (PLR) and precision in time-stamping measurement.

From February 2007 and July 2010 this report was a confidential
deliverable to the Smart Internet Technologies CRC. With permission
it has now been released to the wider community.

A PLR of 0% is desirable so that classifier’s performance
would not be affected.

Clock rate and time-stamping precision at the meter
is also of great importance as it is used to compute the
statistical properties of the traffic flow. However, this is
dependent on the hardware used and is independent of
the FM implementation. The FM does not modify the
captured packet timestamps.

The requirement of maintaining a low PLR becomes a
challenge when the meter has to capture the traffic on the
fly. Depending on the location of ANGEL components at
the ISP site and the packet rate at the traffic aggregation
point, the flow meter must be able to handle high-rate
live traffic capture with (tens or hundreds) thousands
of concurrent flows. For practical deployment purpose,
this needs to be done within the constraints of physical
resources.

This is also important to evaluate the performance
of the hashing algorithm, with regards to the collision
rate of the flowID while dealing with large number of
concurrent traffic flows, also the spreading of hash values
generated throughout the whole available key space.

As the first monitor point of the ANGEL architectures,
it is critical for the FM to response quickly in case of
hardware failure. This necessitates redundancy meter(s)
in case of the main meter’s failure. However, we only
expect this to happen very rarely, therefore, the swapping
time is reasonably acceptable if it is less than 30 seconds.

These requirements give rise to our proposal that an
ANGEL flow meter must precisely capture and process
live traffic in the face of a number of constraints:

• The flow meter must be able to handle high traffic
rate in terms of packets per second (PPS).
The reason for priotising the packet rate is that
the FM only reads and processes each packet’s IP
header, not the whole packet’s payload, the packet
rate in terms of PPS, therefore is more important
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than the bit rate.
• The flow meter must be able to handle high number

of concurrent traffic flows.
• The flow meter must maintain a low PLR and

precise packet time-stamping.
• The flow meter must response quickly to hardware

failure.
• The hashing algorithm must exhibit a low collision

rate, with good distribution of hashed values (prefer-
ably uniformly distributed).

The time-stamping accuracy evaluation of the FM
hardware have been evaluated and reported in [2].

In this report, we outline the results obtained from
testing the performance of ANGEL Flow Meter (FM)
in terms of PLR, CPU/memory usage vs. high traffic
rate/high flow rate. It also evaluates the robustness of
the hash algorithm FM deployed.

II. EQUIPMENT AND SETUP

The test setup for the first two performance tests (PLR,
CPU and Memory usage vs. high traffic rate (Packets Per
Second PPS) and high flow rate (number of concurrent
hosts and flows)) is illustrated in Figure 1.

Major components of the test include the Traffic
Generator, The FM and The Flow Classifier (FC), in
which the FC is just functioning as a receiver for the
FM’s output.

The test setup is illustrated in Figure 1
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Fig. 1. Test Setup

Test components specifications and configurations can
be found in Table I. To reduce the impact of limited de-
fault PCAP buffer space settings (default buffer size and
maximum buffer size are 4KB and 512KB respectively)
at the FM while capturing live traffic, the PCAP default
and maximum buffer sizes have been reset to 512KB and
1MB respectively as suggested in [3].

A. High Data Rate Test

To test the performance of the FM while dealing with
high data rate, we create a UDP flow with 200,000 pack-
ets, packet inter-arrival time (IAT) of 1msec (1000PPS)

TABLE I
TEST COMPONENT SPECIFICATIONS/CONFIGURATIONS

Test Component Detail Specifications/ Configurations
Flow Meter Intel Pentium 4 3.00GHz with Hyper-

Threading, 1GB (2 x 512MB) DDR2
533 RAM, Seagate ST380817AS 80GB
SATA HDD, Asus P5LD2-VM mother-
board, Running FreeBSD 6.1

PCAP lipcap release version 0.9.5
PCAP Buffer Setting sysctl net.bpf.bufsize=524288, sysctl

net.bpf.maxbufsize=1048576
Angel FM Angel FM as of 26 Oct. 2006
Traffic Generator Intel Pentium 4 3.00GHz with Hyper-

Threading, 1GB (2 x 512MB) DDR2
533 RAM, Seagate ST380817AS 80GB
SATA HDD, Asus P5LD2-VM mother-
board, Running FreeBSD 6.1

TcpReplay version 2.0
FLow Classifier Intel Celeron 2.8GHz, 1GB (2 x 512MB)

DDR2 533 RAM, Seagate ST380817AS
80GB SATA HDD, Asus P5LD2-VM
motherboard, Running FreeBSD 6.1

and packet length of 64 bytes (included 4bytes CRC
header) using the SmartBit [4]. The recorded tcpdump
capture of the UDP flow is replayed at the Traffic Gen-
erator with different packet rates using the TcpReplay
tool [5]. The traffic rates configured for the test are
from 1000 to 50,000 PPS, with increasing step size of
5000 PPS for packet rates >= 5000PPS.

Each test is repeated three times. During the data
transfer, CPU and memory usages are recorded every
one second for analysis.

B. High Flow Rate Test

To test the performance of the FM while dealing
with high flow rate, we simulate a scenario of 1 to 50
concurrent IP hosts. Each host runs 50 UDP sessions
sequentially with aggregate packet IAT of 0.5msec (
64byte-packets with packet IAT of 0.5msec - total data
rate of ∼1Mbps per host). Traffic from each host is
generated using SmartBit and captured using tcpdump at
the Traffic Generator. Each tcpdump file contains 50,000
packets for 50 UDP flows from each host.

To simulate 1 to 50 concurrent hosts, TcpRewrite
(embedded in TcpReplay tool) is used to re-write the
source IP addresses in each tcpdump file, and MergeCap
[6] is used to join 1 to 50 tcpdump files respectively with
concurrent timestamps.

Each test is repeated three times. During the data
transfer, CPU and memory usages are recorded every
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half a second for analysis.

III. TEST RESULTS AND ANALYSIS

A. FM performance with High Traffic Rate

1) Packet Loss: At the FM, there are three different
steps in processing an incoming IP packet. They are
packet sniffing (PCAP capture), packet header pars-
ing (FM only processes IP packets and drops non-IP
packets), and placing packet information in a queue
for a UDP packet to be delivered to the FC. The
output packet is referred to as a SIM (Summary of
Information Message) packet in this report. To make the
data communication more efficient, the FM doesn’t not
send out information of each packet immediately after
it finishes processing the packet but accumulates the
packet information until they fill up a maximum segment
size-UDP packet of 1500 byte long - With the current
FM implementation, one full size UDP SIM packet can
contain information of 97 incoming packets).

The processing steps are described in Figure 2

Packet Sniffing

(PCAP capture)


FM's fxp0

Incoming Interface


Packet

Processing


(Parsing Packet

Headers)


Sending Output

Packets


(Information

Queuing)


FM's em0

Outgoing Interface


(Step 1)
 (Step 2)
 (Step 3)


Fig. 2. Packet Processing Steps at the FM

The first evaluation metric is the amount of packet
loss due to packet processing at the FM. This includes
the packet loss by buffer overflow in the PCAP capturing
in step 1, and possible packet loss due to the FM imple-
mentation in steps 2 and 3. (Packets that are dropped as
not being IP packets in step 2 are not counted as packet
loss in the evaluation).

In order to measure the number of packets lost due to
PCAP buffer overflow in step 1, we inserted some lines
of code into the FM program, so that upon receiving the
user termination signal, the PCAP thread will display
both the number of packets it received and dropped due
to buffer overflow.

To measure the number of packets being parsed by
the FM, tcpdump is run at the outgoing interface (em0
- toward the classifier). SIM packets are captured and
analysed for the total numbers of IP packets processed
by the FM. This number is compared to the number
of packets received reported by the PCAP thread. This

indicates the total number of packet dropped in Steps 2
and 3.

While there is no exact solution to measure the number
of non-IP packets being dropped in Step 2, we use
an estimate approach. Tcpdump is run at the incoming
interface (fxp0 - from the traffic generator) to capture all
the user’s traffic. The dump file is then filtered for the
ratio of non-IP packets and total packets. This number
serves as the upper bound for the packet loss rate due to
non-IP packets in the above measurement.

We define a number of parameters as following. The
Number of packets to be processed is the difference
between the PCAP reported received packets and the
PCAP reported dropped packets. The Number of pack-
ets actually being processed is the number of packets
calculated by parsing the SIM packets captured at the
outgoing interface of the FM.

Then, the total packets lost in Steps 2 and 3 is the
ratio of Number of packets actually being processed to
the Number of packets to be processed.

For the first few test trials, we found that even with
low packet rates of 1000PPS to 25000PPS (no packets
dropped in step 1), there was approximately 1% of packet
loss in steps 2 and 3. Especially, there weren’t any non-
IP packets being captured in the incoming interface.

The reason for the test findings was found due to a
small bug in the FM’s implementation in step 3. While
putting packet’s information in the queue, 97 incoming
IP packets’ information would fill up one full-UDP SIM
packet, however, the 98th IP packet’s information was
left out and not being exported by the FM. So the packet
loss for this step is roughly 1 every 98 incoming IP
packets (∼1.02%) or 1 every outgoing SIM packet.

This section reports the test results after the bug was
fixed.

Figure 3 shows the PLR due to PCAP buffer overflow
in step 1 at the FM. It is plotted as a function of the
incoming data rate (PPS).

As can be seen in the figure, the FM does not drop
any packet for packet rates up to 25000PPS. For higher
packet rates (from 30000PPS to 50000PPS), the packet
loss rate increases significantly - to greater than 50% for
packet rate of 50000PPS.

Figure 4 shows the total packet to-be processed and
actually been-processed in steps 2 and 3 as discussed
previously.

As can be seen in the figure, it seems that there is
no packet loss at Steps 2 and 3 of the process. Looking
more closely, we found that there is still a small amount
of packet loss, the majority being less than 100 packets
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Fig. 3. Packet loss rate due to PCAP buffer overflow
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Fig. 4. Packets to-be/actually-being-processed in Step 2 and 3
processing

(less than 0.08% out of total PCAP received packets). We
speculate that this might due to missing the last one or
two un-full SIM packets when terminating the test. The
results in percentage and absolute number of packets are
shown in Figure 5 and 6.

This leads to the conclusion that with the hardware
used, the FM can be used to capture and process traffic
at rates of up to 25000PPS without losing any packets.

2) CPU/Memory Usage: The FM is designed as
a multi-threaded application, including packet capture,
packet processing, network and primary threads. The
packet capture thread is responsible for capturing a
packet, making a copy, and then queuing it for processing
by another thread. The packet processing thread pulls
packets captured by the capture thread out of the queue,
and generating statistics to send to the FC. This informa-
tion is then queued for the network thread to manage the
delivery of SIM packets to the FC. The primary thread
is responsible for periodically polling and updating the
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Fig. 5. Packet loss rate in Step 2 and 3 processing
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Fig. 6. Packet loss in Step 2 and 3 processing

database, as well as garbage collection. Details about the
function and implementation of these threads are covered
in [7].

This section reports on the CPU and memory usage
of the ANGEL FM application when capturing and
processing traffic at different data rates. By using the
’top’ command with -H option every one-second during
the test, CPU usage and Memory size are recorded for
different thread states of the application for analysis.

Figures 7 and 8 show the memory usage of the FM
capture and processing threads for different packet rates.
Test results are illustrated using boxplot tool provided
by R project [8]. The black line in the box indicates
the median; the bottom and top of the box indicates the
25th and 75th percentile, respectively. The vertical lines
drawn from the box are whiskers. The upper cap is drawn
at the largest observation that is less than or equal to the
75th percentile + 1.5*IQR (interquartile range - which
is essentially the length of the box). The lower cap is
drawn at the smallest observation that is greater than or
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equal to the 25th percentile - 1.5*IQR. Any observations
beyond the caps are drawn as individual points. These
points indicate outliers [9].
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Fig. 7. Memory Usage for capturing thread
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Fig. 8. Memory Usage for processing thread

As can be seen in Figures 7 and 8 and comparing to
Figure 3, there is no strong correlation between memory
usages and packet loss rate. This is expected, as the FM
does not response to packet loss. The memory usage
increased significantly when the packet rate increased
from 1000PPS to 5000PPS. However, for traffic rates of
higher than 5000PPS, it varied at less than 5MB.

Figures 9 and 10 show the CPU usage of the FM
capturing and processing threads for different packet
rates.

As can be seen in the figure, CPU usage for
both packet capturing and processing threads increased
slightly as the packet rate increased. However, up to
50,000PPS, the median CPU usage remained less than
20% and 10% respectively for each individual thread.

Another finding of note is that the maximum CPU
usage was much greater than the median values in most
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Fig. 9. CPU Usage for capturing thread
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Fig. 10. CPU Usage for processing thread

cases. However, these were mostly single outlier value
for these cases.

B. FM performance with High Flow Rate

In this test, we replayed the synthetic dump files
created by MergeCap to simulate 1, 5, 10,... to 50
concurrent hosts. Each host sequentially generated 250
flows with a flow inter-arrival time of 0.5 millisecond.
This results in 50 flows starting simultaneously at each
host after 25msec. This made the merge files roughly
equivalent to 250, 500, ... to 2500 flows started and run
concurrently in 25msec, or proximately an average of
2000, 10000, 20000, ... to 100,000 flows per second.

1) Packet Loss: Figure 11 shows the packet loss rate
due to PCAP buffer overflow in step 1 at the FM. It is
plotted as a function of the number of concurrent hosts.

As can be seen in the figure, FM does not drop
any packet for up to 10 concurrent hosts, with an
equivalent flow rate of 20000 flows/sec. For higher flow
rate (from 15 to 50 concurrent hosts), the PLR increases
significantly - to more than 80% for 50 concurrent hosts,
with an equivalent flow rate of 100,000 flows/sec.
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Fig. 11. Packet loss rate due to PCAP buffer overflow

Figure 12 shows the total packet to-be processed and
actually been-processed in steps 2 and 3 as discussed in
the previous section.
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Fig. 12. Packets to-be/actually-being-processed in Step 2 and 3
processing

As can be seen in the figure, it seems that there is
no packet loss in Steps 2 and 3 of the process. Looking
more closely, we find that there is still a small packet
loss, a majority less than 100 packets. This might due to
the missing of the last one or two un-full SIM packets
when terminating the test. The results are shown in 13.

Comparing results in Figure 11 and Figure 3, with
the same packet rate, increasing number of flows in
the traffic aggreagate results in a slightly increase in
PLR. Upto 20,000 flows/sec (10 concurrent hosts) PLR
= 0%. With flow rate greater than 30,000 flows/sec,
the FM suffers from packet loss. With the same packet
rate, the increase in the number of flows in the traffic
aggregate causes slightly increase in PLR. For example,
with 30,000 flows/sec (15 concurrent hosts), the PLR
is 15.33%; compared to the packet rate of 30,000 PPS
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Fig. 13. Packets loss in Step 2 and 3 processing

from a single flow, the PLR is 12.89%. PLR for 40,000
flows/sec (20 concurrent hosts) is 44.30% while PLR for
40,000 PPS of a single flow is 38.11%. Similar results
are seen for higher flow and packet rates. This shows that
increased number of distinct flows in a traffic aggregate
increases the PLR for the FM, even the packet rate is
the same.

2) CPU/Memory Usage: Figure 14 and 15 show
the memory usage of the FM capturing and processing
threads for different packet rates.
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Fig. 14. Memory Usage for capturing thread

As can be seen in Figures 14 and 15 and comparing
to Figure 3, there was no strong correlation between
memory usages and packet loss rate. This is expected, as
the FM does not response to packet loss. The memory
usage increased when the number of concurrent hosts
increased from 1 to 5 hosts (2000 to 10000 flows per
second), and remained stable up to 20 concurrent hosts
(roughly 40000 flows per second). However, for traffic
rates higher than 25 concurrent hosts, it fluctuated at less
than 3.8MB (noted that the packet loss rate for these
cases were of greater than 50%).
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Fig. 15. Memory Usage for processing thread

Figure 16 and 17 show the CPU usage of the FM
capturing and processing threads for different number of
concurrent hosts.
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Fig. 16. CPU Usage for capturing thread
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Fig. 17. CPU Usage for processing thread

As can be seen in the figure, the average CPU usage
for the packet capturing thread varied when for dif-
ferent number of concurrent hosts, however, up to 50

concurrent ones, CPU usage remained less than 20%.
Differently, the median CPU usage for the processing
thread was very low ( 0%) for 1 to 10 concurrent
hosts, increased significantly to approximately 50% for
15 concurrent hosts, and gradually reduced with higher
number of concurrent hosts. This behaviour can be
explained by the packet loss rate. There was no packet
loss for 1 to 10 concurrent hosts, while there was more
than 10% packet loss for 15 concurrent hosts. For more
than 15 hosts running concurrently (equivalent flow rate
of greater than 30000 flows per second), the packet
loss rate increased dramatically. As most of the packets
were dropped by PCAP buffer overflow, this reduced the
number of packets that the FM needed to process.

C. Evaluation of The SuperFastHash algorithm

This section reports on the evaluation of the Super-
FastHash algorithm employed in the FM. It is evaluated
in terms of collision rate, hash generation speed and the
distribution of hash values.

Packets coming from an ISP normally have a limited
range of source IP addresses. This might increase the
chance of flow hash collisions. In this test, we evaluate
the Hash algorithm using the following procedure.

We wrote a small C++ program to automatically gen-
erate from 250,000 to 1 million unique flows, which have
the source IP addresses correlated with 8, 16, and 24 bit
netmasks (e.g. network with 16 bit netmask has src IP
addresses in the range 100.100.0.1 to 100.100.255.254,
network with 24 bit netmask has src IP addresses in
the range 100.100.0.1 to 100.100.0.254). The destina-
tion IP address is totally random, while the source
and destination ports are specifically configured, so that
each flow is unique. During the test, IPv4 addresses
were used, however, their values were stored in bigger
buffers (16-byte source and destination IP addresses)
as for the implementation scalability to support IPv6
addresses. With the current implementation, the FlowID
is constructed so that the smaller IP address will be
stored first. FlowID is 37-byte buffer, that consists of 16-
byte IP address (smaller one), 2-byte corresponding port,
16-byte IP address (greater), 2-byte corresponding port
and 1-byte protocol. The source port is incremented for
each flow block, and wrapped around when it reaches the
maximum value. The destination port is kept the same
for each flow block and increased by one for the next
block.

The collision rate is measured by the ratio of unique
hash numbers generated out of 250K to a million input
flows. The occurrence of each hash value is recorded for
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analysis. Hash values are also recorded for post analysis
of histogram distribution. A timer is inserted to calculate
the total time taken to generate the hashes. (The hash
generating time includes the time taken to compare and
re-order IP addresses). An average speed is recorded for
analysis.

Figure 18 shows the mean collision rates of the three
repeated tests for each subnet (/8, /16, /24).
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Fig. 18. Average hash collision rate for different netmask values

As can be seen in the figure, though increasing as
the number of input flows increases, the collision rate
reaches an average of ∼0.015% (out of 1 million values)
for different IP subnet.

The frequency occurrence of each hash value for each
network IP address pool is shown in Figure 19. As can
be seen in the figure, less than 0.015% of hash values
have 2 collided occurrences for the whole population.
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Figure 20 shows the histogram distribution of hash
values for network IP netmask of 16 (100.x.x.x). The
1 million hash values have been put into 100 bins in
the range of all possible values. Results show quite an

even distribution, despite a slightly higher frequency of
the first bin’s density. Similar results have been seen for
other networks with IP addresses with netmasks of 8 and
24 bits.
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Fig. 20. Average hash collision rate for different netmask values

For all tests, the average time taken to generate each
block of 250K hash values (including comparing and re-
ordering IP addresses) was 0.097s, which is equivalent
to ∼2.5 million hashes per second.

The hash algorithm’s performance in terms of colli-
sion, speed, and spreading values are considered to be
good enough for deployment in the FM architecture.

IV. PERFORMANCE WITH POWER FAILOVER

A redundancy test for the Flow Meter in case of the
main meter’s failure is carried out separately. To achieve
system redundancy, CARP (Common Address Redun-
dancy Protocol [10]) - a tool which has been created
and maintained by the OpenBSP project - is used. It is a
free alternative to the VRRP (Virtual Router Redundancy
Protocol) and the HSRP (Hot Standby Router Protocol).
The tool enables multiple FM boxes to share a single,
virtual network interface between them, so that if any
machine fails, another can respond instead. The FM
software is coded to keep polling the machine for master
state. The polling interval is 1 second.

The test setup is illustrated in Figure 21 as below.
We have two identical hardware configuration FM

boxes, one acting as the master and the other as backup
FM. CARP is installed in both of the boxes. At con-
figurable intervals (1 second by default - set by the
advbase parameter), the master advertises its operation
on IP protocol number 112. If the master goes offline (the
backup CARP host doesn’t see an advertisement from
the master for 3 consecutive advertisement intervals), the
backup system in the CARP group begins to advertise.
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Fig. 21. Redundancy Test Setup

The host that is able to advertise most frequently
becomes the new master. The CARP advertisement skew
(advskew) parameter is used to skew the advertisement
interval of a less preferred host in becoming master. In
this test, the master FM box is set with default advskew
value of 0, and the backup FM box is set with advskew
= 100. The total advertisment interval is calculated as
advbase + (advskew / 255).

Detail CARP configurations for the FM master and
backup boxes are described in Appendix A.

In this test, the traffic generator continuously pings the
FC with ping interval of 5msec. To simulate the power
failure of the master, we reboot the master FM during the
test. The master’s power failure would cause a number of
ICMP packets to be lost while the backup FM detects the
failover and assumes the packet capture task. Tcpdump
is run at the Traffic Generator to capture ICMP packets.
The number of Echo Reply packet losses and hence the
maximum packet inter-arrival time of two consecutive
Echo Reply messages is used to estimate the time taken
for the system to recover.

We ran five repeated trials for the handover time
estimation.

Figure 22 shows the sequence of ICMP Echo Reply
packets during the 5 repeated trials. As can be seen in the
figure, there is one small gap in the packet sequence for
all the tests, which lies in the packet sequence window
of [10700-11300].

Figure 23 shows the results in the sequence of ICMP
packets during the 5 repeated trials with the sequence
window of [10500-11500]. It shows that during the tests,
there were an average of 512 Echo Reply packets lost
during the power failover.

Figure 24 shows the Echo Reply packet inter-arrival
times during the test vs. packet sequence number. As
can be seen in the figure, the maximum packet IATs of
approximately 2.5 to 3 seconds (average of 2.88 seconds)
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Fig. 22. Ping Packet loss during the power failover
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Fig. 23. Ping Packet loss during the power failover - zoomed-in

were caused by the interruption of the master FM power
failure.
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Fig. 24. Echo Reply Packet IAT (as captured at the Traffic
Generator)

V. CONCLUSION

The performance of the FM in terms of packet loss,
CPU and memory usages when coping with high data
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rate and high number of concurrent flows has been tested
and reported. There was significant packet loss (greater
than 10%) when the incoming packet rate reaches 30,000
PPS or the incoming flow rate reaches 30,000 concurrent
flows per second. With higher traffic/flow rate in real-
world operational networks, a cluster of FM boxes might
be required for better traffic capture in a high rate data
network.

The evaluation of the hash algorithm employed by the
FM was reported. A real-world deployment scenario was
constructed and tested, with a small range of IP packets’
source IP addresses. It has been found that with the
test scenario, there was approximately 0.015% of hash
collisions. This is considered to be acceptable for the
operation of the ANGEL architecture.

The redundancy test results showed a handover time
of ∼ 3 seconds in case of master FM power failure for
CARP architecture. Including the small amount of time
(less than 2 seconds) for the FM application to poll the
interface and start up, it would make the total of much
less than 30 seconds for the system to recover from
the failover. That is considered to be acceptable for the
operation of the ANGEL architecture.
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APPENDIX A

At both Master and Backup FM boxes, re-compile
kernel with the following line:

device carp
CARP configuration:

At the Master
ifconfig carp0 create

ifconfig carp0 vhid 1 pass angel 1.1.10.1/24
ifconfig carp1 create
ifconfig carp1 vhid 2 pass angel 1.1.20.1/24

sysctl net.inet.carp.preempt=1
At the Backup
ifconfig carp0 create

ifconfig carp0 vhid 1 advskew 100 pass angel 1.1.10.1/24
ifconfig carp1 create
ifconfig carp1 vhid 2 advskew 100 pass angel 1.1.20.1/24

sysctl net.inet.carp.preempt=1
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