
ANGEL Flow Meter
Software Architecture Design Document

Jason But
Centre for Advanced Internet Architectures, Technical Report 070228C

Swinburne University of Technology
Melbourne, Australia

jbut@swin.edu.au

Abstract—The Automated Network Games Enhance-
ment Layer (ANGEL) project aims to leverage Machine
Learning (ML) techniques to automate the classification
and isolation of interactive (e.g. games, voice over IP) and
non-interactive (e.g. web) traffic. This information is then
used to dynamically reconfigure the network to improve
the Quality of Service provided to the current interactive
traffic flows and subsequently deliver improved perfor-
mance to the end users. Within this scope, the project will
develop protocols that allow the adjustment of Consumer
Premise Equipment (CPE - eg. cable/ADSL) configuration
to provide better quality of service to interactive flows
detected in real-time.

This document describes the basic design motivation
of the Flow Meter Software Component of ANGEL. The
Flow Meter is responsible for capturing packets off a
network connection, collating the statistical properties
and forwarding this information to the Flow Classifier
Component.

I. INTRODUCTION

This document details the software design decisions
made when building the ANGEL Flow Meter. In par-
ticular we discuss how the design takes scalability into
account as well as attempting to overcome any limita-
tions based on the underlying packet capture facility.

II. FLOW METER REQUIREMENTS

We start by repeating the minimum requirements for
the Flow Meter as stated in the ANGEL Architecture
document [1]. These provide a useful reference when
considering any specific constraints in the software ar-
chitecture.

An ANGEL System can contain numerous ANGEL
Flow Meters. The number and configuration of each
Flow Meter is dependent on the network design and

From February 2007 and July 2010 this report was a confidential
deliverable to the Smart Internet Technologies CRC. With permission
it has now been released to the wider community.

configuration, the number of current or potential ANGEL
users, and the amount of network traffic flowing through
the network at metering locations.

The primary tasks of a Flow Meter are to:
• Monitor a copy of network traffic at a particular

location
• Filter the traffic into individual network flows
• Forward captured packet and flow information to

the ANGEL Flow Classifier
Key design restrictions for all aspects of the ANGEL

Flow Meter are:
• Two or more network connections, one to communi-

cate with the Flow Classifier and ANGEL Database,
the other(s) to receive a copy of all network traffic
from the tap(s)

• Configured with (either locally or from the ANGEL
Database):

– IP Address of the ANGEL Database
– IP Address of the ANGEL Flow Classifier to

communicate the packet statistics to
– IP network connection details of ANGEL Cus-

tomers - allows filtering of captured packets
– Flow timeout values

• Optionally filter captured packets to only consider
currently registered ANGEL users - packets that
match the active list of IP addresses to be moni-
tored are kept while other packets are immediately
discarded. This is particularly useful in situtations
where a small proportion of users are ANGEL
enabled, as fewer Flow Meters need be deployed.
In situations where a large proportion of users are
ANGEL enabled, it may be simpler to process all
traffic including non-ANGEL enabled users.

• Packet statistics are always communicated to a
single Flow Classifier

• Packet statistics for multiple flows can be sent in a

CAIA Technical Report 070228C February 2007 page 1 of 8

mailto:jbut@swin.edu.au


single packet to the Flow Classifier
• If a currently active flow becomes inactive for the

configured timeout period, resources used to hold
the flow state will be released and the Flow Meter
will signal the Flow Classifier that the flow is
terminated.

A. Key Restrictions

The ANGEL Flow Meter will use libpcap [2] as
the underlying packet capture facility. This means that
any limitations of the PCAP library must be taken into
account:

• Packets are timestamped by the kernal and/or PCAP.
The accuracy of packet timestamps are therefore
dependent on the underlying hardware and OS
implementation

• PCAP expects the application to do all processing
on the captured packet before supplying any other
packets - subsequent packets are buffered. Memory
resources for captured packets are freed as soon
as the application tells PCAP it has completed
processing

• The PCAP buffer allows packets to be queued if
they arrive in quick succession while the previously
captured packet is processed. The PCAP buffer size
is configurable, a larger buffer can be used to ensure
that packets are not lost due to buffer overflow - on
BSD we should use a a buffer size of 512kB rather
than the default 32kB. Even so, it is important that
the mean packet processing rate must be greater
than the mean packet arrival rate

• While the PCAP buffer size is configurable, there
is a limit at which it will overflow and captured
packets will be lost unless processing time can
proceed at a rate greater than the packet arrival rate

• The Flow Meter should be built on FreeBSD (or
other BSD variant) as the kernel packet capture
facility on Linux based systems has a tendency to
re-order packets prior to delivery to the capture
application

Speed of access to the external database is undeter-
mined since it may be located on a physically seperate
machine. It is imperative that accesses to the database
are minimised and configured in such a way so as to not
limit the processing capability of the Flow Meter.

The Flow Meter must send information to the Flow
Classifier for each captured packet. To minimise the
amount of data that the Flow Classifier is responsible
for handling it is imperative that the amount of data
generated by the Flow Meters is minimised

We propose to implement redundancy via the use of
two or more machines running the same software. The
machines will use the CARP protocol [3] to elect a
master out of the set of machines. The master Flow
Meter will communicate data to the Flow Classifier,
when it is detected that the master is offline, one of
the slave machines will be elected master to assume
these duties. We expect a typical system would use two
machines acting as a single Flow Meter unit.

B. System Configuration

The Flow Meter must run using some configuration
options. The ANGEL Architecture allows for config-
urable options to be stored in the database. Even so we
must also allow for configuration options to be stored
locally on the Flow Meter. Further, some configuration
options must be known prior to using the database.

1) Local Configuration Information: The Flow Meter
should use a local configuration file which stores:

• Capture Interface - Network interface on which to
capture packets

• Database Contact Information - Details required to
contact and use the external database. This could
include details such as IP address, username, pass-
word, etc.

• Capture Size (optional) - Number of bytes to cap-
ture from each packet, if not specified use a default
value. Can also be specified in the database

• Flow Meter Contact Information (optional) - Details
of the Flow Classifier to forward data onto could be
stored here. Any values in the local configuration
file are overidden by similar data in the database

• Flow Timeout (optional) - Details of how long
to wait to timeout flows. Any values in the local
configuration file are overidden by similar data in
the database

Any optional configuration values (excluding Capture
Size) must be stored in either the local configuration file
OR the database. These values are required for the Flow
Meter to run.

C. CARP Configuration

The Flow Meter is designed to provide failover re-
dundancy through the use of CARP (Common Address
Redundancy Protocol [3]) - a tool which has been cre-
ated and maintained by the OpenBSP project. CARP is a
free alternative to the VRRP (Virtual Router Redundancy
Protocol) and the HSRP (Hot Standby Router Protocol).
The tool enables multiple Flow Meter units to share a
single, virtual network interface between them, so that if

CAIA Technical Report 070228C February 2007 page 2 of 8



any machine fails, another can respond instead. The Flow
Meter is coded to keep polling the machine for master
state. The Flow Meter functions correctly without CARP
except that no failover redundancy features are present.

CARP must be installed and configured in the un-
derlying OS. At configurable intervals (1 second by
default - set by the advbase parameter), the master
advertises its operation on IP protocol number 112. If
the master goes offline (the backup CARP host doesn’t
see an advertisement from the master for 3 consecutive
advertisement intervals), the backup system in the CARP
group begins to advertise.

The host that is able to advertise most frequently
becomes the new master. The CARP advertisement skew
(advskew) parameter is used to skew the advertisement
interval of a less preferred host in becoming master. We
recommend setting the Flow Meter unit that is expected
to be the master with a advskew value of 0, and the
backup Flow Meter with advskew set to 100. The
total advertisment interval is calculated as advbase +
(advskew / 255).

The steps required to configure CARP on a FreeBSD
OS designed to function as a Flow meter involves:

1) Re-compile the kernel with the following options:

device carp

2) Configuration of the Flow Meter Master:
ifconfig carp0 create
ifconfig carp0 vhid 1 pass angel 1.1.10.1/24
ifconfig carp1 create
ifconfig carp1 vhid 2 pass angel 1.1.20.1/24

sysctl net.inet.carp.preempt=1

3) Configuration of the Flow Meter Backup:
ifconfig carp0 create
ifconfig carp0 vhid 1 advskew 100 pass angel 1.1.10.1/24
ifconfig carp1 create
ifconfig carp1 vhid 2 advskew 100 pass angel 1.1.20.1/24

sysctl net.inet.carp.preempt=1

III. MULTI-THREADED DESIGN

The Flow Meter will be designed as a multi-threaded
application. This structure allows optimum scalability
with the ability to run multiple processes simultaneously
while the meter is blocked waiting for the OS, while
also allowing for improved execution speed since the
processes can communicate with each other via shared
memory access.

In this section we will highlight the main threads of
execution and their primary tasks. Subsequent sections
will describe the processing of each thread in more
detail.

A. Packet Capture

One of our key restrictions is the need to process
packets returned by the PCAP library as quickly as
possible such that the number of packets dropped is
minimised. However, the PCAP library also releases
memory used to store captured packets as soon as the
capture application returns from handling that packet.

Our goal is to optimise the packet capture facility
by allocating a thread of execution that is primarily
responsible for capturing a packet, making a copy, and
then queueing it for processing by another thread (see
Figure X). The concern is that the size of the PCAP
buffer is static. However, by using a generic queue
structure within the Flow Meter application, we are
essentially moving buffering of captured packets to a
dynamic queue limited in size by available memory.

With the capture thread only performing these basic
tasks, processing time for an individual packet is limited
and coupled with an appropriate PCAP buffer size we
should have a scenario where no captured packets are
lost given that the mean packet processing rate is greater
than the mean packet arrival rate.

It is necessary to make a copy of the packet prior to
queueing it to allow PCAP to release memory resources
without losing the captured data.

B. Packet Processing

This thread is responsible for pulling packets captured
by the Packet Capture Thread out of the inter-thread
queue, and calculating packet statistics to deliver to
the Flow Classifier. This information is then queued
for another thread to manage delivery to the Classifier.
The primary purpose of dividing these tasks is that
communication of data to the classifier is periodic and
can result in blocking of the thread. This design allows
for captured packets to continue to be processed even if
this is the case.

For each packet that is captured, this thread must
calculate a Flow Hash1. If the generated hash is new
- this is the first packet of this flow - then the mapping
between the hash and the flow tuple (source/destination)
information must be stored in the database. In all cases,
the flow hash, packet size and packet timestamp are
queued for the network thread to deliver to the Flow
Classifier.

It should be noted that only the Master Flow Meter is
allowed to update the database.

132 bit value based on the flow ID tuple information <sourceIP;
sourcePort; destIP; destPort; Protocol>

CAIA Technical Report 070228C February 2007 page 3 of 8



C. Network Thread

The network thread is responsible for de-queueing
summarised packet statistics generated by the Packet
Processing Thread and sending them to the Flow Clas-
sifier. It would be in-efficient to send a single packet to
the Flow Classifier for every captured packet, and the
protocol specifications allow for statistics of multiple
packets to be encapsulated within a single packet for
delivery to the Flow Classifier.

However, waiting for a certain number of packets
prior to delivery to the Classifier increases the time
between traffic generation and classification. The thread
is designed to wait until one of two events occur:

1) Enough packets are captured/processed to fill2 a
data packet to the Classifier

2) A timeout has triggered since the last data packet
delivered to the Classifier

After one of these events occur, the currently (poten-
tially paritially filled) generated data packet is forwarded
to the classifier. It should be noted that only the Master
Flow Meter is allowed to transmit to the Flow Classifier.

D. Primary Thread

As well as launching the other threads to perform the
basic work of the Flow Meter, the Primary Thread has
a handful of other tasks it is required to perform:

• Periodically poll the database for updated con-
figuration information. This includes configuration
settings for both flow timeout values and contact
details for the Flow Classifier. The polling period
is not required to be frequent as this information is
likely to remain stable for extended periods of time
and reading these values at time intervals measured
in minutes would be acceptable

• Garbage collect information on current flows and re-
move their details from the database. This repetitive
process must scan through details of each flow and -
if there has been no activity for the specified timeout
period - remove the corresponding flow hash entries
from the database. Again, the frequency of this
task does not have strict time requirements. Indeed,
performing this task too often would come at the
expense of the Packet Processing Thread being
more likely to have to wait to obtain access to the
database as required. The primary cost of infrequent
garbage collection is that flow information lives for
longer periods of time. For each flow that has been
determined to be terminated, the Primary Thread

2The data packet is not larger than the network MTU

must create and queue the End-of-flow message
for the terminated flow to the Network Thread for
delivery to the Flow Classifier

E. Inter-Thread Communication

All threads need to be able communicate data amongst
each other. In threaded applications, this is typically
done through the use of shared memory and variables.
Problems occur when two threads need to access the
same memory block at the same time. This situation is
typically solved via the use of Mutual Exclusions and
Semaphores which cause some threads to block while
protected code is being executed.

Common difficulties with this approach arise because:
• To ensure that we have thread-safe code we need

to wrap as much as possible inside a protected
space. This ensures that we don’t miss a shared
variable modification which could cause the code
to misbehave

• To develop an optimal/efficient system, we need to
wrap as little as possible inside a protected space.
This ensures that code is only blocked from exe-
cuting when it is absolutely necessary, maximising
CPU usage

All access when pushing data onto and popping data
off inter-thread communication queues must be pro-
tected with a mutual exclusion. If a thread wants to push
data onto a queue it must wait until the other thread has
finished retrieving from the queue.

All access to the database must be protected with a
mutual exclusion. Similarly all access to the internal list
of currently active flows must be protected with a mutual
exclusion. This is important as one thread isused to build
and update the list while another is performing garbage
collection duties on the list.

F. Development Tools

The Flow Meter makes use of the ACE library/toolkit
[4]. We use this toolkit to provide C++ wrappers around
common network functionality (sockets) as well as to
provide tools to aid thread creation, thread management
and inter-thread communication.

G. Thread Implementation

The Flow Meter is to be implemented using a C++
Class Oriented Structure. A class is to be defined that
should create, launch and manage the thread. Each of
these classes may use further helper classes to assist in
the implementation.

CAIA Technical Report 070228C February 2007 page 4 of 8



IV. CAPTURE THREAD

This thread should be implemented in a class called
SniffTask. The SniffTask class should:

• Be inherited from the ACE ACE Task class. This
class implements thread safe queues to allow other
threads to post messages to this thread

• Be created with a pointer to the Packet Processing
Thread so that messages can be posted to the Packet
Processing Thread Queue

• Obtain the Capture Interface and Capture Size de-
tails from the Global Configuration database

The class should open and initialise packet capture
using the PCAP library functions. Once running the
service thread should continuously:

• Get the next packet from the PCAP library
• Make a copy of the captured packet details includ-

ing type, timestamp and captured payload
• Push the copied information onto the message

queue for the Packet Processing Thread
• If signalled to terminate by the primary thread we

need to stop capturing packets and terminate the
thread

A. Singleton Class

There can only be one instance of SniffTask. The class
should be implemented as a Singleton such that if a
second instance is created it fails with an appropriate
error message. This allows checking for this error in parts
of the code that create the Capture Thread.

B. Construction/Initialisation

The class constructor should open the specified inter-
face for live capture, ready to be used by the thread.
In this way when the thread is actually launched we
are able to begin capture immediately and any potential
configuration errors are caught at construction phase.
The capture device should be closed in the close()
method which is automatically called when the main
thread method terminates.

C. Main Processing

Processing is performed in the svc() method. How this
is implemented is primarily dependent on how the PCAP
library works. We call pcap loop() to begin capture.
Capture continues - and this function call will not return
- until capture is stopped or suspended. As such the code
within the svc() method should check the message queue
to see if any messages (particularly the thread shutdown
message) exist and act on these messages. Once the

queue is empty we call pcap loop() to begin capture
and processing of packets.

As packets are captured, a registered callback function
is called to process each packet. Within this function
we should check to see if the thread message queue is
empty. If not empty we need to suspend capture so that
the original call to pcap loop() is broken and svc() can
handle the message. Either way the callback should make
a copy of the captured data and post it to the Packet
Processing Thread class.

V. PACKET PROCESSING THREAD

This thread should be implemented in a class called
ProcessTask. The ProcessTask class should:

• Be inherited from the ACE ACE Task class. This
class implements thread safe queues to allow other
threads to post messages to this thread

• Be created with a pointer to the Network Thread so
that messages can be posted to the Network Thread
Queue

Once running the service thread should continuously:
• Get details of the next packet from the input queue

- posted by the Capture Thread
• Parse the packet to extract flow tuple information,

including source and destination addresses and Port
Numbers, as well as Transport Layer Protocol in-
formation

• Generate a 32 bit hash of the flow tuple identifica-
tion

• If the packet starts a new flow, add the hash and
tuple information to the database and local flow map

• Queue the hash, timestamp, packet size and flow ID
flags to the Network Thread for transmission to the
Flow Classifier

A. Main Processing

Processing is performed in the svc() method. This
should run as an infinite loop which dequeus packet
information and processes it prior to passing it to the
Network Thread. The processing tasks include separating
packets into individual flows, calculating an identifying
hash for each flow and combining this information for
the network thread.

ProcessTask uses a series of helper classes to achieve
its task. In particular a set of multi-layered classes based
on the Packet Class are used to parse the captured packet
and to enable extraction of flow ID tuple information.
This set of classes should be expandable to include new
intermediate layers to extend the range of devices that
the Flow Meter can run on and the number of protocols

CAIA Technical Report 070228C February 2007 page 5 of 8



that can be processed. Each sub-class should parse the
header of a particular protocol before deciding which
(other) sub-class should parse the subsequent layer. More
information on the Packet sub-classes is provided in a
later section.

An internal map of current flows must be kept as it is
impractical to continuously probe the (possibly external)
database for each packet we see. This map should keep
track of the hash for each flow as well as the timestamp
of the last witnessed packet for the flow. This data allows
for garbage collection of flows that have no activity
within a certain timeout period. The map should also be
searchable to detect creation of a new flow such that the
corresponding identification information can be written
to the database.

The flow map must also be accessed by the primary
thread for garbage collection purposes. As such access to
maintaining the map must be thread-safe. To keep code
centralised, all flow map updating, as well as the map
itself, should be implemented as a separate class. This
class - FlowMap - will be described in a later section.

B. The Hash

The primary purpose of the hash is to minimise the
amount of information being passed between the Flow
Meter, Flow Classifier and Client Manager. The Client
Manager can extract IP addresses from the database
when it needs to for a given flow hash. As such the
hash - nominally a 32 bit value - must uniquely identify
all flows. Given that:

• Flows have a limited lifetime
• A Flow Meter is located to service a sub-set of

clients of an ISP - the source or destination IP
addresses must be an IP address belonging to the
ISP

• The number of concurrent flows generated by a
subset of customers is limited

We would expect that 32 bits should be a large enough
value to uniquely identify all current flows. However, it
is imperative that the hash is selected to minimise the
number of collisions given the constraints of possible
input values. This document will not comment on the
actual hash algorithm other than to state that:

• The input to the hash function must include all data
to uniquely identify a flow:

– Source/destination IP addresses - either IPv4 or
IPv6

– Source/destination Port Numbers - or zero if
just an IP packet

– Transport Layer Protocol - to differentiate TCP
and UDP flows using the same end-point iden-
tifiers

• The hash function should ensure that the same
hash is generated for packets of the same flow (ie.
regardless of the source/destination direction of the
packet). The design approach used here will be
to sort the IP addresses such that the lowest3 IP
address is always considered to be first when gen-
erating the hash. If IP address orders are swapped,
then the ports should also be swapped

VI. NETWORK THREAD

This thread should be implemented in a class called
NetworkTask. The NetworkTask class should:

• Be inherited from the ACE ACE Task class. This
class implements thread safe queues to allow other
threads to post messages to this thread

• Obtain the local port number to bind the UDP
socket to from the Global Configuration database.

Once running the service thread should continuously:
• Get details of the next packet from the input queue

- posted by the Process Thread
• Append the data to a buffer
• If the buffer has exceeded a maximum size OR a

timeout trigger since the last transmission has fired,
then send the buffer to the Flow Classifier

A. Construction/Initialisation

The class constructor should create the UDP socket for
later communications by the thread. The socket should
be closed in the destructor.

B. Main Processing

Processing is performed in the svc() method. This
should run as an infinite loop which dequeues packet
information and queues it for transmission to the Flow
Classifier. Packets should be queued until either:

• The number of buffered packets exceeds a certain
value

• A timeout has triggered since the last data packet
was sent to the Flow Classifier

At this stage, the current queued buffer, regardless of
size, should be delivered to the Flow Classifier using the
UDP socket.

3The definition of lowest is up to the implementor but must be
consistent

CAIA Technical Report 070228C February 2007 page 6 of 8



VII. PACKET PARSING

Packet parsing is a layered process, the lower layer
packet header must be parsed before any higher layered
data can be processed. Given that all layers use these
same basic steps, a class based approach works well
where all packet parsers are implemented as classes
inherited from a common base class Packet.

The Packet class defines what values a parsed packet
should return, for our case this will include the source
and destination IP address/port numbers, as well as the
Layer 4 protocol information. Since the packets are
layered, the header information is stored as instances of
Packet classes within other instances. Where a particular
layer does not know how to return certain information
(eg. The Ethernet layer does not know the port numbers),
it returns the result from the recursive request on the
contained packet (in this case the IP layer which would
subsequently call the TCP layer). The base class can
implement default return values that call encapsulated
packets or return NULL values to signify that the re-
quested information is not available for this packet.

A. Parsing

All parsing is done by the Packet constructor. At the
top level we know what format the packet was captured
in because this is returned by PCAP. We can use this
information to construct an instance of the appropriate
packet parser for that protocol.

Each class constructor should parse the header and
extract appropriate bits of information for later use. It
should also examine the packet header to determine the
protocol of the encapsulated packet and then call the
appropriate constructor to further parse the packet. This
allows new protocols at multiple layers to be inserted
into the parsing chain:

• The initial implementation will parse Ethernet, en-
capsulated IPv4 and IPv6 and encapsulated TCP
and UDP

• A single TCP parser is used for both IPv4 and IPv6
packets

• A single UDP parser is used for both IPv4 and IPv6
packets

• A new layer (say ATM) could use existing IPv4,
IPv6, TCP and UDP parsers to further parse the
packet once a new ATM level parser is constructed

The implementation in the ANGEL Flow Meter is
based in spirit on the packet parser used in NetSniff
[5]. NetSniff was developed by the Centre for Advanced
Internet Architectures and the license to use this portion

of NetSniff has been granted by the author to use in the
ANGEL project.

B. IP Addresses

To simplify higher layer code, we would like to
use a single class to represent both IPv4 and IPv6
addresses. The implementation used by the Flow Meter
is based on that released in the socketcc library - a
C++ Socket/Thread library [6]. socketcc was written and
developed by one of the ANGEL developers and has
been released to the public domain.

VIII. FLOW MAP

The Flow Map should use a C++ STL map to map
flow hashes (32 bit values) to timestamps. It is also
necessary to store the most recent timestamp to allow for
garbage collection timeouts. Both these variables should
be maintained in a class called FlowMap.

A. Singleton Class

There can only be one instance of FlowMap. The class
should be implemented as a Singleton such that if a
second instance is created it fails with an appropriate
error message. Further, the class should not actually be
creatable. Rather a call to the static member method
GetInstance() should return a pointer to the singleton
instance, or create an instance and return the pointer
if current instance exists. Once this pointer is returned
methods can be called on the instance.

B. Updating the Map

The ProcessTask thread must be able to update the
map with new flow information. This involves:

• Checking to see if an entry for this flow already
exists in the Map

• Storing the timestamp in the map for the given hash
• Updating the last seen timestamp member variable
• Returning to the caller if the packet is for a new

flow

C. Garbage Collection

Periodically called by the Primary Thread to clean
entries from the Map. We need to loop through each
entry in the map, comparing the current time with the
last-seen timestamp and using the timeout threshold to
select which entries to cull. These entries must be placed
in a temporary list.

We then need to loop through the cull-list and actually
delete the entries from the map - a map cannot be
modified while we are iterating through it, hence the
two stage process.

CAIA Technical Report 070228C February 2007 page 7 of 8



The cull-list must now be used to formulate the End-
of-flow information to send to the Flow Classifier. An
appropriate data block must be constructed for each hash
in the map and queued to the Network Task for delivery
to the Flow Classifier on the next scheduled transmission.

D. Making it Thread-Safe

The FlowMap class should also contain a mutual
exclusion that is used within the method implementations
to lock access to the contained STL Map and other
shared member variables.

1) Updating a Flow: A Flow Hash and timestamp is
provided. The map is updated with the information and
TRUE is returned if the hash signifies a new flow. The
search through the STL map and the updating/addition
of the hash to the map must be protected with the mutual
exclusion.

2) Removing a Flow: The specified hash must be
removed from the STL Map, which must be protected
with the mutual exclusion.

3) Removing timed out flows: The mutual exclusion
need only exist when we are modifying the STL map
(i.e. during the second of the three stages of the garbage
collection process). It is not required to lock the mutual

exclusion when creating the cull-list nor when iterating
through this list to create End-of-flow messages to deliver
to the Classifier.

This approach ensures that the Process Task is able to
acquire the Mutual Exclusion to check and update flows
in the list while Garbage Collection is occuring

ACKNOWLEDGMENT

This work was supported from 2005 to early 2007
by the Smart Internet Technology Cooperative Research
Centre, http://www.smartinternet.com.au.

REFERENCES

[1] J. But et al., “ANGEL Architecture Document,” CAIA, Tech.
Rep. 070228A, February 2006, http://caia.swin.edu.au/reports/
050204A/CAIA-TR-050204A.pdf.

[2] Lawrence Berkeley National Laboratory, “TCPDUMP/LIBPCAP
Public Repository,” January 2006, http://www.tcpdump.org/.

[3] OpenBSD Community, “PF: Firewall Redundancy with CARP
and pfsync,” January 2007, http://www.openbsd.org/faq/pf/carp.
html.

[4] D. Schmidt, “The adaptive communications environment,” Jan-
uary 2007, http://www.cs.wustl.edu/∼schmidt/ACE.html.

[5] Centre for Advanced Internet Architectures, “NetSniff,” January
2007, http://caia.swin.edu.au/ice/tools/netsniff.

[6] J. But, “SocketCC,” January 2007, http://sourceforge.net/
projects/socketcc.

CAIA Technical Report 070228C February 2007 page 8 of 8

http://caia.swin.edu.au/reports/050204A/CAIA-TR-050204A.pdf
http://caia.swin.edu.au/reports/050204A/CAIA-TR-050204A.pdf
http://www.tcpdump.org/
http://www.openbsd.org/faq/pf/carp.html
http://www.openbsd.org/faq/pf/carp.html
http://www.cs.wustl.edu/~schmidt/ACE.html
http://caia.swin.edu.au/ice/tools/netsniff
http://sourceforge.net/projects/socketcc
http://sourceforge.net/projects/socketcc

	Introduction
	Flow Meter Requirements
	Key Restrictions
	System Configuration
	Local Configuration Information

	CARP Configuration
	Re-compile the kernel with the following options
	Configuration of the Flow Meter Master
	Configuration of the Flow Meter Backup


	Multi-Threaded Design
	Packet Capture
	Packet Processing
	Network Thread
	Primary Thread
	Inter-Thread Communication
	Development Tools
	Thread Implementation

	Capture Thread
	Singleton Class
	Construction/Initialisation
	Main Processing

	Packet Processing Thread
	Main Processing
	The Hash

	Network Thread
	Construction/Initialisation
	Main Processing

	Packet Parsing
	Parsing
	IP Addresses

	Flow Map
	Singleton Class
	Updating the Map
	Garbage Collection
	Making it Thread-Safe
	Updating a Flow
	Removing a Flow
	Removing timed out flows


	References

