
CAIA Technical Report 070122A January 2007 Page 1 of 7

Ping Estimation in Enemy Territory

Alex Shoolman1
Centre for Advanced Internet Architectures. Technical Report 070122A

Swinburne University of Technology
Melbourne, Australia

alexshoolman@gmail.com

1 The author was an undergraduate engineering student on a short-term internship at CAIA while writing this report

Abstract- This report analyses the round trip time

estimation of the multiplayer game Return to Castle
Wolfenstein: Enemy Territory. It describes the effect of
various changes in server side snapshot rates, server side tick
rates, as well as different round trip times added on the clients
end. Enemy Territory (ET) is a very popular First Person
Shooter (FPS) game even though it is quite old. The data that
was used was drawn from client computers and an ET Server
setup at The Centre for Advanced Internet Architectures
(CAIA). Although this server was private, the game play was
real with single and multiple players. We found that round trip
times are often over-estimated in ET by as much as 50ms, as
well as that the server side tick rates impact heavily on the
estimated delay times given to its clients.

Keywords- Enemy Territory, snapshot rates, tick rates, CAIA

I. INTRODUCTION

In most first person shooter (FPS) games such as
Enemy Territory (ET) [1], Half Life 2 [2] or Quake III
[3] you are able to establish how much delay is
between you and the server you

�

re playing on. This
paper

�

s goal is to determine, at least for ET, just how
accurate this given value is in respect to the real
network delay.

In most online FPS games the architecture involved
is a single server computer that is host to a number of
client computers. These clients all transfer their
current game commands at regular intervals to the
server. The server receives all the game commands
and calculates the game state according to various
rules built into the game such as gravity, other client

�

s
actions and so on. Once this game state is calculated it
is then transferred back to the clients. They accept it
and display it on the screen for the player to view.
Then the whole process repeats itself. The

�

ping
�

 value
or Round Trip Time (RTT) is what gives the client an
idea of how long it takes a packet to travel to the
server and back. If you are very far away from the
server or have a slow connection a ping time of, say
300ms might be observed. It would be safe to say that
the game play at this rate would be quite jerky, lag
sometimes and most likely un-enjoyable. On the other
hand if your computer is connected directly to the
server through a switch you can easily expect ping
times of <1ms. This will guarantee the smoothest
possible play for the computer your on.

The purpose of this report is to determine how

accurate this estimated ping value is in regards to the
actual measured network delay. It will investigate
what values are displayed when set, known network
delays are in place. It will also show what happens to
these values when certain in game variables are
altered. To be sure that the delay between the server
and client is constant and accurate, computers are set
up to simulate network delay by using a FreeBSD [4]
based module called dummynet [5]. Dummynet is able
to selectively control the bandwidth, packet loss rate
or delay value on any link.

This report firstly explains how to set up and
configure the network used to gather the data. This
includes steps on how to set up the bridge and firewall
computer as well as how to implement specific delay
times. It also gives some test results that back up the
findings in other reports [6] that show how accurate
the dummynet application is. The test bed used
includes four computers and a switch. One computer
acts as a bridge and also controls the delay limitations
throughout the tests. Another computer is set up to be
the ET Server whilst the other two computers are the
client computers.

There are four important variables that are altered
throughout sections three and five that can be
confusing. Below they are listed and explained clearly.

• Kernel tick rate - The actual tick rate that the
kernel runs at. (default of 1000Hz)

• ET Server tick rate - The tick rate that the ET
game server runs at. (default of 50ms)

• ET Server snapshot rate - The rate at which the
ET game server sends out game state updates.
(default of 50ms)

• Client side command rate � The upper limit at
which the client sends its game data to the
server. (default of 33.3ms)

Section three shows the results for the effect that
altering the kernel tick rate has on the ping value. It is
changed from 100Hz to 1000Hz in order to see if it
impacts on the estimated ping value in ET.

Section four shows results for the various induced
time delays on the client

�

s side. The set delay between
the server and the client is changed to different values
to simulate a client that is physically further away, or
that has a slower connection to the server. With the

CAIA Technical Report 070122A January 2007 Page 2 of 7

various delays in place the ping estimation value is
monitored to see if the server gives better or worse
estimations based on the different delay time.

Section five shows the results regarding to the
altering of the server side snapshot rate as well as
altering the client side command rate. The final section
draws conclusions based on the previous three
sections.

II. SETTING UP THE NETWORK AND GATHERING DATA

A. Setting up the bridge and firewall computer.

First the bridge and firewall computer were set up.
FreeBSD 6.1 [7] was installed onto a computer that
had two network cards. The bridge [8], ipfw [9] and
dummynet modules were loaded into the kernel using
the following commands.

> kldload bridge
> kldload ipfw
> kldload dummynet
Modules are dynamically loaded software libraries

that interface with the kernel in order to add certain
abilities to the computer. The bridge module for
instance adds the ability to act as a bridge between two
networks. Next bridging was enabled so that the two
networks could communicate. This was done by
setting the sysctl values.

> sysctl net.link.ether.bridge_cfg=
�

sis0,fxp0
�

> sysctl net.link.ether.bridge.enable=1

The
�

sis0, fxp0
�

 represents the name given to the two
interfaces, in this case a Sis 900 10/100Base Tx (sis0)
onboard network card and an Intel 82550 Pro/100
(fxp0) network card. The

�

1
�

 instructs the system to
enable the bridging ability. These sysctl values are
configuration options used within FreeBSD and are
required for the bridging, ipfw and dummynet
application to function properly. Once these two sysctl
values were set ipfw was enabled by entering the
following commands:

> sysctl net.link.ether.ipfw=1
> sysctl net.link.ether.bridge.ipfw=1

The first command enables ipfw whilst the second
enables ipfw to work in conjunction with the bridge.
This is so that it not only connects two networks
together, but also can act as a bandwidth limiter or
delay inducer on that connection. The dummynet
application was then enabled with the following
commands. These were to allow data and ping
commands to go to and from the ET Server during the
tests.

> ipfw add 102 pipe 1 ip from 136.186.229.252 to any
> ipfw add 103 permit icmp from any to any
> ipfw pipe 1 config bw 0 delay 0 plr 0

This last command was altered throughout the tests to
set specific delay values on the data going to and from
the ET Server. If a delay of 60ms was required the

command was re-entered as:

> ipfw pipe 1 config bw 0 delay 60 plr 0

B. Setting up the Enemy Territory Server.

The ET Linux Server edition of ET was installed so
that the computer could act as the main ET Server for
the testing. The file to do this was:

et-linux-2.56-2.x86.run [10]

Once downloaded, it was executed with the following
command.

> ./et-linux-2.56-2.x86.run

Once uncompressed, the installation was finished
using the user directory under the folder name /enemy-
territory. To make sure that the Server contained the
most up to date code the following update file was
applied:

et-linux-2.60-update.x86.run [11]

Once downloaded this was executed with the
following command.

> ./ et-linux-2.60-update.x86.run

After a system restart, Gmod 1.2 was installed so that
the server

�

s recordings could be more easily extracted
for analysis. Gmod 1.2 is a program that extracts the
estimated ping times produced by the ET Server and
then generates ping histograms. [12]

C. Setting up the Enemy Territory Clients.

 Windows XP was the operating system used
on the client

�

s computers. In order for them to play ET
they had the following file installed:

 WolfET.exe [13]

Once through the (easy to follow) installation guide
the patch was applied to bring the clients up to the
same version as the server as well as assure that the
most up to date code is used. The file below was
installed to do just this.

 ET_Patch_2_60.exe [14]

Once both clients were set up with windows and ET
they were connected to the rest of the network as
shown in Figure 1.

CAIA Technical Report 070122A January 2007 Page 3 of 7

Figure 1: Network setup of server, clients and
bridge/firewall.

This setup was then altered for the
experiments in section five. When ET detects that the
server and client are both on the same subnets, such as
in the setup in Figure 1, it overrides the cl_maxpackets
variable. In order to control this variable the set up
was slightly altered so that the bridge became a router.
Also in section five experiments only, one client was
used instead of two. As shown in Figure 2, the server
and client are on different networks and hence the ET
Server does not change the cl_maxpackets variable
automatically.

Figure 2: Network setup of server, clients and
router/firewall.

D.Gathering Data.

 The gathering of data was done on the ET
Server computer. The Gmod 1.2 program was used to
gather the ping times estimated by the ET server. The
ping and tcpdump commands were also used to help
analyse packet inter arrival times. This was to make
sure the settings on the ET client

�

s were correct.
Tcpdump is a program that allows packet sniffing of
the network. Large amounts of information can be
gathered about general network activity, as well as
specific computer-to-computer activity. The tcpdump
and ping reports provided a contrast by letting us see
what a standard ping and tcpdump returns as the
network delay and what the ET server ping estimation
returns. In all the tests, information from one client
only was used from the generated log files. The reason
two clients were used but only one client

�

s data was
analysed was to try and simulate real game
experiences. In all tests the entire game was used as

data with bucket sizes of 1 and 2ms used.

 Game lengths were very short, ranging from 5
minutes, 26 seconds to 18 minutes, 18 seconds. There
were only ever up to two players connected, however
they emulated real in game action as much as possible
by completing tasks for that map, picking up items and
killing one another. Other tests could be done with
multiple clients connected from different locations and
for over a longer period of time in order to increase the
amount of data and hence its accuracy. This would
also give it a much closer approximation to real life
game play. However it was not our intention to do a
full-scale test, this was simply an initial look into how
ET estimates its client ping time based on limited
game play

 Initial tests were done to calibrate and
determine the delay caused by having the
bridge/firewall computer on the network. To do this,
four tests were performed, each time with 100 pings at
1-second intervals:

Network Setup: Median
Ping Time

ET Server connected to ET Client via crossover cable. 0.2270ms

ET Server connected to ET Client through bridge. No
ipfw enabled.

0.3265ms

ET Server connected to ET Client through bridge. Ipfw
and dummynet enabled but with no pipe or delay
values.

0.3085ms

ET Server connected to ET Client through bridge. Ipfw
and dummynet enabled as well as a 500ms delay.

500.13ms

Table 1: Various delays recorded from the bridge/firewall
computer.

Figure 3:CDF of first three tests indicated in Table 1.

Cumulative Distribution Function Of Testbed Calibration
No Delay, 100 Pings, 1 Second Apart

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Ping Time (ms)

P
er

ce
nt

ag
e

No Bridge

With Bridge

With Bridge + Dummynet

CAIA Technical Report 070122A January 2007 Page 4 of 7

Figure 4:CDF of the last tests indicated in Table 1.

As Table 1, Figure 3 and Figure 4 show, the
difference between having a bridge and firewall and
not having one was minimal. Delays caused by having
the bridge/firewall computer in between the ET Server
and the ET Client are below the one millisecond mark.
The main part of this one millisecond delay comes
from the bridge computer having to receive and
analyse the packet. It then has to apply the appropriate
delay, packet loss or bandwidth restrictions before re-
transmitting. This process requires a number of CPU
cycles for each packet that is analysed, and therefore
increases the ping time between the two computers.

This error can be seen in the gradual build up of the
round trip times in Table 1. As more and more layers
are added, it takes more and more time for the
computer to process each packet and thus adds to the
overall delay. All four tests in Table 1 give a clear
indication that measurements taken may be off by up
to

�
1ms. The ping of a client in a FPS game may vary

a lot more than 1ms due to various demands that are
placed on the computer, for example when large
groups of clients are all in the one field of view. Due
to this, if a delay is set using dummynet, for example
10ms, the actual delay is anywhere from 9ms to 11ms
when you add the additional uncertainty of dummynet.

III. KERNEL TICK RATE

To simulate a
�

far away client
�

, the bridge was
configured to have a set delay of 73ms in one direction
only. The ET Server computer was set to different
kernel tick rates for each test; one at 100Hz and the
other at 1000Hz. This was done by adding the
following to the bottom line of the /boot/loader.conf
file and then restarting the machine.

kern.hz=
�

1000
�

 or kern.hz=
�

100
�

After restarting, the ET server was started with the
following command. Two clients connected, both
playing two times. The first was for 10 minutes at
100Hz tick rate and the other for 18 minutes at
1000Hz.

> ./etded +set dedicated 2 +set fs_game etpro
+setsv_punkbuster 1 +set net_port 27960 +exec
server.cfg +set fs_homepath 27960 +set fs_game
etgmod

When starting up the ET Server with the above
command, a few extra things where added to do such
things as enable punkbuster � an add-on to stop clients
from cheating � set the path of the log file and to
enable the Gmod 1.2 program. The two separate tests
where then analysed using the Gmodstat [15] program.
This takes the outputted log files from the ET Server
and converts them into a histogram (see Figure 5).

Figure 5: Average ping estimate as recorded by etgmod on
the ET Server for different Server tick rates.

As shown in Figure 5, with the kernel set to
1000Hz the ET Server had a much more accurate
estimate as opposed to the 100Hz setting. Although in
both cases some readings occurred at the 88ms mark,
most appeared to be at exactly 98ms. This represents
an over estimation as the set delay could not have been
any more than 73ms

�
1ms.

IV. ARTIFICIALLY CREATED CLIENT SIDE DELAYS.

The initial delay in section III was set and
verified (via tcpdump and ping commands at both
ends) to be 73ms

�
 1ms. The ET Server ping estimate

however displayed major peaks at around 98ms. To
check that this wasn

�

t simply a specific delay setting
that

�

broke
�

 the estimation code, three more short
games were completed at the 1000Hz setting but with
varied delays. There was a 33ms, 76ms and 133ms
delay programmed into dummynet and tested via ping
and tcpdump. The aim was to find some common
trend as to how the ET Server estimated the packet
round trip time as a function of actual network induced
delay time.

100/1000Hz Tick Rate At 73ms Delay

0

10

20

30

40

50

60

70

80

90

100

70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 10
0

10
2

10
4

Ping Time (ms)

Pe
rc

en
ta

ge

1000Hz

100Hz

Cumulative Distribution Function Of Testbed Calibration
500ms Delay, 100 Pings, 1 Second Apart

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

49
9.3

49
9.4

49
9.5

49
9.6

49
9.7

49
9.8

49
9.9 50

0
50

0.1
50

0.2
50

0.3
50

0.4
50

0.5

Ping Time (ms)

P
er

ce
n

ta
g

e

With Bridge + Dummynet +
500ms Delay

CAIA Technical Report 070122A January 2007 Page 5 of 7

Figure 6: Average ping estimate as recorded by etgmod on
the ET Server for different delay times.

The difference between the actual delay
between the two computers and the estimated delay
given to the client by the ET Server varies as shown in
Figure 6. Both 33ms and 133ms were 15ms

�
1ms off

from their configured delay values. Whilst for the
76ms delay case, we saw a 22ms

�
1ms difference. It is

clear from this that the estimation given by the ET
Server can be at least 22ms off what the actual
network delay is. This could be investigated further by
determining how exactly the code estimates the ping
time and thus, where the break down occurs.

V.SERVER/CLIENT SIDE SNAPSHOT/CMD RATES.

The last variables to be tested were the server
side snapshot rate and client side command rates. Both
were changed separately whilst ping times were
estimated by Gmod 1.2. The tests were conducted with
only one client and were all completed over a short
game time of roughly 10 minutes. The ping
estimations were then analysed by Gmodstat.

 In all the Snaps = 10 scenarios the artificial
delay was turned off and packets were allowed to
propagate at their maximum rate with only the bridge
in between for monitoring purposes. In the Snaps = 20
cases the artificial delay was set to 60ms. If the delay
is set to 0ms, Gmod 1.2 doesn

�

t record any ping values
as it records 0ms for too long and dismisses them as
errors.

During the tests the network traffic was
monitored with tcpdump, and the PPS rates were
extracted using pkthisto [16]. Results shown in Figure
7 indicate that when set to a specific value, the
snapshot rate is very consistent with that value. It is
also worth mentioning that because of the ET Server
tick rate, you may only set the snapshot rate to 10, or
multiples of 10. If you set it to anything outside this it
will be rounded down to best fit. For example, if we
choose a snapshot rate of 19, you will see the same
results as shown for snaps = 10.

Figure 7: The packet per second readings for different
server snapshot rates.

Figure 8: ET �s ping estimation times as recorded by etgmod

on the ET Server for different snapshot rates.

 In Figure 8, it is clear that when the ET Server
snapshot rate is set to 10 instead of its default 20, an
approximate 50ms was added to the ping estimation.
The jagged form of the Snaps = 10 distribution shows
that ping times of specific values never occur.
Although they both have peaks, the Snaps = 10 case
has distinct values that report 0% pings at specific
times.

Figure 9: Average ping estimate as recorded by etgmod on
the ET Server for different client side cmd rates.

Snaps = 10 (Delay 0ms). Snaps = 20 (Delay 60ms)

0

5

10

15

20

25

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00

10
00

0

11
00

0

12
00

0

Number of Packets

P
ac

ke
ts

 P
er

 S
ec

o
n

d

Snaps = 20

Snaps = 10

Different Snaps Values, cl_maxpackets = 30, Delay = 0ms
(Snaps = 10) and 60ms (Snaps = 20)

0

5

10

15

20

25

30

35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73

Ping Time (ms)

P
er

ce
n

ta
g

e

Snaps = 20

Snaps = 10

Different Delay Values At 1000Hz

0

10

20

30

40

50

60

70

80

90

30 38 46 54 62 70 76 84 92 10
0

10
8

11
6

12
4

13
2

14
0

14
8

Ping Time (ms)

P
er

ce
nt

ag
e

33ms Delay

76ms Delay

133ms Delay

Different cl_maxpackets values, Snaps = 10, Delay = 0ms

0

5

10

15

20

25

30

35

40

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
Ping Time (ms)

P
er

ce
n

ta
g

e

cl_maxpackets = 20

cl_maxpackets = 30

cl_maxpackets = 40

cl_maxpackets = 50

CAIA Technical Report 070122A January 2007 Page 6 of 7

The cl_maxpackets variable is the limit (in
packets per second) that the client sends command
packets to the server. This is also called the client side
command rate. In Figure 9 the server side snapshot
rate was 10. The various values assigned to
cl_maxpackets changes the ping estimation of the ET
Server quite a lot. In addition to the cl_maxpackets
variable there was also another variable called
com_maxfps which set an upper limit on the number
of frames per second (FPS) that the clients computer
could generate. This variable, if set below the
cl_maxpackets variable, would limit the packets per
second rate from the client to the server. Due to this
finding, the variable com_maxfps was set to its default
value of 85 (frames per second) for all of the tests. As
cl_maxpackets never exceeded this value there was no
problem. There was no actual network delay during
this test.

The next test was done at a snapshot rate of 20
and an artificial delay of 60ms was put in between
because otherwise the Gmodstat program did not
identify

�

active play
�

 as the ping time was 0ms for far
too often.

Figure 10: Average ping estimate as recorded by etgmod on
the ET Server for different cl_maxpacket rates (snaps = 20)

As shown in Figure 10, the altering of
cl_maxpackets creates some deviance in the ping
estimation. Based on these results and the ones with
Snaps = 10, it is hard to say exactly what effect
changing the client side command rate has on the ping
estimation. In the Snaps = 20 case shown in Figure 10
we seem to see that as the cl_maxpackets value
increases, the ping estimation gets further and further
off its actual value. However in the Snaps = 10
scenario as the cl_maxpackets values go up the ping
estimations sometimes get closer to their true values.

To make sure that the values being set with the
cl_maxpackets did actually correspond to the clients
PPS rate a graph was plotted similar to Figure 7,
mapping out the recorded PPS rates for each test done
by tcpdump. Shown in Figures 11 and 12, it is quite
clear that the client side PPS rate isn

�

t as precise as the
server side snapshot rate graph in Figure 7.

Figure 11: Different PPS rates for each client side
cl_maxpackets value. Snaps = 10, Delay = 0ms.

Figure 12: Different PPS rates for each client side
cl_maxpackets value. Snaps = 20, Delay = 60ms.

Over the course of both of the tests shown above in
Figures 11 and 12, it was clear that although
reasonably steady, the PPS rates do not match the set
cl_maxpackets rate. The actual measured PPS rate was
off by 2-12 PPS from the desired rate. These tests
were also conducted, as indicated by Figure 2, in an
isolated network with the server and client being on
completely different networks. This was to avoid the
ET Server from overriding the cl_maxpackets value
we set due to the server and client being on the same
network.

It is clear that in each different test, as we increased
the cl_maxpackets value the PPS rate increased as
well. Although the PPS values don

�

t match the values
we set, we can still see what happens to the estimated
ping time (Figures 9 and 10) as the cl_maxpackets rate
increases. With a server side snapshot rate of 10 we
can see that the ping estimation in Figure 9 jumps all
over the place. It is not at all like Figure 10 where as
the cl_maxpackets rate increases steadily, so does the
ping estimation time. Figure 9 seems to follow this
trend until cl_maxpackets hits 40 where upon this, it
changes the ping estimation to something lower than
before.

Different cl_maxpackets values. Snaps 10, Delay 0ms

0

5

10

15

20

25

30

35

40

45

0
15

00
30

00
45

00
60

00
75

00
90

00

10
50

0

12
00

0

13
50

0

15
00

0

16
50

0

18
00

0

19
50

0

21
00

0

22
50

0

24
00

0

Number Of Packets

P
ac

ke
ts

 P
er

 S
ec

o
n

d

cl_maxpackets = 20

cl_maxpackets = 30

cl_maxpackets = 40

cl_maxpackets = 50

Different cl_maxpackets values. Snaps = 20, Delay = 60ms

0

5

10

15

20

25

30

35

40

45

50

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0

17
00

0

18
00

0

19
00

0

20
00

0

21
00

0

22
00

0

Number Of Packets

P
ac

ke
ts

 P
er

 S
ec

o
n

d

cl_maxpackets = 20

cl_maxpackets = 30

cl_maxpackets = 40

cl_maxpackets = 50

Different cl_maxpackets Values for Snaps = 20, Delay = 60ms

0

5

10

15

20

25

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Ping Time (ms)

P
er

ce
n

ta
g

e

cl_maxpackets = 20

cl_maxpackets = 30

cl_maxpackets = 40

cl_maxpackets = 50

CAIA Technical Report 070122A January 2007 Page 7 of 7

VI. CONCLUSION

This paper gives a detailed analysis of the ping
estimation generated by an Enemy Territory Server
when different variables are changed. Data was
gathered within CAIA using networked computers to
simulate real world scenarios. One computer was
altered to perform as a bridge and produce artificial
delays. The estimation code that is used to give round
trip times back to the clients was found to be different
to the RTT that was set on the bridge computer. These
differences were based on the actual network path
delay. Other set values were also found to be added to
the round trip times when certain variables were
changed such as the server side snapshot rate.

Also shown was the effect that the tick rate of the
computer running the ET Server has on the estimated
RTT. As the tick rate in hertz increases, the server is
more able to single in on the RTT. However, this
result is often still incorrect due to errors in the actual
estimation code.

Additional tests were done to analyse the effects of
what happens when you changed the client side
command update rate or the server side snapshot rate.
These indicated that changing the server side snapshot
rate to 10 instead of its default 20, caused the server

�

s
RTT measurement to be overestimated by about 50ms.
Increasing the client side command rate gave the
impression that the ping estimation was also increased
as well. However there is also evidence to discount
this in the case of Figure 9. Changing the client side
command rate does alter the ping estimation, however
in exactly what way cannot be stated without
performing more detailed tests.

An investigation into how exactly the ET Server
generates its RTT estimates would be needed to
identify the reasons as to why it adds additional values
to its estimation of the RTT. An increased number of
clients that play for more time and are actually large
physical distances away from the server would also
add to making the analysed data more accurate to real
online game play.

ACKNOWLEDGMENTS

Thanks go to the CAIA members who gave up their
time to participate in playing Enemy Territory.

REFERENCES
[1]

�

Return to Castle Wolfenstein: Enemy Territory”, activision main
website, http://games.activision.com/games/wolfenstein/.

[2]
�

Half-Life 2", Valve main website,
http://www.valvesoftware.com/projects.htm.

[3]
�

Quake 3
�

, idSoftware main website, http://www.idsoftware.com/.

[4] FreeBSD 6.1, main website, http://www.freebsd.org/.

[5] Dummynet,
http://www.freebsd.org/cgi/man.cgi?query=dummynet&sektion=4

[6] Vanhonacker,W. A.,
�

Evaluation of the FreeBSD dummynet network
performance simulation tool on a Pentium 4-based Ethernet Bridge

�

,
(http://caia.swin.edu.au/reports/031202A/CAIA-TR-031202A.pdf).

[7] More information pertaining to the installation of FreeBSD can be
found at this web site, Chapter 2 Installing FreeBSD of, the FreeBSD
Handbook: http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/install.html.

[8] More information on bridge and its abilities can be found at this web
site, FreeBSD Man Pages, Bridging Support:
http://www.freebsd.org/cgi/man.cgi?query=bridge&apropos=0&sekti
on=0&manpath=FreeBSD+6.1-RELEASE&format=html (as of Sept
2006).

[9] More information on ipfw and its abilities can be found at this web
site, FreeBSD Man Pages, IP firewall and traffic shaper control
program
http://www.freebsd.org/cgi/man.cgi?query=ipfw&apropos=0&sektion
=0&manpath=FreeBSD+6.1-RELEASE&format=html (as of Sept
2006).

[10] This install file for the Linux version of ET can be found here,
FilePlanet http://www.fileplanet.com/124801/120000/fileinfo/Return-
to-Castle-Wolfenstein:-Enemy-Territory-Client-v2.60-
%5BLinux%5D (as of Sept 2006).

[11] This update file may be downloaded from here, FilePlanet,
Wolfenstein: Enemy Territory v2.60 Patch:
http://www.fileplanet.com/126607/120000/fileinfo/Wolfenstein:-
Enemy-Territory-v2.60-Patch-%5BLinux%5D (as of Sept 2006).

[12] More information and instructions on how to install the Gmod 1.2
program can be found here, The CAIA Website, Gmod Overview:
http://caia.swin.edu.au/genius/tools/gmod/ (as of Jan 2007)

[13] This install file for the client, Windows version of ET can be found
here, FilePlanet, Wolfenstein: Enemy Territory Client v2.6:
http://www.fileplanet.com/124800/120000/fileinfo/Return-to-Castle-
Wolfenstein:-Enemy-Territory-Client-v2.6 (as of Sept 2006).

[14] This patch file can be downloaded from this website, FilePlanet,
Wolfenstein: Enemy Territory 2.60 Patch:
http://www.fileplanet.com/130185/130000/fileinfo/Wolfenstein:-
Enemy-Territory-2.60-Patch (as of Sept 2006).

[15] Gmodstat download: http://caia.swin.edu.au/genius/tools/gmodstat-
0.2.1.tar.gz (as of August 2006).

[16] Information on pkthisto available here, CAIA Tools, pkthisto main
page: http://caia.swin.edu.au/genius/tools/pkthisto/ (as of January
2007)

