
CAIA Technical Report 060707A July 2006 page 1 of 9

Minimally Intrusive Round Tr ip Time
Measurements Using Synthetic Packet-Pairs

Sebastian Zander*, Grenville Armitage*, Thuy Nguyen*, Lutz Mark+, Brandon Tyo*
Centre for Advanced Internet Architectures (CAIA). Technical Report 060707A

Swinburne University of Technology
Melbourne, Australia

{ szander,garmitage,tnguyen,btyo} @swin.edu.au, mark@fokus.fraunhofer.de

* Centre for Advanced Internet Architectures, Swinburne University, Melbourne Australia
+ Autonomic Networking Technologies, Fraunhofer FOKUS, Berlin, Germany

Abstract- In this paper we descr ibe a passive technique for
round tr ip time (RTT) estimation called Synthetic Packet-Pairs
(SPP). Regular and frequent measurement of round tr ip time
(RTT) between points on the Internet is becoming increasingly
important for a range of highly interactive real-time applications.
Active probing techniques are possible but problematic. The
extra packet traffic imposed by active probes along a network
path can modify the behaviour of the network under test. In
addition, estimated RTT results may be misleading if the
network handles active probe packets differently to regular IP
packets. In contrast, SPP provides frequently updated RTT
estimates using IP traffic already present in the network. SPP
estimates the RTT between two measurement points without
requir ing precise time synchronisation between each point. SPP
accurately estimates the RTT exper ienced by any application’s
traffic without needing modifications to the application itself or
the routers along the path. In addition, SPP works with
applications that do not exhibit symmetr ic client-server packet
exchanges (such as many online multiplayer games) and
applications generating IP multicast traffic. Given the popular ity
of 802.11 Wireless LANs, and their sensitivity to the load
imposed by active probing schemes, we exper imentally
demonstrate the advantages of SPP in a small 802.11b test bed.

Keywords- Minimally Intrusive, Passive measurement, Round
Trip Time, RTT, Delay.

I. INTRODUCTION
It is becoming increasingly important for service

providers to monitor and manage the network-level
round trip time (RTT) experienced by highly interactive
applications. This is not simply voice or video over IP.
The emergence of popular, multiplayer online games
(for example, the latency-sensitive first person shooter
(FPS) genre [1][2]) and mission-critical business
applications provides ISPs with motivation to know
precisely how their network paths are behaving.
Measuring the time-varying RTT actually experienced
by an application is a substantial challenge. It is
particularly challenging if the RTT fluctuates more
frequently than you can sample the path, or you do not
have complete access to every hop of the path over
which your application is running.

One common approach involves actively probing the
path. Extra packets are injected into the network and
their transit times used to estimate (sample) network
delay at the instant each active probe was sent. A path’s
RTT is calculated by summing the actively measured
delay in each direction. However, active probe traffic
adds a finite, non-negligible load on the network itself
(proportional to the probing or sampling rate) and certain
types of active probe packets may not experience the
same per-hop delays as the IP packets belonging to
regular applications [3].

Another approach is passive measurement. This
involves measuring the delay experienced by traffic
already present in the network, and thus does not add
extra load on the network. One technique measures one-
way delay (OWD) by noting the time it takes an
arbitrary packet to transit between two precisely
synchronised measurement points [4-6]. Another
technique directly estimates RTT at a single
measurement point from the time it takes for an
application’s request packet in one direction to be
answered by a matching (and expected) response packet
in the return direction [7-9].

In this paper we introduce synthetic packet-pairs
(SPP). SPP is a novel passive measurement technique
that:

• Estimates RTT between two passive
measurement points on the network, using traffic
already flowing between the two measurement
points.

• Does not require precise synchronisation between
the clocks at each measurement point.

• Does not require symmetric or triggered request-
response behaviour from the application-driven
traffic being used to sample the network path.

• Effectively ‘samples’ the RTT as frequently as
packet pairs occur between the measurement
points.

• Is minimally intrusive because no changes are
required to IP packet contents or application-
layer payloads between the measurement points.

CAIA Technical Report 060707A July 2006 page 2 of 9

SPP has applications wherever the network under test
may be sensitive to additional load (ruling out active
probing) or synchronised measurement points are
unavailable (for reasons of cost or real-world
deployment issues). SPP is also advantageous where on-
going RTT estimates are desired for jitter estimation,
particularly for interactive applications that do not
generate precisely symmetric request-response packet
pairs.

Although SPP is link layer-agnostic, we conclude this
paper with an illustration of SPP being used to estimate
RTT across a small 802.11b Wireless LAN (WLAN) test
bed. WLANs are problematic in general because they
are (in various forms) being increasingly asked to carry
interactive traffic and yet they are highly sensitive to the
load potentially imposed by active probing schemes
[10]. We first illustrate the benefits of SPP relative to
active probing when the WLAN is carrying heavy TCP
traffic. Then we demonstrate the use of SPP to measure
RTT experienced by an application whose client-server
traffic patterns are asymmetric (an online first person
shooter computer game).

Our paper is organized as follows. Section II
discusses related active and passive measurement work.
Section III presents our SPP algorithm. Section IV
discusses sources of RTT estimation error and some
issues associated with realistic deployment of SPP
implementations. Section V illustrates the benefits of our
approach in the context of a live WLAN. Section VI
concludes and outlines future work.

II. ACTIVE VS. PASSIVE MEASUREMENTS
Before introducing SPP we summarise the key

attributes of existing active and passive RTT
measurement schemes.

A. Active Measurements

Active measurements involve the controlled injection
of extra traffic into the network and monitoring of the
network’s subsequent behaviour. Traffic may be injected
with various patterns adapted to specific measurement
objectives and to emulate particular applications. For
example, single packets may be injected with uniform
spacing in time or short bursts of packets may be
injected with varying packet sizes and inter-packet
intervals within the burst. Unfortunately, active
measurement has a number of disadvantages. The
network may treat active probes differently (leading to
unrepresentative measurements) and many tools fail to
emulate realistic application traffic patterns. For
example, people frequently use ‘ping’ as a simple active
measurement tool even though routers often handle
ICMP packets in their slow path (leading to
overestimation of RTT) [3].

Active measurements also generate additional load
on the network. This load can alter the network’s overall
behaviour and performance during the measurement
period. Unfortunately, the more precisely you wish to
track latency variations the more frequently you must
inject active probe packets into the network. This
induces further deviations in the characteristics of the
network under test. Active probing is particularly

problematic over link technologies such as 802.11
WLANs, where modest loads in packets per second are
known to cause noticeable degradation of service (even
when the additional active probing load is low when
measured in bits/second).

B. Passive Measurements

In contrast, passive measurements utilise traffic
already in transit across a network. Delay is measured as
experienced by the application whose packets are being
monitored, and the network is not influenced by
additional injected traffic. Two classes of passive delay
measurements have been previously described in the
literature.

Passive one-way delay (OWD) measurements (e.g.
[4], [5] and [6]) require the observation of individual
packets passing between two measurement points. OWD
in each direction is calculated directly from the times at
which a given packet passes each measurement point. A
major challenge for OWD is the need for precisely
synchronised time stamping clocks at each measurement
point. Synchronisation is required to compensate for
drifting of one measurement point’s clock relative to the
other. The challenge arises when each measurement
point is in a separate room, city or even country. A
simple approach would be to use the network time
protocol (NTP). NTP is often accurate to 1ms, but can be
far worse subject to network conditions and NTP server
outages [11]. Precise, distributed synchronisation
typically uses GPS. However, the cost of infrastructure
(such as connecting all measurement points to external,
roof-mounted GPS antennas) can make this a difficult
choice.

Techniques for measuring OWD without accurate
clock synchronisation have been proposed [12], but the
approach requires a modification of routers along the
path and thus cannot be easily deployed on existing
operational infrastructure. A proposal to achieve high
timing accuracy of PC end hosts without GPS is
proposed in [13]. This technique provides highly
accurate clock rate synchronisation but not absolute time
synchronisation (for which the author’s simply suggest
NTP).

A number of techniques have also been proposed for
estimating RTT at a single measurement point [7], [8]
and [9]. RTT is calculated from the time between a
request packet being seen heading towards a distant
server, and a matching reply packet coming back from
the same server. Request/response packet-pairs are
matched based on well-known fields in the packet
header or payload (e.g. sequence numbers in TCP or
ICMP echo packets). Such techniques are limited to
scenarios where a request packet in one direction
‘ instantly’ triggers a uniquely identifiable response
packet in the return direction. Error is introduced into the
estimated RTT if response packets are delayed – either
due to application layer processing on the server or due
to packet loss and retransmission.

Single measurement point techniques are limited by
the fact that two-way traffic does not always exhibit
identifiable or actual request/response behaviour. An
application layer protocol’s packet syntax may not

CAIA Technical Report 060707A July 2006 page 3 of 9

include enough information to actually match
request/response pairs. Alternatively, the application’s
client and server communication may also have no
particular temporal relationship between packets flowing
from client to server and vice versa. For example,
common multiplayer FPS games emit packets in each
direction asynchronously, at different rates and with
unpredictable intervals (of up to 10s of milliseconds)
between packets in each direction [14]. Single
measurement point RTT estimates under such
circumstances would fluctuate as the apparent server
response time varied unpredictably.

III. PASSIVE RTT MEASUREMENT WITH SYNTHETIC

PACKET-PAIRS
Our synthetic packet-pairs (SPP) approach strikes a

middle ground. SPP estimates RTT (rather than OWD)
using application-independent packet flow statistics
gathered passively at two independent measurement
points. SPP samples the path at a frequency proportional
to the rate at which the application sends and receives
packets (thus providing a detailed record of latency
fluctuations over time). Unlike previous OWD schemes,
SPP does not require precise synchronisation between
each measurement point. Unlike previous single
measurement point schemes, SPP functions quite well
using two-way packet traffic generated by applications
that lack symmetric request/response behaviour. SPP is
minimally intrusive in that it does not modify or delay
packets passing between the measurement points.

In this section we describe the matching of packets
seen at both measurement points and the identification of
appropriate packet-pairs for RTT estimation. Section IV
discusses sources of RTT estimation error and some
issues associated with realistic deployment of SPP
implementations.

A. Two-point Measurements and Packet Matching

Figure 1 illustrates the basic SPP architecture (based
on the OWD measurement techniques proposed in [4],
[5] and [6]). SPP estimates the RTT between two
measurement points (MP1 and MP2), which must be
located so that the network traffic of interest traverses
both measurement points. MP1 passively records the
passing of packets heading towards MP2 (for example,
monitoring packet traffic using mirrored ports on a
switch or in-line network taps). MP2 performs the same
action for packets heading towards MP1.

MP1 and MP2 independently log two things for
every recorded packet: (a) the time at which the packet
was seen, and (b) a short ‘packet ID’ calculated from a
hash function (e.g. CRC32) across key bytes within the
packet (rather than store copies of each entire packet).
To uniquely represent a packet that has passed both MP1
and MP2 the packet ID (referred to from now on as
<pkt_id>) is based on portions of a packet that are
invariant during transit between MP1 and MP2 but vary
between different packets.

Each measurement point accumulates a list of
<pkt_id,timestamp> pairs based on the captured packets.
These two lists are then brought together to create the

packet-matched lists we ultimately use for packet-pair
identification and RTT calculation. Figure 1 shows the
<pkt_id,timestamp> lists being combined at a third
location via an out-of-band link. If this link is a physical
link or logically isolated channel sharing the same
underlying infrastructure as the IP path being monitored
the <pkt_id,timestamp> pairs may be brought together
as they are generated, allowing near real-time estimation
of RTT. If no external link is available,
<pkt_id,timestamp> pairs may be stored at each
measurement point for later transfer across the network
being measured (e.g. during an off-peak period when the
application of interest is not being used).

To describe the packet-matching algorithm we define
MP1 as the ‘ reference point’ and MP2 as the ‘monitor
point’ . Two input streams Imon and Iref represent
<pkt_id,timestamp> pairs from packets captured at the
monitor and reference points respectively. A queue Qref
is used to buffer <pkt_id,timestamp> pairs from packets
captured at the reference point and not yet detected at the
monitor point.

The algorithm processes packets from Imon in the
order of their arrival at the monitor point. For each
packet Pcur captured at the monitor point we search for a
packet with the same <pkt_id> captured at the reference
point. The algorithm first checks if the packet is found in
the packet queue Qref. If the packet is not found in the
queue new packets are read from Iref into the queue until
a packet matches or the maximum queue length is
reached or the packets timestamp differs more than Tdelta
from the timestamp of Pcur. (The use of Tdelta is discussed
further in section IV.B) Before the next packet of Imon is
processed the packets of Qref are checked against Tdelta.
All packets whose timestamp differ more than Tdelta from
the timestamp of Pcur are considered to be lost packets
and removed from the packet queue Qref. The loss
calculation does not start before the first packet matches.

The result is a list of <pkt_id,timestamp_1,
timestamp_2> tuples, representing the time a packet
from MP1 to MP2 was seen at MP1 and MP2
respectively. The same packet matching algorithm is
also run with the directions reversed to construct a list of
<pkt_id,timestamp_2,timestamp_1> tuples, representing
the packets that were seen flowing from MP2 to MP1.

B. Packet Pair Search and RTT Computation

The primary novel contribution underlying SPP is
our technique for identifying packet pairs in the absence
of any explicit request/response association between the

pkt_id.
0

delay

pkt_id, timestamp_1 pkt_id, timestamp_2

Measurement
Point 1

Measurement
Point 2

Delay Calculation

Network

pkt_id.
0

delay

pkt_id.
0

delay

pkt_id.
0

delay

pkt_id, timestamp_1 pkt_id, timestamp_2

Measurement
Point 1

Measurement
Point 2

Delay Calculation

Network

pkt_id, timestamp_1 pkt_id, timestamp_2

Measurement
Point 1

Measurement
Point 2

Delay Calculation

Network

Figure 1: Packet Matching and Delay Computation

CAIA Technical Report 060707A July 2006 page 4 of 9

packets in each pair. SPP then calculates the RTT in a
manner that does not require synchronisation between
each measurement point.

To explain our packet-pairing algorithm we first
define a timestamp as t<point><pkt> where <point> is the
indices of the measurement point (1 or 2) and <pkt>
refers to the packet number (whether it is the first (1) or
second (2) packet of the pair). For example, t11 is the
timestamp of the first packet at MP1 (illustrated in
Figure 2) and t21 is the timestamp of the first packet at
MP2.

Once a packet-pair has been identified the RTT
computation is straightforward:

 12 11 22 21() ()RTT t t t t= − − − . (1)

RTT calculated in this manner is not influenced by
lack of synchronisation between MP1 and MP2 because
the calculation is made based on time differences of the
same clocks.

Our SPP algorithm makes two key assumptions:

• There is no third packet between the two packets
of a pair. A 'packet between' is defined as packet
where the timestamp at MP1 is between t11 and
t12 and its timestamp at MP2 is between t21 and
t22.

• Each packet is used in at most one pair. A packet
may not be used in any pair if the first
assumption is violated.

The aim is to avoid overlapping packet pairs and
ensure the two packets of a pair are as close together as
possible.

SPP starts with the first packet from the list of
packets going from MP1 to MP2. (The two directions
can be reversed and the RTTs can be computed in the
other direction if required.) We then search in the second
packet list (packets going from MP2 to MP1) for the first
packet where the condition t22 > t21 is true. A packet pair
has now been identified (see Figure 3) but this pair is not
necessarily the closest pair.

To find the closest pair, the algorithm traverses again
through the first list in search for any packets where
(t21

*>t21 and t21
*<t22). As long as such packets are found

the first packet is advanced (t21
* becomes t21). This

ensures there are no other packets between the packet
pair (see Figure 4). The RTT can be computed for this
pair and the algorithm continues with the next packet in
the first list (packets from MP1 to MP2).

IV. ACCURACY AND DEPLOYMENT CONSIDERATIONS
Although SPP does not require precisely

synchronised clocks and is minimally intrusive, there are
a number of issues to be considered.

A. Accuracy of the RTT Estimates

There are a number of considerations with respect to
accuracy of RTT estimates made using SPP.

As noted earlier, equation 1 cancels out the effect of
long-term clock drift between the clocks at MP1 and
MP2. For this reason we observe that SPP does not
require synchronised clocks. However, short-term drift
of each clock impacts the consistency of RTT estimates.
Specifically, drift of MP1’s clock in the interval t12-t11 or
MP2’s clock in the interval t22-t21 may cause successive
RTT estimates to differ. In practice the interval t12-t11 is
unlikely to be more than one or two seconds. Modern PC
clocks only drift by a few microseconds over tens of
seconds [13] so we estimate this source of error to be of
the order of 10 microseconds or less using common PC
hardware at the measurement points.

Another potential source of inaccuracy lies with the
packet recording and time stamping process itself. Most
equipment will have some fixed time delay between
seeing a packet and recording the packet’s ‘arrival time’
(for example, through the router’s port mirror and the
measurement hardware’s own packet reception process).
Any random, fluctuating component to this interval will
appear in equation 1 as fluctuations in the estimated
RTT. (A constant delay between arrival and time
stamping will have no impact. For example, if MP1
always records a packet’s arrival 20 microseconds late
then t11 and t12 will each be offset by 20 microseconds
yet interval t12-t11 will be unaffected.) Random
fluctuations are more likely when using software packet
capture on non-realtime operating systems rather than
when using dedicated hardware (such as Endance DAG
capture cards, with timestamp accuracy in the order of
hundreds of nanoseconds [18]).

With the hardware used in section V we found that
FreeBSD timestamps packets with accuracy of better

 MP 1 MP 2

� ���
� ���

� ���

� ���

Figure 2: Packet pair and corresponding timestamps

� �
	

� ���

� ���

� �
	��

� 	
	

� 	��

MP 1 MP 2

Figure 3: Finding a packet pair

�
�

��
��

� ������ �
�

� ���

MP 1 MP 2

Figure 4: Finding the closest packet pair

CAIA Technical Report 060707A July 2006 page 5 of 9

than ±10usec in the kernel (measured with tcpdump, and
assuming there is no heavy load). This is consistent with
[18] reporting the error for software time stamping has a
magnitude of tens of microseconds. Therefore, on a
modern not heavy loaded PC the expected error is much
smaller than 1ms (the granularity typically used for RTT
measurements).

Another source of uncertainty is the question of when
the path could be said to have a particular RTT. Ideally
we would like to say something like ‘ this RTT existed at
time T’ . Each RTT estimate begins at T = t11, and ends at
T = t12, so it might be said that the RTT exists during an
interval (t11,t12). The width of this interval in time
depends on two things – the actual path RTT, and the
second difference term in equation 1.

Given that many application flows are client-server in
nature, we arbitrarily decide that the server is near MP2
and name the second term the ‘server processing time’
(SPT), thus:

 22 21()SPT t t= − . (2)

Unlike traditional single measurement point
techniques, our SPP approach does not require SPT to be
close to zero for useful and consistent RTT estimation.
However, finite non-zero values of SPT add uncertainty
to the precise point in time at which the path could be
said to exhibit each RTT estimate calculated using
equation 1.

As previously noted, a number of applications
generate independent and asynchronous packet streams
in each direction. In such cases, SPT may fluctuate
widely from one packet-pair to the next, from almost
zero to as large as the interval between packets emitted
by the ‘server’ . For example, many popular FPS games
emit server to client packets at fixed rates such as 30, 50
or 60ms regardless of the client to server traffic (these
examples taken from Half Life 2, Quake III Arena and
Half Life respectively [14]). If we were passively
estimating path RTT using FPS game traffic our SPT
could be randomly scattered between 0 and the game
server’s fixed inter-packet interval for server to client
packets. (Note that under similar circumstances single
point measurement techniques would simply be unable
to accurately estimate RTT.)

Our current instantiation of SPP does not allow
derived packet pairs to overlap in time. Consequently,
SPP effectively ‘samples’ the path at most once every
t12-t11 seconds. In other words, the granularity with
which you can sample a path (for example, to estimate
jitter) is bounded by RTT+SPT. A future refinement of
SPP is planned that will loosen this restriction and
enable RTT estimates from overlapping packet pairs.

B. Deployment Issues with SPP

A number of deployment choices influence the
impact an SPP-based system would have on the network
being measured.

In principle each monitoring point could create
<pkt_id,timestamp> pairs for every packet passing by,
leaving it up to the packet matching post-processing to
weed out packets that did not pass both MP1 and MP2.

However, in practice real-time packet filtering should be
applied to ensure that <pkt_id> hashes are only being
calculated for a reasonable subset of packets passing
between MP1 and MP2. For example, knowing one end
of a particular application’s traffic flow would allow
packet filtering on IP address and TCP/UDP port
number before calculating hashes. Packet sampling
methods can also be used to further limit the number of
packets recorded per second [15].

As previously noted, Figure 1 shows delay
calculations occurring at a third location connected to
MP1 and MP2 via out-of-band links (or a single out-of-
band link if the delay calculations are co-located with
one of the measurement points). A key consideration for
minimising the impact of SPP on a live network is to
reduce the amount of traffic required on the out-of-band
link(s). SPP is entirely non-intrusive with respect to the
network path being measured if you have physical or
logical out-of-band link(s) available and send
<pkt_id,timestamp> pairs as each packet is recorded. If
you chose to use a logical channel along the same
infrastructure being measured then we believe SPP is at
least minimally intrusive in the sense that the
<pkt_id,timestamp> lists take up relatively little space.
(Alternatively, SPP is also non-intrusive during the
measurement period if you bundle up the
<pkt_id,timestamp> lists and send them across the same
network but outside the measurement period).

Efficient packet ID generation methods are described
and compared in [5] and in [16]. In our first
implementation of SPP we calculate a CRC32 hash
across unvarying parts of the IP packet header (protocol,
source and destination address, and total length) plus the
first 20 bytes of the IP payload. We chose CRC32 (also
used in [4]) because it is widely known, has low
collision probability (less than 1e-9 for more than 20
bytes input as reported in [16]), and can be very
efficiently computed in hardware and software (reported
in [16] to be ~300ns on a 1.7GHz Pentium 4m). CRC32
is also one of the functions currently recommended by
the IETF packet sampling work group [17] for packet
digests.

A modified set of invariant packet header fields
would be required if MP1 and MP2 are placed either
side of a box performing network address translation
(NAT) or acting as a firewall. Our initial
implementation’s packet matching would fail under such
circumstances – NAT changes IP addresses and
UDP/TCP port numbers while packets are in transit and
firewalls may manipulate TCP header fields (such as the
sequence number).

Our initial implementation used 12 bytes per
observed packet (4 bytes per <pkt_id> and 8 bytes to
encompass a large range of absolute <timestamp>
values). Roughly 121 <pkt_id,timestamp> pairs could be
carried in a single TCP frame over a link with 1500 byte
MTU. So, for example, monitoring an application
generating two hundred packets per second in one
direction would create less than 2 full-sized packets per
second carrying <pkt_id,timestamp> pairs over the out-
of-band link.

CAIA Technical Report 060707A July 2006 page 6 of 9

Loose synchronisation between the clocks at MP1
and MP2 could allow higher-order bits to be removed
from every raw timestamp field, further reducing the
number of <pkt_id,timestamp> bytes per observed
packet. (For example, a 32-bit timestamp field would be
more than adequate if MP1 and MP2 knew they were
always within a few seconds of each other during the
measurement period.)

SPP does not particularly care how
<pkt_id,timestamp> pairs are sent over the out-of-band
link. Implementations may choose TCP, UDP or some
other transport protocol. UDP has the advantage of
timely delivery with minimal overheads but provides no
protection against loss of <pkt_id,timestamp> pairs.
TCP provides reliable transport and is sensitive to
congestion on the out-of-band link, but timely
information delivery cannot be guaranteed.

Another implementation choice involves the use of
Tdelta in the preliminary packet-matching phase.
Although not strictly required, using Tdelta can drastically
improve performance. For each packet observed at the
monitor point only a Tdelta-based time window of packets
from the reference point needs to be searched. Tdelta must
be larger than the possible network delay plus any time
synchronisation error. If there is no time synchronisation
between the monitor points the time window is only
limited implicitly via the length of queue Qref. So
although our approach computes RTT without time
synchronisation, loose synchronisation can significantly
improve the performance of the packet-matching phase.
If MP1 and MP2 were built on common PC hardware it
would be sufficient to synchronise the clocks once a day
(as this would normally keep the clocks within one
second of each other). Using NTP is not required.

The impact on RTT and jitter estimation of the
number of packets per second passing each measurement
point, the configured Tdelta, and the out-of-band link
capacity is subject for further investigation. In particular,
we hope to eventually characterise the impact of loose
clock synchronisation on our ability to compress the
<timestamp> field and optimise the packet-matching
phase.

As noted earlier a separate measurement point is
required at each end of the path being monitored, for
example one at the client and one at the server. Our
architecture also supports the simultaneous use of more
than two measurements points, for example multicast
traffic where packets from one ingress point traverse
multiple egress points. In this case the packet matching
must be performed between each pair of measurement
points. If the network being monitored has multiple
ingress/egress points and the goal is to monitor the delay
between each pair of them we have a quadratic
complexity. This impacts on the scalability of our
approach for large numbers of measurement points.
However, each packet matching between a pair of
measurement points is independent of the packet
matching of all other pairs and thus packet matching can
be parallelised to increase performance.

V. ILLUSTRATING SPP IN A WLAN CONTEXT
To illustrate the potential utility of SPP we ran

simple experiments over a single-hop 802.11b wireless
LAN. We chose 802.11b because it is a popular wireless
access technology that suffers performance degradation
in the face of modest levels of small packet traffic [10].
(A comprehensive performance evaluation of other
WLAN technologies is outside the scope of this paper,
and not required to illustrate the use of SPP.)

We show two things. First, SPP can be used to track
latency fluctuations more precisely, and with less
collateral damage, than active probes during bulk data
transfers. Second, SPP measures RTT accurately when
applied to asymmetric traffic patterns generated by
protocols that are not inherently request/response based.
We show that SPP creates useful RTT estimates even
when the effective SPT is a multiple of the actual RTT.

A. A One-hop 802.11b Wireless Testbed

Figure 5 shows our testbed with one wireless client
and one server communicating in infrastructure mode
over a Cisco Aironet 1200 access point (AP). Both
server and client were 2.4GHz Celeron PCs running
FreeBSD 4.9 with an out-of-band Ethernet connection
for sharing SPP <pkt_id,timestamp> lists. The client had
a Netgear 802.11b interface located within a few feet of
the AP.

Bulk TCP data transfer over the wireless link was
achieved with nttcp [19]. Asymmetric traffic was
generated using the FPS game Wolfenstein Enemy
Territory (ET) [20]. The lack of routers in our simple
topology meant that ‘ping’ was suitable for active
probing. All traffic at server and client was captured
using tcpdump (utilising the packet timestamps
generated by the FreeBSD kernel upon packet arrival).
RTTs for nttcp and ping traffic were computed after
each experiment using OpenIMP [21], and an
implementation of SPP running on the server.

(Strictly speaking the out-of-band Ethernet link was
not required. We could have transferred
<pkt_id,timestamp> lists over the wireless link itself
after each trial was run. However, an out-of-band link is
not unrealistic. In practice an operator might well
provision such a link in order to monitor the
performance of a fixed, point to wireless link in near-real
time or test a new wireless link technologies prior to
deployment in the field.)

Server Client AP

Ethernet (out of band)

WLAN

Figure 5: 802.11b wireless LAN testbed

CAIA Technical Report 060707A July 2006 page 7 of 9

B. The Negative Consequences of Active Probing

To illustrate the consequences of active probing we
ran five 5-minute tests where the link was actively
probed during bulk data transfer. Each test involving
repeated transfers of 8Mbyte of data from the server to
the client. Active probing was achieved by continuously
pinging the server from the same client during each bulk
data transfer. Different trials used ping intervals of one,
0.05 and 0.01 second respectively. (The 0.01 second
interval providing a rough equivalent of SPP’s effective
sampling rate, since the TCP traffic provided median
and peak SPP sample rates of ~160/sec and ~225/sec
respectively.)

The cumulative distribution function (CDF) in Figure
6 (one throughput value per 8Mbyte nttcp run) shows the
significant degradation of achievable TCP throughput
caused by concurrent active probing in an 802.11b
context.

With no active probing nttcp achieved a median
throughput of just over 3Mbit/sec. Probing at one and
0.05 second intervals caused slight degradation, whilst
probing at 0.01 second intervals caused a substantial
drop of 1Mbit/sec in the median throughput. (This is
noteworthy in light of the fact that pinging every 0.01
seconds represents little more than 51Kbit/sec of active
probe traffic, assuming 64 byte ICMP packets.)

During these trials we also observed that the RTT
reported by ping increased as the active probe rate
increased (median and maximum went from 12ms to
16ms and 26ms to 40ms respectively). Clearly active
probing can be a highly disruptive method of obtaining
finely grained insight into a link’s dynamic latency
characteristics.

C. The Relative Accuracy of Active Probing versus SPP

Using tcpdump to capture the traffic during each bulk
data transfer allowed us compare the relative accuracy of
SPP-derived RTT measurement results with results from
active measurement using ping. RTT estimates were
calculated using SPP applied separately to ping’s ICMP
echo request and reply packet traffic, and the TCP Data
and ACK packet traffic generated by nttcp.

The CDF in Figure 7 reflects the range of RTTs
measured during the trials in Figure 6 with a ping
interval of one second. RTT values reported by ping
itself are very close to the RTTs estimated by SPP

through passive monitoring of ping’s own ICMP packet
pairs. This suggests SPP is doing a good job of
estimating the RTT experienced by ping packets.
However, they both differ from the range of RTTs
measured by SPP through passive monitoring of the TCP
traffic.

This difference reflects the fact that SPP measures
the RTT actually experienced by the application (in this
case nttcp) whose packets are being passively monitored.
As noted earlier, SPP samples the path at a rate
proportional to the rate at which the application causes
packet pairs to be generated. This ensures that RTT
samples are generated across many of the operating
conditions nttcp experienced during each 8Mbyte data
transfer, and they directly relate to the RTT experienced
by nttcp. TCP’s congestion window fluctuates
throughout each trial, varying the traffic load on the
WLAN. During relatively unloaded intervals both TCP
and ping experienced low RTTs. As serialisation delay
dominates the unloaded link RTT, small ping packets
experience lower RTT (1.5-2ms) (and experience it more
frequently) than MTU-limited TCP packets (5ms) during
such periods. Conversely, when the WLAN is heavily
loaded the higher RTTs are dominated by media-access
delays and thus both TCP and ping experience very
similar network behaviour (in this case when the
measured RTT is over 15ms).

Increasing the active probe rate to 0.05s and 0.01s
intervals failed to improve ping’s ability to ‘see’ the
RTT being experienced by TCP. The WLAN link’s
performance degraded (as shown in Figure 6) whilst the
relationship between actively-probed and SPP-derived
RTT estimates looked similar to that shown in Figure 7.
(Increasing the active probe packet size to emulate
MTU-limited TCP packets would also be self-defeating,
simply creating further degradation of WLAN link
capacity.)

D. The Utility of SPP When Coupled With Asymmetric Traffic

We also demonstrated SPP using traffic that does not
exhibit explicit request/response behaviour. In particular
we saw that variations in SPT (from equation 2) have
minimal impact on RTT estimates. Our specific example
was Wolfenstein Enemy Territory (ET) – an online FPS
game where server-to-client packets are sent at fixed
50ms intervals by default and client-to-server packets

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

nttcp Throughput [Mbit/s]

C
D

F

nttcp only
nttcp+Ping1sec
nttcp+Ping0.05sec
nttcp+Ping0.01sec

Figure 6: TCP throughput with different ping intervals

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTT [ms]

C
D

F

Passive RTT ping traff ic
Passive RTT nttcp traffic
Ping RTT output

Figure 7: RTTs measured by ping, passive ping monitoring and

passive nttcp monitoring (ping 1/second)

CAIA Technical Report 060707A July 2006 page 8 of 9

are sent at unpredictable intervals between 10ms and
100ms [14]. (There are thousands of online games active
across the Internet at any given time, so they are
potentially a good source of traffic from which to
passively estimate RTT.)

We ran five 5-minute ET game sessions over the
802.11b link and simultaneously actively probed the
path with a ping interval of one second. Using SPP we
measured RTT and SPT from the game traffic,
effectively sampling the link roughly 9 times per second.
Figure 8 shows the distribution of RTTs estimated by
SPP based on both game and ping traffic, along with the
RTTs reported every second by ping itself. As we
expected the curves are basically identical (except that
ping itself reports slightly higher values due to it time
stamping packets in user space rather than kernel space).

The main outcome here is to see how SPP’s RTT
estimates are unaffected by SPT. Recall that for every
packet pair SPP can estimate RTT from equation 1 and
SPT from equation 2. Figure 9 is a scatter-plot version of
Figure 8, with each estimated RTT plotted against SPT
(with 5% and 95% of RTT estimates falling between the
dark lines). As the ET client and server are
unsynchronised we observed that SPT values range
between 0.5ms and 50ms (bounded by the ET server’s
message interval). The upper end is almost 25 times the
median RTT. Nevertheless, across this range of SPT the
distribution of passive RTT estimates remains consistent
with ping’s active probing in Figure 8.

VI. CONCLUSIONS AND FURTHER RESEARCH
Measurement of network path delays is increasingly

of interest to network service and application providers.
Active measurement techniques are of limited utility,
particularly when we wish to closely track latency
fluctuations over link technologies that are sensitive to
excess traffic loads (such as WLAN environments).
Previous passive measurement techniques have required
either precisely synchronised clocks at diverse
measurement points, or single measurement point
tracking limited to applications having specific packet-
pair semantics and symmetric request/response
behaviour.

We have described a novel approach called synthetic
packet-pairs (SPP) that measures RTT of all types of
two-way traffic with minimal impact on the network
under observation. SPP observes packets at two
measurement points whose clocks need not be
synchronised together, and samples the path as
frequently as the application flow generates unique, non-
overlapping packet-pairs. Data from each measurement
point may be combined in near real-time using an out-
of-band link (for non-intrusive measurement), or
combined during off-peak periods using the monitored
network itself (for minimally intrusive measurement).
SPP enables accurate RTT estimation even when the
application traffic under observation exhibits
unpredictable delays between packets being sent in each
direction (such as multiplayer FPS games).

Further research is possible on a number of fronts.
We plan an extension of SPP to utilise overlapping
packet pairs, removing the impact of SPT on the
effective RTT sample rate. Comparing RTT estimates
from multiple packet-pairs that have an initial packet in
common will also allow inferring of one-way delay
trends. Finally, we are working on a performance
evaluation of our approach.

REFERENCES
[1] S. Zander, G. Armitage. Empirically Measuring the QoS Sensitivity of

Interactive Online Game Players. Australian Telecommunications
Networks & Applications Conference 2004 (ATNAC2004), Sydney,
Australia December 2004.

[2] G. Armitage. An Experimental Estimation of Latency Sensitivity in
Multiplayer Quake 3. 11th IEEE International Conference on Networks
(ICON), Sydney, Australia, September 2003.

[3] K. Auerbach. Why ICMP Echo (Ping) Is Not Good For Network
Measurements. InterWorking Labs, http://www.
iwl.com/Resources/Papers/icmp-echo_print.html, April 2004.

[4] I. D. Graham, S. F. Donnelly, S. Martin, J. Martens, J. G. Cleary.
Nonintrusive and Accurate Measurement of Unidirectional Delay and
Delay Variation on the Internet. Internet Summit (INET), Geneva,
Switzerland, July 1998.

[5] T. Zseby, S. Zander, G. Carle. Evaluation of Building Blocks for Passive
One-way-delay Measurement. Passive and Active Measurement
Workshop, Amsterdam, The Netherlands, April 2001.

[6] S. Niccolini, M. Molina, F. Raspall, S. Tartarelli, Design and
implementation of a One Way Delay passive measurement system, 9th
IEEE/IFIP Network Operations and Management Symposium (NOMS),
Seoul, Korea, April 2004.

[7] N. Brownlee. Packet Matching for NeTraMet Distributions. RTFM Get-
Together, IETF Adelaide, http://www.auckland.
ac.nz/net/Internet/rtfm/meetings/, March 2000.

[8] J. Jiang, C. Dovrolis. Passive estimation of TCP round-trip times. ACM
Computer Communication Review 32, 2002.

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTT [ms]

C
D

F

Passive RTT ping traff ic
Passive RTT game traff ic
Ping RTT output

Figure 8: RTTs measured by ping, passive ping monitoring and

passive game monitoring (ping 1/second)

0 10 20 30 40 50

2
4

6
8

10

SPT [ms]

R
T

T
 [m

s]

Figure 9: Passive RTTs of game traffic versus SPT

CAIA Technical Report 060707A July 2006 page 9 of 9

[9] B. Veal, K. Li, D. Lowenthal. New Methods for Passive Estimation of
TCP Round-Trip Times. Passive and Active Measurement Workshop,
Boston, USA, March/April 2005.

[10] T.T.T. Nguyen, G. J. Armitage. Quantitative Assessment of IP Service
Quality in 802.11b and DOCSIS networks. The Australian
Telecommunication Networks and Applications Conference (ATNAC),
Sydney, Australia, December 2004.

[11] V. Paxson. On calibrating measurements of packet transit times. ACM
SIGMETRICS, June 1998.

[12] M. Hassan, J. Wu. APM: Asynchronous Performance Measurement for
the Internet. 6th Asia-Pacific Conference on Communications (APCC),
2000.

[13] A. Pásztor, D. Veitch. PC Based Precision Timing Without GPS. ACM
SIGMETRICS, Los Angeles, USA, June 2002.

[14] G. Armitage, M. Claypool, P. Branch. Networking and Online Games -
Understanding and Engineering Multiplayer Internet Games. John Wiley
& Sons, UK, (ISBN: 0470018577) April 2006

[15] K. C. Claffy, G. C. Polyzos, H.-W. Braun. Application of Sampling
Methodologies to Network Traffic Characterization. ACM SIGCOMM,
San Francisco, CA, USA, September 13-17, 1993.

[16] M. Molina, S. Niccolini and N.G. Duffield. A Comparative
Experimental Study of Hash Functions Applied to Packet Sampling.
International Teletraffic Congress (ITC) 19, Beijing, 2005.

[17] T. Zseby, et al. Sampling and Filtering Techniques for IP Packet
Selection. http://www.ietf.org/internet-drafts/draft-ietf-psamp-sample-
tech-07.txt, work in progress, July 2005.

[18] S. Donnelly. Endance DAG Time-Stamping Whitepaper.
http://www.endace.com/Library/ timestamping_whitepaper.pdf, 2006.

[19] NTTCP, http://www.freebsd.org/cgi/url.cgi?ports/
benchmarks/nttcp/pkg-descr / (July 2006)

[20] Enemy Territory, http://games.activision.com/games/ wolfenstein (July
2006)

[21] OpenIMP Internet Measurement Project, http://www.ip-
measurement.org/openimp/ (July 2006)

