
CAIA Technical Report 060410B March 2006 page 1 of 14

Evaluating Machine Learning Algorithms for

Automated Network Application Identification

Nigel Williams, Sebastian Zander, Grenville Armitage

Centre for Advanced Internet Architectures (CAIA). Technical Report 060410B

Swinburne University of Technology

Melbourne, Australia

{niwilliams,szander,garmitage}@swin.edu.au

Abstract—The identification of network applications that create

traffic flows is vital to the areas of network management and

surveillance. Current popular methods such as port number and

payload-based identification are inadequate and exhibit a number

of shortfalls. A potential solution is the use of machine learning

techniques to identify network applications based on payload

independent statistical features. In this paper we evaluate and

compare the efficiency and performance of different feature

selection and machine learning techniques based on flow data

obtained from a number of public traffic traces. We also provide

insights into which flow features are the most useful. Furthermore,

we investigate the influence of other factors such as flow timeout

and size of the training data set. We find significant performance

differences between different algorithms and identify several

algorithms that provide accurate (up to 99% accuracy) and fast

classification.

Keywords—Traffic Classification, Machine Learning, Statistical

Features

I. INTRODUCTION

There is a growing need for accurate and timely
classification of network traffic flows for purposes such as
trend analyses (estimating capacity demand trends for
network planning), adaptive, network-based QoS marking
of traffic, dynamic access control (adaptive firewalls that
detect forbidden applications or attacks) or lawful
interception. ‘Classification’ refers to the identification of
an application or group of applications responsible for a
traffic flow.

Port-based classification is still widely practiced
despite being only moderately accurate at best. It is
expected to become less effective in the near future due to
an ever-increasing number of network applications,
extensive use of network address translation (NAT),
dynamic port allocation and end-users deliberately
choosing non-default ports. For example a large amount of
peer-to-peer (p2p) file sharing traffic is found on non-
default ports [1]. Alternative solutions such as payload-
based classification rely on specific application data
(protocol decoding or signatures), making it difficult to

detect a wide range of applications or stay up to date with
new applications. These techniques fail if payload is
inaccessible for privacy reasons or encrypted.

Machine learning (ML) techniques [2] provide a
promising alternative in classifying flows based on
application protocol (payload) independent statistical
features such as packet length and inter-arrival times. Each
traffic flow is characterised by the same set of features but
with different feature values. A ML classifier is built by
training on a representative set of flow instances where the
network applications are known. The built classifier can be
used to determine the class of an unknown instance. A
more detailed introduction to the problem is presented in
[3] and [4].

Several researchers have published approaches based
on single ML algorithms. In this paper we compare the
performance of previously tested algorithms and several
algorithms that have not yet been applied. In addition to
classification accuracy we also evaluate performance in
terms of training and classification time and compare the
complexity of the algorithms. As the actual feature set
used to build a classifier has a crucial impact on the
accuracy we evaluate and compare different feature
selection techniques and provide insights into which
features are the most useful for an effective classification.
Furthermore, we investigate the influence of factors such
as the size of the training data set and the flow timeout.

For our evaluation we use flow data obtained from
several traffic traces captured at different locations within
the Internet. We find significant performance differences
between different algorithms and identify several
algorithms that provide high accuracy (up to 99%), fast
(near real-time) classification (tens of microseconds per
instance) and have reasonably low configuration
complexity.

The paper is structured as follows. Section 2 provides a
brief overview about related work. Section 3 and 4
introduce the feature selection and ML techniques we use.
Section 5 describes our dataset. Section 6 presents the

CAIA Technical Report 060410B March 2006 page 2 of 14

results of the evaluation and section VII concludes and
outlines future work.

II. RELATED WORK

There have been several proposals for the use of ML or
statistical clustering techniques to separate network
applications based on traffic statistics. In [4] the authors
use nearest neighbour (NN) and linear discriminate
analysis (LDA) to map different applications to different
QoS classes. The Expectation Maximization (EM)
algorithm was used in [5] to cluster flows into different
application types. The authors of [6] have used
correlation-based feature selection and a Naive Bayes
classifier to differentiate between different application
types. The authors of [8] use principal component analysis
(PCA) and density estimation to classify traffic into
different applications. We have proposed an approach for
identifying different network applications based on greedy
forward feature search and EM in [3]. The authors of [7]
have developed a method that characterises host behaviour
on different levels to classify traffic into different
application types.

III. FEATURE SELECTION

A feature set describing a data instance might range in
size from two to several hundred features. The
representative quality of a feature set greatly influences
the effectiveness of ML algorithms. It is therefore
desirable to carefully select the number and type of
features used to train the ML algorithm, a process known
as feature selection. The benefits of feature selection are
two-fold. Reducing the number of features decreases
learning and classification times, while the removal of
irrelevant or redundant features can also increase the
classification accuracy.

Feature selection algorithms are broadly categorised
into the filter or wrapper model [9]. Filter model
algorithms rely on a custom metric to rate and select
features for use with any ML algorithm. The wrapper
method evaluates the performance of different subsets
using specific ML algorithms hence features are biased
towards the algorithm used. The feature subsets are
generated by search techniques (see Section III.C).

A. Filter Model

There are two classes of filter model algorithms:
ranking and subset search. Ranking algorithms provide a
goodness measure for individual features while subset
search algorithms provide a goodness measure for subsets
of features. In this study we use two subset search
algorithms.

Consistency-based subset search
The consistency-based subset search algorithm [10]

evaluates subsets of features simultaneously and selects

the optimal subset. The optimal subset is the smallest
subset of features that can identify instances of a class as
consistently as the complete feature set.

To determine the consistency of a subset, the
combination of feature values representing a class are
given a pattern label. All instances of a given pattern
should thus represent the same class. If two instances of
the same pattern represent different classes, then that
pattern is deemed to be inconsistent. The overall
inconsistency of a pattern p is:

pp cnpIC −=)(, (1)

where np is the number of instances of the pattern and
cp the number of instances of the majority class of the np
instances. The overall inconsistency of a feature subset S
is the ratio of the sum of all the pattern inconsistencies to
the sum of all the pattern instances nS

s

p

n

pIC
SIR

∑
=

)(
)(. (2)

The entire feature set is considered to have the lowest
inconsistency rate, and the subset most similar or equal to
this is considered the optimal subset.

Correlation-Based Feature Selection (CFS)
The CFS algorithm [11] uses an evaluation heuristic

that examines the usefulness of individual features along
with the level of inter-correlation among the features. High
scores are assigned to subsets containing attributes that are
highly correlated with the class and have low inter-
correlation with each other.

Conditional entropy is used to provide a measure of the
correlation between features and class and between
features. If H(X) is the entropy of a feature X and H(X|Y)
the entropy of a feature X given the occurrence of feature
Y the correlation between two features X and Y can then be
calculated using the symmetrical uncertainty:

)(

)|()(
)|(

YH

YXHXH
YXC

−= . (3)

The class of an instance is considered to be a feature.
The goodness of a subset is then determined as:

ii

ci
subset

rkkk

rk
G

)1(−+
= , (4)

where k is the number of features in a subset,
cir
the

mean feature correlation with the class and
iir the mean

feature correlation. The feature-class and feature-feature
correlations are the symmetrical uncertainty coefficients
(Equation 3).

CAIA Technical Report 060410B March 2006 page 3 of 14

B. Wrapper Model

The wrapper model uses the performance of a
predetermined ML algorithm to determine which features
to select. The subset that produces the highest overall
accuracy is deemed the best. As this method involves
repeatedly executing the algorithm for each subset, slow
algorithms and large feature spaces are very
computationally expensive or impractical time-wise. Due
to this, it was not possible to use the wrapper model for all
algorithms (see section VI.A).

C. Search Techniques

Feature selection methods as used in the study require a
search algorithm to generate candidate subsets from the
feature space. The following common search techniques
were used:

� Greedy

� Best First

� Genetic

The Best First and Greedy search techniques require a
starting point and search direction to be specified. We use
forward and backward searches. A search that begins with
zero features and increases size on each iteration is known
as a forward search. Starting with all features and reducing
the subset size on following iterations is known as a
backward search.

Greedy
Greedy search considers changes local to the current

subset through the addition or removal of features. For a
given ‘parent’ set, a greedy search examines all possible
‘child’ subsets through either the addition or removal of
features. The child subset that shows the highest goodness
measure then replaces the parent subset, and the process is
repeated. The process terminates when no more
improvement can be made.

Best First
Best First search is similar to greedy search in that it

creates new subsets based on addition or removal of
features to the current subset. However, it has the ability to
backtrack along the subset selection path to explore
different possibilities when the current path no longer
shows improvement. To prevent backtracking through all
possibilities in the feature space, a limit is placed on the
number of non-improving subsets that are considered. In
our evaluation we chose a limit of five.

Genetic
A Genetic search attempts to find an optimal solution

using evolutionary concepts [24]. An initial population of
individuals (solutions) is generated at random or
heuristically. In every evolutionary step, known as a

generation, the individuals in the current population are
decoded and evaluated according to some predefined
quality criterion (fitness function). To form a new
population (the next generation), individuals are selected
according to their fitness. Population selection schemes
ensure that only high-fitness (good) individuals stand a
better chance of ‘reproducing’, while unsuitable
individuals are more likely to disappear.

Selection alone cannot introduce any new individuals
into the population, i.e. it cannot find new points in the
search space. These are generated by genetically inspired
operators, of which the most well known are crossover and
mutation. We chose an initial random subset population of
20, and performed 20 evolutionary steps. The crossover
probability used was 0.6, while the probability of subset
mutation was 0.033.

IV. MACHINE LEARNING ALGORITHMS

We use a range of supervised ML algorithms. A
supervised or ‘inductive learning’ algorithm forms a
model based on training data and uses this model to
classify new data. We use the following algorithms:

� C4.5 Decision Tree

� Naive Bayes

� Nearest Neighbour

� Naive Bayes Tree

� Multilayer Perceptron Network

� Sequential Minimal Optimisation

� Bayesian Networks

Meta algorithms such as boosting or bagging can
improve accuracy by combining multiple weaker
classifiers into one strong classifier. We use the AdaBoost
algorithm to increase the performance of C4.5 and Naive
Bayes.

In the following subsections we briefly describe all the
algorithms.

A. C4.5 Decision Tree

The C4.5 algorithm [13] creates a model based on a
tree structure. Nodes in the tree represent features, with
branches representing possible values connecting features.
A leaf representing the class terminates a series of nodes
and branches. Determining the class of an instance is a
matter of tracing the path of nodes and branches to the
terminating leaf. C4.5 uses the ‘divide and conquer’
method to construct a tree from a set S of training
instances. If all instances in S belong to the same class, the
decision tree is a leaf labelled with that class. Otherwise
the algorithm uses a test to divide S into several non-trivial
partitions. Each of the partitions becomes a child node of

CAIA Technical Report 060410B March 2006 page 4 of 14

the current node and the tests separating S is assigned to
the branches.

C4.5 uses two types of tests each involving only a
single attribute A. For discrete attributes the test is A=?
with one outcome for each value of A. For numeric
attributes the test is A≤θ where θ is a constant threshold.
Possible threshold values are found by sorting the distinct
values of A that appear in S and then identifying a
threshold between each pair of adjacent values. For each
attribute a test set is generated. To find the optimal
partitions of S C4.5 relies on greedy search and in each
step selects the test set that maximizes the entropy based
gain ratio splitting criterion (see [13]).

The divide and conquer approach partitions until every
leaf contains instances from only one class or further
partition is not possible e.g. because two instances have
the same features but different class. If there are no
conflicting cases the tree will correctly classify all training
instances. However, this over-fitting decreases the
prediction accuracy on unseen instances.

C4.5 attempts to avoid over-fitting by removing some
structure from the tree after it has been built. Pruning is
based on estimated true error rates. After building a
classifier the ratio of misclassified instances and total
instances can be viewed as the real error. However this
error is minimised as the classifier was constructed
specifically for the training instances. Instead of using the
real error the C4.5 pruning algorithm uses a more
conservative estimate, which is the upper limit of a
confidence interval constructed around the real error
probability. With a given confidence CF the real error will
be below the upper limit with 1–CF. C4.5 uses subtree
replacement or subtree raising to prune the tree as long as
the estimated error can be decreased.

B. Naive Bayes

Naive-Bayes is based on the Bayesian theorem [14].
This classification technique analyses the relationship
between each attribute and the class for each instance to
derive a conditional probability for the relationships
between the attribute values and the class. We assume that
X is a vector of instances where each instances is described
by attributes {X1,...,Xk} and a random variable C denoting
the class of an instance. Let x be a particular instance and c
be a particular class.

Using Naive-Bayes for classification is a fairly simple
process. During training, the probability of each class is
computed by counting how many times it occurs in the
training dataset. This is called the prior probability
P(C=c). In addition to the prior probability, the algorithm
also computes the probability for the instance x given c.
Under the assumption that the attributes are independent
this probability becomes the product of the probabilities of
each single attribute. Surprisingly Naive Bayes has

achieved good results in many cases even when this
assumption is violated.

The probability that an instance x belongs to a class c
can be computed by combining the prior probability and
the probability from each attribute’s density function using
the Bayes formula:

() (|)

(|)
()

i i

i

P C c P X x C c

P C c X x
P X x

= = =
= = =

=

∏
 . (5)

The denominator is invariant across classes and only

necessary as a normalising constant (scaling factor). It can

be computed as the sum of all joint probabilities of the

enumerator:

() () (|)j jj
P X x P C P X x C= = =∑ . (6)

Equation 5 is only applicable if the attributes Xi are
qualitative (nominal). A qualitative attribute takes a small
number of values. The probabilities can then be estimated
from the frequencies of the instances in the training set.
Quantitative attributes can have a large number (possibly
infinite) of values and the probability cannot be estimated
from the frequency distribution. This can be addressed by
modelling attributes with a continuous probability
distribution or by using discretisation. Discretisation
transforms the quantitative attributes into qualitative
attributes, and avoids the problem of using a continuous
probability density function that does not match the true
density. We evaluate Naive Bayes using both kernel
density estimation (NBK) and discretisation (NBD).

C. Bayesian Networks

A Bayesian Network is a combination of a directed
acyclic graph of nodes and links, and a set of conditional
probability tables. Nodes can represent features or classes,
while links between nodes represent the relationship
between them.

Conditional probability tables determine the strength of
the links. There is one probability table for each node
(feature) that defines the probability distribution for the
node given its parent nodes. If a node has no parents the
probability distribution is unconditional. If a node has one
or more parents the probability distribution is a conditional
distribution where the probability of each feature value
depends on the values of the parents.

Learning in a Bayesian network is a two-stage process.
First the network structure Bs is formed (structure
learning) and then probability tables Bp are estimated
(probability distribution estimation).

We use a local score metric to form the structure, while
node quality is determined using K2 search and the
Bayesian Metric [12]. An estimation algorithm is used to
create the conditional probability tables for the Bayesian
Network. We use the Simple Estimator, which estimates

CAIA Technical Report 060410B March 2006 page 5 of 14

probabilities directly from the dataset [21]. The simple
estimator calculates class membership probabilities for
each instance, as well as the conditional probability of
each node given its parent node in the Bayes network
structure.

There are numerous other combinations of structure
learning and search technique that can be used to create
Bayesian Networks.

D. Nearest Neighbour (NN)

The k Nearest Neighbour (k-NN) algorithm is a simple
predictive ‘lazy’ learning method. When a new instance is
presented to the model, the algorithm predicts the class by
the majority class of the k most similar training instances
stored in the model (based on a distance metric). We only
use k=1 in this study. The distance between two instances
is based on the difference between feature values. We use
the following distance metric, which is derived from [15]:

∑
=

=
n

i

iyxfyxD
1

i),(),(. (7)

This equation evaluates the distance D between the two
instances x and y, where xi and yi indicate the value of the
ith feature. For numeric features f(xi,yi) = (xi – yi)

2
, while

for nominal values f(xi,yi) = 0 if features match, or 1 if they
differ.

For example, an instance x is to be classified. The
distance D is calculated between x and each training
instance y. That is, if there were 200 training instances,
then x would be evaluated against each of these, starting
from an arbitrary position. The instance of y that returns
the smallest value of D is considered the closest and thus x
is assigned the class label of this instance.

E. Naive Bayes Tree (NBTree)

The NBTree [16] is a hybrid of a decision tree
classifier and a Naive Bayes classifier. Designed to allow
accuracy to scale up with increasingly large training
datasets, the NBTree algorithm has been found to have
higher accuracy than C4.5 or Naive Bayes on certain
datasets. The NBTree model is best described as a decision
tree of nodes and branches with Bayes classifiers on the
leaf nodes.

As with other tree-based classifiers, NBTree spans out
with branches and nodes. Given a node with a set of
instances the algorithm evaluates the ‘utility’ of a split for
each attribute. If the highest utility among all attributes is
significantly better than the utility of the current node the
instances will be divided based on that attribute. Threshold
splits using entropy minimisation are used for continuous
attributes while discrete attributes are split into all possible
values. If there is no split that provides a significantly
better utility a Naive Bayes classifier will be created for
the current node.

The utility of a node is computed by discretising the
data and performing 5-fold cross validation to estimate the
accuracy using Naive Bayes. The utility of a split is the
weighted sum of the utility of the nodes, where the
weights are proportional to the number of instances in
each node. A split is considered to be significant if the
relative (not the absolute) error reduction is greater than
5% and there are at least 30 instances in the node.

F. Multilayer Perceptron (MLP)

The basic building block of a neural network [17] such
as a multilayer perceptron is a processing unit called a
neuron (or simply node). The output of a neuron is a
combination of the multiple inputs from other neurons.
Each input is weighted by a weight factor. A neuron
outputs or fires if the sum of the inputs exceeds a threshold
function of the neuron. The output from a multiplayer
perceptron is purely predictive. As there is no descriptive
component, the resulting classification can be hard to
understand (black box).

The architecture of the multilayer perceptron consists
of a single input layer of neurons, one or multiple hidden
layers and a single output layer of neurons (see Figure 1).
In order to learn the perceptron must adjust it weights. The
learning algorithm compares the actual output to the
desired output to determine the new weights repetitively
for all training instances. The network trains with the
standard backpropagation algorithm, which is a two-step
procedure. The activity from the input pattern flows
forward through the network, and the error signal flows
backward to adjust the weights. The generalized delta rule
adjusts the weights leading out of the hidden layer neurons
and the weights leading into the output layer neurons.
Using the generalized delta rule to adjust the weights
leading to the hidden units is backpropagating the error-
adjustment.

F

O

R

W

A

R

D

A

C

T

I

V

I

T

Y

B

A

C

K

W

A

R

D

E

R

R

O

R

Output Pattern

Input Pattern

Figure 1: Backpropagation network

Our multiplayer perceptron uses sigmoid threshold
functions. The number of input nodes is equal to the
number of attributes and the number of output nodes is
equal to the number of classes. There is only one hidden
layer, which has as many nodes as the sum of the number
of attributes and the number of classes divided by two. As
we use different feature selection techniques that produce

CAIA Technical Report 060410B March 2006 page 6 of 14

different feature subsets the number of input and hidden
nodes differs depending on the number of features used.
By default the algorithm we use performs normalisation of
all attributes including the class attribute (all values are
between -1 and +1 after the normalisation). The learning
rate (weight change according to network error) was set to
0.3, the momentum (proportion of weight change from the
last training step used in the next step) to 0.2 and we ran
the training for 500 epochs (an epoch is the number of
times training data is shown to the network).

G. Sequential Minimal Optimisation (SMO)

The SMO algorithm was developed as a faster, more
scalable Support Vector Machine (SVM) [22]. These
improvements are related to increasing the speed of
training and as such classification is performed as with
standard SVM.

The basic process behind SVMs for classification is to
map certain training data (xi,yi),i=1,…,l where each
instance is characterized by a set of feature values xi∈Rn
and a class label y∈{1,-1}l, into a higher-dimensional
feature space Φ(x) for separation by a hyperplane. Support
Vector Machines are binary classifiers, meaning only two
types of data can be separated by one classification model.
Multiple classifiers are created for multi-class scenarios.
Figure 2 illustrates a linear SVM hyperplane separating
two classes.

Feature space

Optimal Hyperplane

Margin of

separation

Figure 2: Optimal hyperplane and margin of separation

The linear algorithm can be evaluated in the feature
space using the dot product Φ(x).Φ(y), although this is
highly computational. Positive definite kernel functions
k(x,y) have been shown to correspond to feature space dot
products and are therefore substituted in place of the dot
product:

(,) (() ())k x y x y= Φ ⋅Φ . (8)

The decision function given by the SVM is thus in the
form:

1

() (,)
l

i i

i

f x v k x x b
=

= ⋅ +∑ , (9)

where b is a bias parameter, x the training example and
vi is the solution to a quadratic optimization problem. The
quadratic optimization problem relates to determining the
margin of separation extending from the hyperplane. SMO

is in fact a faster, more memory efficient solution to the
QP problem vi. A more in depth treatment of the QP
problem and the SMO solution are found in [23].

Implementing an SVM classifier requires the
configuration of a number of parameters. Parameters we
are most interested in are the complexity parameter C, the
polynomial exponent p, for each of which we use the value
of 1. The input space is also normalised before training.

H. AdaBoost

Boosting is a process used to increase the performance
of weak learning algorithms. It can also be used on strong
algorithms, but improvements are less dramatic. Boosting
works by combining the classifiers produced by the
learning algorithm over a number of distributions of the
training data. We use an implementation of the AdaBoost
algorithm developed in [18].

V. EXPERIMENTAL APPROACH

This section describes the data and features that form
the basis of our study as well as the software and
performance metrics used in the evaluation.

A. Traffic Classes

In our study a class represents an individual
application. Example instances of each class are provided
to the ML algorithm at training time. For accurate
classification, the class instances used for training must be
truly representative of the class.

A drawback of using public anonymised trace files is
the lack of payload data, making verification of the true
application impossible. We chose a number of prominent
applications (see Table 1) and selected the flows based on
the IANA defined well-known ports (<1024). An
exception to this is Half-Life (port 27015), but its default
port has been well known for several years. We argue that
the majority of flows on these ports are in fact of the
expected application. Even for p2p application this was
confirmed in [1].

Nevertheless it is almost certain that some flows are not
of the expected applications. We believe that these flows
would tend to be misclassified and hence lower
classification accuracy, and as such our results still
represent a lower bound.

Table 1: Port numbers and classes

Class Description

20 FTP-Data

23 Telnet

25 SMTP

53 DNS

80 HTTP

CAIA Technical Report 060410B March 2006 page 7 of 14

27015 Half-Life

B. Features

Features are attributes that as a set describe an instance
of a class. Here each instance represents a traffic flow
generated by an application. We use NetMate [19] to
process packet traces, classify packets and compute
features. We classify packets to flows based on source IP
and source port, destination IP and destination port. Flows
are bidirectional and the first packet seen by the classifier
determines the forward direction.

Flows have limited duration. UDP flows are terminated
by a flow timeout, while TCP flows are terminated upon
proper connection teardown (TCP state machine) or after a
timeout (whichever occurs first). We use a 600 second
flow timeout, which is the default timeout of NeTraMet
(the implementation of the IETF Realtime Traffic Flow
Measurement working group’s architecture) [25]. We
consider only UDP and TCP flows that have at least 1
packet in each direction and transport at least 1 byte of
payload. This excludes flows without payload (e.g. failed
TCP connection attempts) or ‘unsuccessful’ flows (e.g.
requests without responses).

We compute the following features: protocol, duration,
volume in bytes and packets, packet length (minimum,
mean, maximum, standard deviation) and inter-arrival
times (minimum, mean, maximum, standard deviation).
Aside from protocol and duration all features are
computed separately in both directions of a flow. Packet
length derived features are based on the IP length
excluding link layer overhead. Inter-arrival times have
microsecond precision and accuracy as DAG cards were
used for the capturing (see [20]). All of the 22 features can
be efficiently computed solely from the packets collected
within each individual flow. Computing features in both
flow directions also requires that packets in both directions
can be observed.

We do not use TCP specific features such as the
number of SACKS etc. as these are only valid for TCP
flows and can also vary between TCP implementations.
Server port is not used as an attribute.

A list of all features and their abbreviations is included
in the appendix.

C. Data Traces

We use data from three publicly available NLANR
network traces [20]. The chosen traces were captured in
different years and at different locations. We used flow
data from four 24-hour periods of these traces (auckland-
vi-20010611, auckland-vi-20010612, leipzig-ii-20030221,
nzix-ii-20000706).

As a 24-hour period of the packet traces contains up to
several million flows, our data set is sampled from the
total number of flows. We use n-out-of-N stratified

sampling to sample 1,000 flows randomly for each class
and each trace. However, for some of the classes there
were fewer flows in some of the traces. Table 2 shows the
number of flows in the individual and combined traces.

Table 2: Number of flows per trace

Trace Number of flows

Auckland-vi-20010611 6,000

Auckalnd-vi-20010612 6,000

Leipzig-ii-20030221 5,254

NZIX-ii-20000706 4,743

Total 21,997

It is important to have balanced classes (classes of
roughly equal size). Otherwise recall would be biased as
all algorithms optimise towards overall accuracy (thus
favouring the large classes) and overall accuracy would be
biased towards the recall of the large classes. Furthermore,
our goal is to evaluate the accuracy of ML algorithms
without over-fitting to particular traffic mixes (prior
probabilities of classes).

Table 3 shows the percentage of flows and bytes the six
chosen applications constitute in the different traces. The
actual traffic mix very much depends on location and time.
In the Auckland and NZIX trace our traffic classes account
for roughly 75% of the traffic. However, for the Leipzig
trace the amount covered is much less due to a large
amount of p2p traffic in the trace.

Table 3: Percentage of flows/bytes of the applications per trace

 Percentage of Flows / Bytes [%]

Port Auck-11 Auck-12 Leipzig NZIX

20 0.2 / 2.6 0.2 / 1.5 0.1 / 0.6 0.5 / 4.3

23 0.1 / 0.1 1.8 / 0.1 0.1 / 0.1 0.1 / 0.1

25 2.0 / 6.7 2.6 / 6.1 0.4 / 0.4 2.8 / 18.8

53 3.7 / 0.6 3.9 / 0.5 2.0 / 0.1 16.6 / 2.4

80 67.0 / 66.7 64.5 / 61.2 11.3 / 20.3 52.5 / 49.8

27015 0.7 / 0.1 1.3 / 0.1 0.7 / 0.1 0.1 / 0.6

Sum 73.7 / 76.8 74.3 / 69.5 14.6 / 21.6 72.6 / 76

D. Evaluation Metrics

There are several approaches to testing the accuracy of
supervised learning algorithms. We use the common
method of k-fold cross validation. In this process the data
set is divided into k subsets. Each time, one of the k
subsets is used as the test set and the other k-1 subsets
form the training set. Error statistics are calculated across
all k trials. This provides a good indication of how well the
classifier will perform on unseen data. We use k=10 and
compute three standard performance metrics:

CAIA Technical Report 060410B March 2006 page 8 of 14

1. Accuracy is the percentage of correctly classified
instances over the total number of instances.

2. Precision is the number of class members classified
correctly over the total number of instances classified
as class members.

3. Recall (or true positive rate) is the number of class
members classified correctly over the total number of
class members.

Rates are expressed as a decimal value between 0 and 1 (0
being equivalent to 0% and 1 being 100%)

E. ML Software

Experiments were conducted using the WEKA
(Waikato Environment for Knowledge Analysis) software
version 3.4.4 [12]. Widely used in the academic
community, WEKA contains Java implementations of all
the algorithms described above.

VI. RESULTS AND ANALYSIS

First we compare different feature selection methods
and identify strong features for discriminating between the
classes. We then compare the classification accuracy of
the different algorithms. Finally we investigate other
factors such as the size of the training data and value of
the flow timeout.

A. Feature Selection

Feature subset selection was performed on the four
individual traces and a dataset consisting of the all the
traces combined. Best First, Genetic and Greedy search
methods were used for the three different subset evaluation
schemes (see section III). Wrapper feature selection was
used for all algorithms and trace files except Nearest
Neighbour, MLP and NBTree due to their very slow
learning speed.

Figure 3 shows the size of the subsets identified as
percentage of the full feature set and the mean accuracy
for each subset evaluator, compared with the mean
accuracy obtained using all features. The values are
averaged for all traces, ML algorithms and search
techniques.

Both filter methods show a similar aggressiveness
(Consistency slightly more) in reducing the size of the
feature space. On average the wrapper method does not
reduce subsets as aggressively as the filter methods (~59%
compared to ~33% for CFS and ~32% for Consistency).
Both filter methods reduce the classification accuracy,
while the wrapper method on average provides an increase
in accuracy when compared to using the full feature set.
This is because the wrapper method sometimes increases

accuracy (mainly for algorithms using Bayes) but it never
decreases accuracy (see Figure 7). In general CFS
performs considerably faster than Consistency, with
wrapper evaluation by far the slowest.

33.1 31.5

59.1

100.0

92.7
89.8

96.2 94.4

0
2
0

4
0

6
0

8
0

1
0
0

CFS

Cons
is

te
nc

y

W
ra

pp
er

All

P
e
rc

e
n
ta

g
e

Percentage of feature set Accuracy

Figure 3: Mean accuracy and percentage of full feature space for

different subset evaluators

On average there is no significant difference in feature
reduction and accuracy between the search methods.
Greedy search provides slightly larger reduction for the
price of slightly lower accuracy. There is, however, a
substantial difference in the time taken to perform the
searches. Since the best features sets found on average
contained only half of the available features forward
searches were generally at least 2-3 times faster than
backwards searches (genetic search being somewhere
between forward and backward search).

We also examine the frequency at which particular
features are included in the selected feature subsets. This
provides an excellent indicator as to which features are
likely to be better at discriminating the classes. Figure 4
graphs the percentage of selected feature sets in which a
given feature was included, across all the tests.

‘Max forward packet length’ (maxfpktl) is clearly the
strongest feature, appearing in almost 90% of subsets,
while ‘max backwards packet length’ (maxbpktl) and
protocol are also strong discriminators, appearing in over
65% of subsets. Inter-arrival time and byte volume
statistics are much less frequently used.

 In Figure 5 we can see the percentage of feature sets in
which a feature appears according to subset selection
method. The difference in the CFS and Consistency
algorithms is apparent, with the former skewed towards
using packet length statistics and the latter having a more
even spread of features, with slight bias towards inter-
arrival times. Interestingly the wrapper method appears
almost as a combination of the consistency and CFS
methods, with an even spread across the feature set and
some bias toward packet length statistics.

CAIA Technical Report 060410B March 2006 page 9 of 14

92

69.3 69.3

63.3 62.7
60

52
49.3

44 44

37.3
34.7

32
29.3

26.7
24 24 24

21.3 21.3
17.3

8

0
2
0

4
0

6
0

8
0

1
0
0

m
ax

fp
kt

l

m
ax

bp
kt

l

pr
ot

oco
l

sd
bp

kt
l

m
ea

nfp
kt

l

m
in

fp
kt

l

du
ra

tio
n

m
in

bp
kt

l

m
in

bi
at

sd
fp

kt
l

fp
ac

ke
ts

m
ea

nbp
kt

l

bp
ac

ke
ts

m
in

fia
t

m
ax

bi
at

bb
yt

es

fb
yt

es

m
ea

nfia
t

m
ax

fia
t

m
ea

nbi
at

sd
fia

t

sd
bi

at

In
 s

u
b
s
e
ts

 (
%

)

Figure 4: Percentage of subsets in which feature was selected

0
2
0

4
0

6
0

8
0

1
0
0

m
ax

fp
kt

l

m
ax

bp
kt

l

pr
ot

oco
l

st
db

pk
tl

m
ea

nfp
kt

l

m
in

fp
kt

l

du
ra

tio
n

m
in

bp
kt

l

m
in

bi
at

st
df

pk
tl

fp
ac

ke
ts

m
ea

nbp
kt

l

bp
ac

ke
ts

m
in

fia
t

m
ax

bi
at

bb
yt

es

fb
yt

es

m
ea

nfia
t

m
ax

fia
t

m
ea

nbi
at

st
df

ia
t

st
db

ia
t

In
 s

u
b
s
e
ts

 (
%

)

CFS CON Wrapper

Figure 5: Percentage of subsets in which feature selected by subset evaluation method

The feature subsets selected by the different methods
are consistent across the trace files, indicating that better
discriminating features are independent of location and
date (and only depend on the traffic classes).

In summary both CFS and Consistency subsets provide
aggressive reductions of the feature space, but result in
greatly reduced accuracy. The wrapper method
significantly reduces the feature space while increasing
accuracy for some algorithms, and should be the method
of choice if accuracy is to be maximised. Using the
wrapper on larger datasets (>10,000 instances per class)
and/or large feature would not be recommended due to
large build times (several hundred hours would not be
unusual). There was no particular search method that stood
out as being greatly superior. Best first searches provide a
slightly better accuracy with slightly less reduction of the
feature set compared with greedy searches.

B. Learning Algorithms

The mean accuracy of each algorithm across all feature
subsets and traces is shown in Figure 6. The algorithms
that stand out according to overall accuracy are Bayes Net,
C4.5 and AdaBosot C4.5, followed by NBTree, AdaBoost
NBD and Nearest Neighbour. MLP and SMO did not

perform as well as expected. It should be noted that both
algorithms have a large number of parameters and tuning
them could result in higher accuracy. However as we
achieved very good performance with other algorithms we
currently do not see the need for tuning of MLP and SMO.

98.6
97 97.2 97.8

88.2

95.4 95

83

97.4

81

5
0

6
0

7
0

8
0

9
0

1
0
0

A
da

B
oo

st
C
4.

5

A
da

B
oo

st
N
B
D

B
ay

es
N
et

C
4.

5
M

LP
N
B
D

N
N

N
B
K

N
B
Tr

ee

S
M

O

A
c
c
u
ra

c
y
 (
%

)

Figure 6: Mean accuracy of machine learning algorithms

The change in overall accuracy for each algorithm
according to feature subset evaluation method, compared
with the accuracy obtained using the full feature space is
shown in Figure 7.

A surprising result is the poor gains for NBK using the
CFS selected subsets, as previous work [6] has shown this

CAIA Technical Report 060410B March 2006 page 10 of 14

combination to achieve 95% accuracy (using quite
different features however). Accuracies in this region were
only achieved using Naïve Bayes with discretised input
data. Using a wrapper subset with kernel density
estimation does show a large improvement, though. This
may suggest that for our data some features are not well
represented by continuous distributions.

-2
0

-1
5

-1
0

-5
0

5
1
0

1
5

A
da

B
oo

st
C
4.
5

A
da

B
oo

st
N
B
D

B
ay

es
 N

et

C
4.
5

M
LP

N
B
D

N
N

N
B
K

N
B
Tre

e

S
M
O

c
h
a
n
g
e
 i
n
 a

c
c
u
ra

c
y
 (
%

)

CFS Con Wrapper

Figure 7: Average change in overall accuracy by subset selection

method compared against using full feature set

The algorithms most sensitive to feature space
reduction are MLP and SMO, which contributes to the low
average accuracy seen in Figure 6. The decision trees
showed comparatively small changes with feature
selection. This is expected as tree-based algorithms
essentially perform feature reduction as part of the
learning process (the tree does not include irrelevant
features). Bayes Net also shows relatively small changes
in accuracy with feature selection. The Naive Bayes
algorithms benefit most from using the wrapper technique.

The mean accuracy in Figure 6 does not necessarily
indicate the maximum performance of the algorithms, as
some feature selection methods drastically reduced the
average (the case for MLP and SMO). In addition, the
accuracy distributions for all traces and search methods
were consistent across the traces; it seems that no
particular trace is harder or easier to classify then the
others. Therefore, to decide which algorithm provides best
accuracy we focus on the maximum achievable accuracies
on the combined trace, and also examine class metrics

Figure 8 plots the mean precision and recall rates and
accuracy across the traffic classes for the combined trace
and the feature subset that maximises the accuracy
(determined by wrapper for Naive Bayes, otherwise the
full feature set).

Algorithms with very high overall accuracies also have
high precision and recall values, with little difference
between them. AdaBoost C4.5 (99.167%), C4.5
(98.643%) and NBTree (98.135%) achieved the highest
overall accuracy. All other algorithms besides NBK, SMO
and MLP achieved accuracies above 95%.

0
.5

0
.6

0
.7

0
.8

0
.9

1

A
da

B
oo

st
C
4.

5

A
da

B
oo

st
N
B
D

B
ay

esN
et

C
4.5

M
LP

N
B
D

N
N

N
B
K

N
B
Tre

e

S
M

O

M
e
a
n
 R

a
te

Precision Recall Accuracy

Figure 8: Average precision and recall of all traffic classes and

accuracy for the combined trace with best feature set

To examine if particular traffic classes are harder to
classify than others we create boxplot of the recall for each
class obtained from all algorithms and traces using the full
feature set (see Figure 9). The bottom of a box represents
the 1st quartile, the line within a box is the median and the
top represents the 3rd quartile. Whiskers extend 1.5 times
the inter-quartile range and circles denote outliers.

Most classes have very high recall across the
algorithms. DNS in particular has very few outliers and a
relatively narrow distribution. Telnet and FTP-data appear
to be the most difficult to classify, with FTP-data having
several significant outliers. However, the median values
for each class are quite high, and a high recall is achieved
for each when using one of the better performing
algorithms.

FTP Data Telnet SMTP DNS HTTP half-life

0
.2

0
.4

0
.6

0
.8

1
.0

R
e
c
a
ll

Figure 9: Recall for each traffic class using all features

Besides accuracy and tolerance to feature set reduction
we have also defined several additional criteria to assess
the algorithms:

Classifications per second: The number of
classifications the algorithm performs when testing the
combined trace with all features. Speed is important to
perform near real-time classification on large numbers of
simultaneous networks flows.

Build Time: The time required to build a classification
model using the training dataset. Building the classifier
can be done offline but as building times may reach

CAIA Technical Report 060410B March 2006 page 11 of 14

several days for certain classifiers, shorter build times may
be more convenient.

Setup Complexity: The effort required in configuring an
algorithm and the possible level of ‘fine tuning’ required.
Algorithms with many parameters must be tailored to
specific datasets to achieve best performance, which can
be a cumbersome process and can lead to over fitting.

Performance metrics were measured using a 3.4 GHz
Pentium 4 workstation with 4GB of RAM.

Table 4: Performance and setup complexity by algorithm

Algorithm
Classifications

per second

Build Time

(seconds)
Complexity

C4.5 54,700 23.77 Moderate

AdaBoostC4.5 11,188 266.99 Moderate

Nearest

Neighbour
8 NA Low

NBTree 5,974 1266.12 Moderate

Bayes Net 9,767 13.14
Moderate-

high

NBD 27,049 10.86 Low

AdaBoost NBD 1,908 158.24 Low

NBK 22.6 2.97 Low

SMO 28,958 115.84 Very High

MLP 14,394 2030.59 High

Examining classifications per second, C4.5 has a
considerable advantage, and is markedly faster than the
closest algorithms, NBD, SMO and MLP. Nearest
Neighbour is by far the slowest algorithm (a result of
being a lazy learner). NBK is also very slow compared to
the other algorithms.

NBK provides the fastest build time of the algorithms,
followed by Bayes Net and C4.5. NBTree and MLP have
the longest training times. The increased accuracy of
AdaBoost comes at a cost of speed, with AdaBoost C4.5
and AdaBoost NBD performing 7-17 times slower than the
non-boosted versions.

C. Accuracy Depending on the Training Data Size

To investigate the influence of the size of the training
dataset on the accuracy several new datasets were created
using the stratified sampling method previously described.
We use only C4.5, BayesNet and NBD, as they showed
the best accuracy and also are considerably faster than
slow algorithms such as MLP or NN. Feature selection
was not performed for these datasets.

The per-trace datasets contained up to 10,000, 50,000,
or 100,000 flow samples of each traffic class. These
datasets were then combined, creating datasets with up to

40,000, 200,000 or 400,000 samples of each class. The
original combined dataset is also included for comparison.

For traffic classes with flows less than the sample size,
all flows were included. It should be noted that telnet,
FTP-data, half-life and SMTP have a maximum of 1,727,
18,838, 107,227 and 241,251 flows respectively. This
introduces some bias against these classes (as the
algorithms optimise towards overall accuracy), but our
goal here is to show the overall trend. The datasets were
evaluated using 10-fold cross validation.

Figure 10 shows an increase in accuracy with
increasing sample size. The transition between 4,000 and
40,000 samples provides the largest increase in accuracy.
The changes in accuracy are more or less proportionate
between the three algorithms. Overall one might expect
gains in accuracy to diminish as sample size increases.
Gains above 200,000 samples per class came at a
significant processing cost, as training times increased
significantly with the larger sample size.

Sample Size

A
v
e
ra

g
e
 A

c
c
u
ra

c
y

(%

)

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

4,000 40,000 200,000 400,000

C4.5 BayesNet Naive Bayes D

Figure 10: Overall accuracy by training data size

D. Accuracy Depending on Flow Timeout

The original combined dataset was re-created with two
new flow timeouts, 60 seconds and 1800 seconds, to
compare the influence of flow timeout on classification
performance. Short timeouts increase the number of UDP
flows whereas long timeouts decrease the number of UDP
flows. Although we use TCP semantics to detect flow
termination still a number of TCP flows are terminated by
timeouts. Short timeouts result in the chopping of some
long-term TCP flows with large idle times. Figure 11 plots
the overall accuracy depending on the timeout value.

Timeout (s)

A
c
c
u
ra

c
y
 (
%

)

9
0

9
2

9
4

9
6

9
8

1
0
0

60 600 1800

C4.5 BayesNet Naive Bayes D

CAIA Technical Report 060410B March 2006 page 12 of 14

Figure 11: Overall accuracy depending on flow timeout

The overall accuracy for each of the algorithms
increases slightly with increasing flow timeout length.
Figure 12 examines the recall for the individual traffic
classes against flow timeout length for the C4.5 algorithm.
These trends are similar for Bayes Net and NBD.

Timeout (s)

R
e
c
a
ll

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

60 600 1800

ftpdata

telnet

SMTP

DNS

HTTP

half-life

Figure 12: Recall depending on flow timeout per traffic class, C4.5

algorithm

The UDP flows (half-life and DNS) do not benefit
from an increased flow timeout but the accuracy decrease
is negligible. SMTP, FTP and HTTP applications benefit
slightly moving from 60s to 600s, with little difference at
1800s. It is possible that these classes stay open-and-idle
more than other classes, and thus benefit from having
statistics from the entire flow. Against this trend, telnet
sees a significant reduction in recall, probably a result of
the significantly reduced number of flow instances (the
60s timeout has twice the number of training flows as for
1800s).

An obvious drawback of using long flow timeouts is
that there is a longer wait before a flow can be classified.
Overall, the results suggest that in most cases accuracy is
essentially unaffected by using short timeouts (e.g. 60
seconds).

E. Accuracy for Peer-to-peer Traffic Classes

To determine whether our method of flow classification
also extends to other traffic classes, we evaluate a dataset
containing traffic of peer-to-peer file sharing applications.
This dataset contains 1,000 flows of DNS, HTTP,
eDonkey, BitTorrent and Kazaa. These flows are sampled
from a trace hand-classified by using application protocol
signatures. CFS, Consistency and wrapper subset
evaluation were run for C4.5, Bayes Net and NBD
algorithms. Figure 13 shows the accuracy depending on
the feature selection technique and the ML algorithm.

6
0

7
0

8
0

9
0

1
0
0

C
4.

5

Bay
es

 N
et

N
BD

A
c
c
u
ra

c
y
 (
%

)

CFS CON Wrapper All

Figure 13: Accuracy by subset selection method p2p traffic

Encouragingly the features selected by the three subset
evaluation methods show a similar trend to those selected
for the original classes. CFS was again biased towards
packet length statistics, while Consistency preferred inter-
arrival times. The ranking of subset evaluators is the same,
with the wrapper method once more providing the highest
accuracy. The ranking of the algorithms has changed:
Bayes Net slightly outperformed C4.5. The maximum
accuracies obtained for each algorithm are 98.98% for
Bayes Net, 97.88% for C4.5 and 97.28% for NBD.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have evaluated the ability of different
machine learning algorithms to identify network
applications based on statistical payload-independent flow
features. We show that there is great potential in using this
method. With 22 features we are able to achieve
classification accuracies of over 99% with two algorithms,
and accuracies above 97% with several others.

We also have evaluated three different feature selection
techniques. We found that the wrapper method provides
the best accuracy, but is slow to execute. It is able to
improve accuracy over using the whole feature set, while
still reducing the features space significantly. The filter
methods are much faster but provide significantly less
accuracy than using all features. CFS is generally faster
and more accurate than the Consistency metric. Analysis
of the selected features shows that packet length statistics
and protocol are stronger class-discriminating features.

The majority of algorithms perform very well with our
datasets, obtaining high accuracies. Particularly strong
algorithms are C4.5 (99.4%) and Bayes Net (99.3.2%),
while NBTree (98.3%), NBD (98.3%) and Nearest
Neighbour (97.7%) were also notable. The AdaBoost
algorithm does provide some increases in accuracy (1-
2%), but significantly slows down training and
classification.

Additional experiments show a short flow timeout of
60 seconds to be suitable, while increasing the training
sample size shows significant improvement in accuracy.
Tests on a dataset containing several popular peer-to-peer

CAIA Technical Report 060410B March 2006 page 13 of 14

file sharing applications demonstrated that our technique
could be expanded to other traffic classes.

The results obtained are very promising, but there are a
number of avenues to be further explored. We plan to
investigate a wider range of flow features, including
features based on multiple flows. We will also investigate
classification accuracies achievable if only one direction
of a flow can be observed. Additional classes, such as
different online gaming applications, also need to be
investigated. Tuning the parameters of the learning
algorithms, especially for MLP and SMO, and evaluating
the memory usage is also left for further studies.

ACKNOWLEDGMENTS

This paper has been made possible in part by a grant
from the Cisco University Research Program Fund at
Community Foundation Silicon Valley.

REFERENCES

[1] Thomas Karagiannis, Andre Broido, Nevil Brownlee, kc claffy,
“Is P2P dying or just hiding?” In Proceedings of Globecom 2004,

November/December 2004.

[2] Tom M. Mitchell, “Machine Learning“, McGraw-Hill Education

(ISE Editions), December 1997.

[3] S. Zander, T.T.T. Nguyen, G. Armitage, “ Automated Traffic
Classification and Application Identification using Machine

Learning“, IEEE 30th Conference on Local Computer Networks

(LCN 2005), Sydney, Australia, 15-17 November 2005.

[4] M. Roughan, S. Sen, O. Spatscheck, N. Duffield, “Class-of-
Service Mapping for QoS: A statistical signature-based approach

to IP traffic classification“, ACM SIGCOMM Internet

Measurement Workshop, Sicily, Italy, 2004.

[5] A. McGregor, M. Hall, P. Lorier, J. Brunskill, “Flow Clustering
Using Machine Learning Techniques“, Passive & Active

Measurement Workshop 2004 (PAM 2004), France, April 19-20,

2004.

[6] A. W. Moore and D. Zuev, “Internet Traffic Classification Using
Bayesian Analysis Techniques”, ACM SIGMETRICS, Banff,

Canada, June 2005.

[7] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC:
Multilevel Traffic Classification in the Dark”, ACM Sigcomm,

Philadelphia, PA, August 2005.

[8] T. Dunnigan, G. Ostrouchov, “Flow Characterization for Intrusion
Detection“, Technical Report, Oak Ridge National Laboratory,

November 2000.

[9] M. A. Hall, G. Holmes, “Benchmarking attribute selection
techniques for discrete class data mining“, IEEE Transactions on

Knowledge & Data Engineering, Vol 15, No 6, pp 1437-1447,

2003.

[10] M. Dash, H. Liu, “Consistency-based search in feature selection”,
Artificial Intelligence, 151:155-176, 2003.

[11] M. Hall, “Correlation-based Feature Selection for Machine
Learning“, PhD diss. Department of Computer Science, Waikato

University, Hamilton, NZ, 1998.

[12] WEKA 3.4.4, http://www.cs.waikato.ac.nz/ml/weka/ (March
2006).

[13] R. Kohavi and J. R. Quinlan, Will Klosgen and Jan M. Zytkow,
editors, “Decision-tree discovery”, In Handbook of Data Mining

and Knowledge Discovery, chapter 16.1.3, pages 267-276, Oxford

University Press, 2002.

[14] G. H. John, P. Langley, “Estimating Continuous Distributions in

Bayesian Classifiers”, 11th Conference on Uncertainty in

Artificial Intelligence, pp. 338-345, Morgan Kaufman, San Mateo,

1995.

[15] D. Aha, D. Kibler, “Instance-based learning algorithms”, In
Machine Learning, vol. 6, pp. 37-66, 1991.

[16] Ron Kohavi, “Scaling Up the Accuracy of Naive-Bayes
Classifiers: a Decision-Tree Hybrid”, 2nd International

Conference on Knowledge Discovery and Data Mining (KDD),

1996.

[17] C. M. Bishop, “Neural Networks for Pattern Recognition”, Oxford

University Press, 1995.

[18] Y. Freund, R. E. Shapire, “Experiments with a new boosting
algorithm”, International Conference of Machine Learning, pp.

148-156, San Francisco, 1996.

[19] NetMate, http://sourceforge.net/projects/netmate-meter/ (March
2006).

[20] NLANR traces: http://pma.nlanr.net/Special/ (March 2006).

[21] R. Bouckaert, “Bayesian Network Classifiers in Weka”, Technical

Report, Department of Computer Science, Waikato University,

Hamilton, NZ 2005.

[22] J. C. Platt, “Sequential Minimal Optimization: A Fast Algorithm
for Training Support Vector Machines”, Technical Report MSR-

TR-98-14, Microsoft Research, April 1998.

[23] G. Cawley, “Efficient Sequential Minimal Optimisation of
Support Vector Classifiers”, Technical Report, School of

Information Systems, University of East Angila, Norwich,

Norfolk, UK, 2001

[24] D. E. Goldberg, "Genetic Algorithms in Search, Optimization, and

Machine Learning", Addison-Wesley, 1989.

[25] N. Brownlee, “NeTraMet & NeMaC Reference Manual”,
University of Auckland, http://www.auckland.ac.nz/

net/Accounting/ntmref.pdf, June 1999.

CAIA Technical Report 060410B March 2006 page 14 of 14

APPENDIX

The complete list of flow features and their
abbreviations:

Feature Description Abbreviation

Minimum forward packet length minfpktl

Mean forward packet length meanfpktl

Maximum forward packet length maxfpktl

Standard deviation of forward packet length stdfpktl

Minimum backward packet length minbpktl

Mean backward packet length meanbpktl

Maximum backward packet length maxbpktl

Standard deviation of backward packet
length

stdbpktl

Minimum forward inter-arrival time minfiat

Mean forward inter-arrival time meanfiat

Maximum forward inter-arrival time maxfiat

Standard deviation of forward inter-arrival
times

stdfiat

Minimum backward inter-arrival time minbiat

Mean backward inter-arrival time meanbiat

Maximum backward inter-arrival time maxbiat

Standard deviation of backward inter-arrival
times

stdbiat

Protocol protocol

Duration of the flow duration

Number of packets in forward direction fpackets

Number of bytes in forward direction fbytes

Number of packets in backward direction bpackets

Number of bytes in backward direction bbytes

