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Abstract—The identification of network applications that create 

traffic flows is vital to the areas of network management and 

surveillance. Current popular methods such as port number and 

payload-based identification are inadequate and exhibit a number 

of shortfalls. A potential solution is the use of machine learning 

techniques to identify network applications based on payload 

independent statistical features. In this paper we evaluate and 

compare the efficiency and performance of different feature 

selection and machine learning techniques based on flow data 

obtained from a number of public traffic traces. We also provide 

insights into which flow features are the most useful. Furthermore, 

we investigate the influence of other factors such as flow timeout 

and size of the training data set. We find significant performance 

differences between different algorithms and identify several 

algorithms that provide accurate (up to 99% accuracy) and fast 

classification.  

Keywords—Traffic Classification, Machine Learning, Statistical 

Features 

I. INTRODUCTION 

There is a growing need for accurate and timely 
classification of network traffic flows for purposes such as 
trend analyses (estimating capacity demand trends for 
network planning), adaptive, network-based QoS marking 
of traffic, dynamic access control (adaptive firewalls that 
detect forbidden applications or attacks) or lawful 
interception. ‘Classification’ refers to the identification of 
an application or group of applications responsible for a 
traffic flow.  

Port-based classification is still widely practiced 
despite being only moderately accurate at best. It is 
expected to become less effective in the near future due to 
an ever-increasing number of network applications, 
extensive use of network address translation (NAT), 
dynamic port allocation and end-users deliberately 
choosing non-default ports. For example a large amount of 
peer-to-peer (p2p) file sharing traffic is found on non-
default ports [1]. Alternative solutions such as payload-
based classification rely on specific application data 
(protocol decoding or signatures), making it difficult to 

detect a wide range of applications or stay up to date with 
new applications. These techniques fail if payload is 
inaccessible for privacy reasons or encrypted.  

Machine learning (ML) techniques [2] provide a 
promising alternative in classifying flows based on 
application protocol (payload) independent statistical 
features such as packet length and inter-arrival times. Each 
traffic flow is characterised by the same set of features but 
with different feature values. A ML classifier is built by 
training on a representative set of flow instances where the 
network applications are known. The built classifier can be 
used to determine the class of an unknown instance. A 
more detailed introduction to the problem is presented in 
[3] and [4]. 

Several researchers have published approaches based 
on single ML algorithms. In this paper we compare the 
performance of previously tested algorithms and several 
algorithms that have not yet been applied. In addition to 
classification accuracy we also evaluate performance in 
terms of training and classification time and compare the 
complexity of the algorithms. As the actual feature set 
used to build a classifier has a crucial impact on the 
accuracy we evaluate and compare different feature 
selection techniques and provide insights into which 
features are the most useful for an effective classification. 
Furthermore, we investigate the influence of factors such 
as the size of the training data set and the flow timeout. 

For our evaluation we use flow data obtained from 
several traffic traces captured at different locations within 
the Internet. We find significant performance differences 
between different algorithms and identify several 
algorithms that provide high accuracy (up to 99%), fast 
(near real-time) classification (tens of microseconds per 
instance) and have reasonably low configuration 
complexity. 

The paper is structured as follows. Section 2 provides a 
brief overview about related work. Section 3 and 4 
introduce the feature selection and ML techniques we use. 
Section 5 describes our dataset. Section 6 presents the 
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results of the evaluation and section VII concludes and 
outlines future work. 

II. RELATED WORK 

There have been several proposals for the use of ML or 
statistical clustering techniques to separate network 
applications based on traffic statistics. In [4] the authors 
use nearest neighbour (NN) and linear discriminate 
analysis (LDA) to map different applications to different 
QoS classes. The Expectation Maximization (EM) 
algorithm was used in [5] to cluster flows into different 
application types. The authors of [6] have used 
correlation-based feature selection and a Naive Bayes 
classifier to differentiate between different application 
types. The authors of [8] use principal component analysis 
(PCA) and density estimation to classify traffic into 
different applications. We have proposed an approach for 
identifying different network applications based on greedy 
forward feature search and EM in [3]. The authors of [7] 
have developed a method that characterises host behaviour 
on different levels to classify traffic into different 
application types. 

III. FEATURE SELECTION  

A feature set describing a data instance might range in 
size from two to several hundred features. The 
representative quality of a feature set greatly influences 
the effectiveness of ML algorithms. It is therefore 
desirable to carefully select the number and type of 
features used to train the ML algorithm, a process known 
as feature selection. The benefits of feature selection are 
two-fold. Reducing the number of features decreases 
learning and classification times, while the removal of 
irrelevant or redundant features can also increase the 
classification accuracy. 

Feature selection algorithms are broadly categorised 
into the filter or wrapper model [9]. Filter model 
algorithms rely on a custom metric to rate and select 
features for use with any ML algorithm. The wrapper 
method evaluates the performance of different subsets 
using specific ML algorithms hence features are biased 
towards the algorithm used. The feature subsets are 
generated by search techniques (see Section III.C). 

A. Filter Model 

There are two classes of filter model algorithms: 
ranking and subset search. Ranking algorithms provide a 
goodness measure for individual features while subset 
search algorithms provide a goodness measure for subsets 
of features. In this study we use two subset search 
algorithms. 

Consistency-based subset search 
The consistency-based subset search algorithm [10] 

evaluates subsets of features simultaneously and selects 

the optimal subset. The optimal subset is the smallest 
subset of features that can identify instances of a class as 
consistently as the complete feature set. 

To determine the consistency of a subset, the 
combination of feature values representing a class are 
given a pattern label. All instances of a given pattern 
should thus represent the same class. If two instances of 
the same pattern represent different classes, then that 
pattern is deemed to be inconsistent. The overall 
inconsistency of a pattern p is: 

pp cnpIC −=)( ,     (1) 

where np is the number of instances of the pattern and 
cp the number of instances of the majority class of the np 
instances. The overall inconsistency of a feature subset S 
is the ratio of the sum of all the pattern inconsistencies to 
the sum of all the pattern instances nS 
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The entire feature set is considered to have the lowest 
inconsistency rate, and the subset most similar or equal to 
this is considered the optimal subset. 

Correlation-Based Feature Selection (CFS) 
The CFS algorithm [11] uses an evaluation heuristic 

that examines the usefulness of individual features along 
with the level of inter-correlation among the features. High 
scores are assigned to subsets containing attributes that are 
highly correlated with the class and have low inter-
correlation with each other. 

Conditional entropy is used to provide a measure of the 
correlation between features and class and between 
features. If H(X) is the entropy of a feature X and H(X|Y) 
the entropy of a feature X given the occurrence of feature 
Y the correlation between two features X and Y can then be 
calculated using the symmetrical uncertainty:  
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The class of an instance is considered to be a feature. 
The goodness of a subset is then determined as: 
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where k is the number of features in a subset, 
cir
the 

mean feature correlation with the class and 
iir the mean 

feature correlation. The feature-class and feature-feature 
correlations are the symmetrical uncertainty coefficients 
(Equation 3). 
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B. Wrapper Model 

The wrapper model uses the performance of a 
predetermined ML algorithm to determine which features 
to select. The subset that produces the highest overall 
accuracy is deemed the best. As this method involves 
repeatedly executing the algorithm for each subset, slow 
algorithms and large feature spaces are very 
computationally expensive or impractical time-wise. Due 
to this, it was not possible to use the wrapper model for all 
algorithms (see section VI.A).  

C. Search Techniques 

Feature selection methods as used in the study require a 
search algorithm to generate candidate subsets from the 
feature space. The following common search techniques 
were used: 

� Greedy 

� Best First 

� Genetic 

The Best First and Greedy search techniques require a 
starting point and search direction to be specified. We use 
forward and backward searches. A search that begins with 
zero features and increases size on each iteration is known 
as a forward search. Starting with all features and reducing 
the subset size on following iterations is known as a 
backward search.  

Greedy 
Greedy search considers changes local to the current 

subset through the addition or removal of features.  For a 
given ‘parent’ set, a greedy search examines all possible 
‘child’ subsets through either the addition or removal of 
features. The child subset that shows the highest goodness 
measure then replaces the parent subset, and the process is 
repeated. The process terminates when no more 
improvement can be made.  

Best First 
Best First search is similar to greedy search in that it 

creates new subsets based on addition or removal of 
features to the current subset. However, it has the ability to 
backtrack along the subset selection path to explore 
different possibilities when the current path no longer 
shows improvement. To prevent backtracking through all 
possibilities in the feature space, a limit is placed on the 
number of non-improving subsets that are considered. In 
our evaluation we chose a limit of five.  

Genetic 
A Genetic search attempts to find an optimal solution 

using evolutionary concepts [24]. An initial population of 
individuals (solutions) is generated at random or 
heuristically. In every evolutionary step, known as a 

generation, the individuals in the current population are 
decoded and evaluated according to some predefined 
quality criterion (fitness function). To form a new 
population (the next generation), individuals are selected 
according to their fitness. Population selection schemes 
ensure that only high-fitness (good) individuals stand a 
better chance of ‘reproducing’, while unsuitable 
individuals are more likely to disappear.  

Selection alone cannot introduce any new individuals 
into the population, i.e. it cannot find new points in the 
search space. These are generated by genetically inspired 
operators, of which the most well known are crossover and 
mutation. We chose an initial random subset population of 
20, and performed 20 evolutionary steps. The crossover 
probability used was 0.6, while the probability of subset 
mutation was 0.033.  

IV. MACHINE LEARNING ALGORITHMS 

We use a range of supervised ML algorithms. A 
supervised or ‘inductive learning’ algorithm forms a 
model based on training data and uses this model to 
classify new data. We use the following algorithms: 

� C4.5 Decision Tree 

� Naive Bayes 

� Nearest Neighbour 

� Naive Bayes Tree 

� Multilayer Perceptron Network 

� Sequential Minimal Optimisation 

� Bayesian Networks  

Meta algorithms such as boosting or bagging can 
improve accuracy by combining multiple weaker 
classifiers into one strong classifier. We use the AdaBoost 
algorithm to increase the performance of C4.5 and Naive 
Bayes. 

In the following subsections we briefly describe all the 
algorithms.  

A. C4.5 Decision Tree 

The C4.5 algorithm [13] creates a model based on a 
tree structure. Nodes in the tree represent features, with 
branches representing possible values connecting features. 
A leaf representing the class terminates a series of nodes 
and branches. Determining the class of an instance is a 
matter of tracing the path of nodes and branches to the 
terminating leaf. C4.5 uses the ‘divide and conquer’ 
method to construct a tree from a set S of training 
instances. If all instances in S belong to the same class, the 
decision tree is a leaf labelled with that class. Otherwise 
the algorithm uses a test to divide S into several non-trivial 
partitions. Each of the partitions becomes a child node of 
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the current node and the tests separating S is assigned to 
the branches.  

C4.5 uses two types of tests each involving only a 
single attribute A. For discrete attributes the test is A=? 
with one outcome for each value of A. For numeric 
attributes the test is A≤θ where θ is a constant threshold. 
Possible threshold values are found by sorting the distinct 
values of A that appear in S and then identifying a 
threshold between each pair of adjacent values. For each 
attribute a test set is generated. To find the optimal 
partitions of S C4.5 relies on greedy search and in each 
step selects the test set that maximizes the entropy based 
gain ratio splitting criterion (see [13]).  

The divide and conquer approach partitions until every 
leaf contains instances from only one class or further 
partition is not possible e.g. because two instances have 
the same features but different class. If there are no 
conflicting cases the tree will correctly classify all training 
instances. However, this over-fitting decreases the 
prediction accuracy on unseen instances.  

C4.5 attempts to avoid over-fitting by removing some 
structure from the tree after it has been built. Pruning is 
based on estimated true error rates. After building a 
classifier the ratio of misclassified instances and total 
instances can be viewed as the real error. However this 
error is minimised as the classifier was constructed 
specifically for the training instances. Instead of using the 
real error the C4.5 pruning algorithm uses a more 
conservative estimate, which is the upper limit of a 
confidence interval constructed around the real error 
probability. With a given confidence CF the real error will 
be below the upper limit with 1–CF. C4.5 uses subtree 
replacement or subtree raising to prune the tree as long as 
the estimated error can be decreased. 

B. Naive Bayes 

Naive-Bayes is based on the Bayesian theorem [14]. 
This classification technique analyses the relationship 
between each attribute and the class for each instance to 
derive a conditional probability for the relationships 
between the attribute values and the class. We assume that 
X is a vector of instances where each instances is described 
by attributes {X1,...,Xk} and a random variable C denoting 
the class of an instance. Let x be a particular instance and c 
be a particular class. 

Using Naive-Bayes for classification is a fairly simple 
process. During training, the probability of each class is 
computed by counting how many times it occurs in the 
training dataset. This is called the prior probability 
P(C=c). In addition to the prior probability, the algorithm 
also computes the probability for the instance x given c. 
Under the assumption that the attributes are independent 
this probability becomes the product of the probabilities of 
each single attribute. Surprisingly Naive Bayes has 

achieved good results in many cases even when this 
assumption is violated. 

The probability that an instance x belongs to a class c 
can be computed by combining the prior probability and 
the probability from each attribute’s density function using 
the Bayes formula: 

( ) ( | )
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The denominator is invariant across classes and only 

necessary as a normalising constant (scaling factor). It can 

be computed as the sum of all joint probabilities of the 

enumerator: 

( ) ( ) ( | )j jj
P X x P C P X x C= = =∑ .   (6) 

Equation 5 is only applicable if the attributes Xi are 
qualitative (nominal). A qualitative attribute takes a small 
number of values. The probabilities can then be estimated 
from the frequencies of the instances in the training set. 
Quantitative attributes can have a large number (possibly 
infinite) of values and the probability cannot be estimated 
from the frequency distribution. This can be addressed by 
modelling attributes with a continuous probability 
distribution or by using discretisation. Discretisation 
transforms the quantitative attributes into qualitative 
attributes, and avoids the problem of using a continuous 
probability density function that does not match the true 
density. We evaluate Naive Bayes using both kernel 
density estimation (NBK) and discretisation (NBD). 

C. Bayesian Networks 

A Bayesian Network is a combination of a directed 
acyclic graph of nodes and links, and a set of conditional 
probability tables. Nodes can represent features or classes, 
while links between nodes represent the relationship 
between them.  

Conditional probability tables determine the strength of 
the links. There is one probability table for each node 
(feature) that defines the probability distribution for the 
node given its parent nodes. If a node has no parents the 
probability distribution is unconditional. If a node has one 
or more parents the probability distribution is a conditional 
distribution where the probability of each feature value 
depends on the values of the parents. 

Learning in a Bayesian network is a two-stage process. 
First the network structure Bs is formed (structure 
learning) and then probability tables Bp are estimated 
(probability distribution estimation).  

We use a local score metric to form the structure, while 
node quality is determined using K2 search and the 
Bayesian Metric [12]. An estimation algorithm is used to 
create the conditional probability tables for the Bayesian 
Network. We use the Simple Estimator, which estimates 
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probabilities directly from the dataset [21]. The simple 
estimator calculates class membership probabilities for 
each instance, as well as the conditional probability of 
each node given its parent node in the Bayes network 
structure. 

There are numerous other combinations of structure 
learning and search technique that can be used to create 
Bayesian Networks.  

D. Nearest Neighbour (NN) 

The k Nearest Neighbour (k-NN) algorithm is a simple 
predictive ‘lazy’ learning method. When a new instance is 
presented to the model, the algorithm predicts the class by 
the majority class of the k most similar training instances 
stored in the model (based on a distance metric). We only 
use k=1 in this study. The distance between two instances 
is based on the difference between feature values. We use 
the following distance metric, which is derived from [15]: 

∑
=

=
n

i

iyxfyxD
1

i ),(),( .    (7) 

This equation evaluates the distance D between the two 
instances x and y, where xi and yi indicate the value of the 
ith feature. For numeric features f(xi,yi) = (xi – yi)

2
, while 

for nominal values f(xi,yi) = 0 if features match, or 1 if they 
differ. 

For example, an instance x is to be classified. The 
distance D is calculated between x and each training 
instance y. That is, if there were 200 training instances, 
then x would be evaluated against each of these, starting 
from an arbitrary position. The instance of y that returns 
the smallest value of D is considered the closest and thus x 
is assigned the class label of this instance. 

E. Naive Bayes Tree (NBTree) 

The NBTree [16] is a hybrid of a decision tree 
classifier and a Naive Bayes classifier. Designed to allow 
accuracy to scale up with increasingly large training 
datasets, the NBTree algorithm has been found to have 
higher accuracy than C4.5 or Naive Bayes on certain 
datasets. The NBTree model is best described as a decision 
tree of nodes and branches with Bayes classifiers on the 
leaf nodes. 

As with other tree-based classifiers, NBTree spans out 
with branches and nodes. Given a node with a set of 
instances the algorithm evaluates the ‘utility’ of a split for 
each attribute. If the highest utility among all attributes is 
significantly better than the utility of the current node the 
instances will be divided based on that attribute. Threshold 
splits using entropy minimisation are used for continuous 
attributes while discrete attributes are split into all possible 
values. If there is no split that provides a significantly 
better utility a Naive Bayes classifier will be created for 
the current node. 

The utility of a node is computed by discretising the 
data and performing 5-fold cross validation to estimate the 
accuracy using Naive Bayes. The utility of a split is the 
weighted sum of the utility of the nodes, where the 
weights are proportional to the number of instances in 
each node. A split is considered to be significant if the 
relative (not the absolute) error reduction is greater than 
5% and there are at least 30 instances in the node. 

F. Multilayer Perceptron (MLP) 

The basic building block of a neural network [17] such 
as a multilayer perceptron is a processing unit called a 
neuron (or simply node). The output of a neuron is a 
combination of the multiple inputs from other neurons. 
Each input is weighted by a weight factor. A neuron 
outputs or fires if the sum of the inputs exceeds a threshold 
function of the neuron. The output from a multiplayer 
perceptron is purely predictive. As there is no descriptive 
component, the resulting classification can be hard to 
understand (black box). 

The architecture of the multilayer perceptron consists 
of a single input layer of neurons, one or multiple hidden 
layers and a single output layer of neurons (see Figure 1). 
In order to learn the perceptron must adjust it weights. The 
learning algorithm compares the actual output to the 
desired output to determine the new weights repetitively 
for all training instances. The network trains with the 
standard backpropagation algorithm, which is a two-step 
procedure. The activity from the input pattern flows 
forward through the network, and the error signal flows 
backward to adjust the weights. The generalized delta rule 
adjusts the weights leading out of the hidden layer neurons 
and the weights leading into the output layer neurons. 
Using the generalized delta rule to adjust the weights 
leading to the hidden units is backpropagating the error-
adjustment.  
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Figure 1: Backpropagation network 

Our multiplayer perceptron uses sigmoid threshold 
functions. The number of input nodes is equal to the 
number of attributes and the number of output nodes is 
equal to the number of classes. There is only one hidden 
layer, which has as many nodes as the sum of the number 
of attributes and the number of classes divided by two. As 
we use different feature selection techniques that produce 
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different feature subsets the number of input and hidden 
nodes differs depending on the number of features used. 
By default the algorithm we use performs normalisation of 
all attributes including the class attribute (all values are 
between -1 and +1 after the normalisation). The learning 
rate (weight change according to network error) was set to 
0.3, the momentum (proportion of weight change from the 
last training step used in the next step) to 0.2 and we ran 
the training for 500 epochs (an epoch is the number of 
times training data is shown to the network). 

G. Sequential Minimal Optimisation (SMO) 

The SMO algorithm was developed as a faster, more 
scalable Support Vector Machine (SVM) [22]. These 
improvements are related to increasing the speed of 
training and as such classification is performed as with 
standard SVM. 

The basic process behind SVMs for classification is to 
map certain training data (xi,yi),i=1,…,l where each 
instance is characterized by a set of feature values xi∈Rn 
and a class label y∈{1,-1}l, into a higher-dimensional 
feature space Φ(x) for separation by a hyperplane. Support 
Vector Machines are binary classifiers, meaning only two 
types of data can be separated by one classification model. 
Multiple classifiers are created for multi-class scenarios. 
Figure 2 illustrates a linear SVM hyperplane separating 
two classes. 

 

Feature space 

Optimal Hyperplane 

Margin of 
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Figure 2: Optimal hyperplane and margin of separation 

The linear algorithm can be evaluated in the feature 
space using the dot product Φ(x).Φ(y), although this is 
highly computational. Positive definite kernel functions 
k(x,y) have been shown to correspond to feature space dot 
products and are therefore substituted in place of the dot 
product: 

( , ) ( ( ) ( ))k x y x y= Φ ⋅Φ .   (8) 

The decision function given by the SVM is thus in the 
form: 

1

( ) ( , )
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where b is a bias parameter, x the training example and 
vi is the solution to a quadratic optimization problem. The 
quadratic optimization problem relates to determining the 
margin of separation extending from the hyperplane. SMO 

is in fact a faster, more memory efficient solution to the 
QP problem vi. A more in depth treatment of the QP 
problem and the SMO solution are found in [23]. 

Implementing an SVM classifier requires the 
configuration of a number of parameters. Parameters we 
are most interested in are the complexity parameter C, the 
polynomial exponent p, for each of which we use the value 
of 1. The input space is also normalised before training. 

H. AdaBoost 

Boosting is a process used to increase the performance 
of weak learning algorithms.  It can also be used on strong 
algorithms, but improvements are less dramatic. Boosting 
works by combining the classifiers produced by the 
learning algorithm over a number of distributions of the 
training data. We use an implementation of the AdaBoost 
algorithm developed in [18]. 

V.  EXPERIMENTAL APPROACH 

This section describes the data and features that form 
the basis of our study as well as the software and 
performance metrics used in the evaluation.   

A. Traffic Classes 

In our study a class represents an individual 
application. Example instances of each class are provided 
to the ML algorithm at training time. For accurate 
classification, the class instances used for training must be 
truly representative of the class.  

A drawback of using public anonymised trace files is 
the lack of payload data, making verification of the true 
application impossible. We chose a number of prominent 
applications (see Table 1) and selected the flows based on 
the IANA defined well-known ports (<1024). An 
exception to this is Half-Life (port 27015), but its default 
port has been well known for several years. We argue that 
the majority of flows on these ports are in fact of the 
expected application. Even for p2p application this was 
confirmed in [1]. 

Nevertheless it is almost certain that some flows are not 
of the expected applications. We believe that these flows 
would tend to be misclassified and hence lower 
classification accuracy, and as such our results still 
represent a lower bound.  

Table 1: Port numbers and classes 

Class Description 

20 FTP-Data 

23 Telnet 

25 SMTP 

53 DNS 

80 HTTP 
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27015 Half-Life 

B. Features 

Features are attributes that as a set describe an instance 
of a class. Here each instance represents a traffic flow 
generated by an application. We use NetMate [19] to 
process packet traces, classify packets and compute 
features. We classify packets to flows based on source IP 
and source port, destination IP and destination port. Flows 
are bidirectional and the first packet seen by the classifier 
determines the forward direction. 

Flows have limited duration. UDP flows are terminated 
by a flow timeout, while TCP flows are terminated upon 
proper connection teardown (TCP state machine) or after a 
timeout (whichever occurs first). We use a 600 second 
flow timeout, which is the default timeout of NeTraMet 
(the implementation of the IETF Realtime Traffic Flow 
Measurement working group’s architecture) [25]. We 
consider only UDP and TCP flows that have at least 1 
packet in each direction and transport at least 1 byte of 
payload. This excludes flows without payload (e.g. failed 
TCP connection attempts) or ‘unsuccessful’ flows (e.g. 
requests without responses).  

We compute the following features: protocol, duration, 
volume in bytes and packets, packet length (minimum, 
mean, maximum, standard deviation) and inter-arrival 
times (minimum, mean, maximum, standard deviation). 
Aside from protocol and duration all features are 
computed separately in both directions of a flow. Packet 
length derived features are based on the IP length 
excluding link layer overhead. Inter-arrival times have 
microsecond precision and accuracy as DAG cards were 
used for the capturing (see [20]). All of the 22 features can 
be efficiently computed solely from the packets collected 
within each individual flow. Computing features in both 
flow directions also requires that packets in both directions 
can be observed. 

We do not use TCP specific features such as the 
number of SACKS etc. as these are only valid for TCP 
flows and can also vary between TCP implementations. 
Server port is not used as an attribute. 

A list of all features and their abbreviations is included 
in the appendix. 

C. Data Traces 

We use data from three publicly available NLANR 
network traces [20]. The chosen traces were captured in 
different years and at different locations. We used flow 
data from four 24-hour periods of these traces (auckland-
vi-20010611, auckland-vi-20010612, leipzig-ii-20030221, 
nzix-ii-20000706). 

As a 24-hour period of the packet traces contains up to 
several million flows, our data set is sampled from the 
total number of flows. We use n-out-of-N stratified 

sampling to sample 1,000 flows randomly for each class 
and each trace. However, for some of the classes there 
were fewer flows in some of the traces. Table 2 shows the 
number of flows in the individual and combined traces. 

Table 2: Number of flows per trace 

Trace Number of flows 

Auckland-vi-20010611 6,000 

Auckalnd-vi-20010612 6,000 

Leipzig-ii-20030221 5,254 

NZIX-ii-20000706 4,743 

Total 21,997 

 

It is important to have balanced classes (classes of 
roughly equal size). Otherwise recall would be biased as 
all algorithms optimise towards overall accuracy (thus 
favouring the large classes) and overall accuracy would be 
biased towards the recall of the large classes. Furthermore, 
our goal is to evaluate the accuracy of ML algorithms 
without over-fitting to particular traffic mixes (prior 
probabilities of classes).  

Table 3 shows the percentage of flows and bytes the six 
chosen applications constitute in the different traces. The 
actual traffic mix very much depends on location and time. 
In the Auckland and NZIX trace our traffic classes account 
for roughly 75% of the traffic. However, for the Leipzig 
trace the amount covered is much less due to a large 
amount of p2p traffic in the trace.  

Table 3: Percentage of flows/bytes of the applications per trace 

 Percentage of Flows / Bytes [%] 

Port Auck-11 Auck-12 Leipzig NZIX 

20 0.2 / 2.6 0.2 / 1.5 0.1 / 0.6 0.5 / 4.3 

23 0.1 / 0.1 1.8 / 0.1 0.1 / 0.1 0.1 / 0.1 

25 2.0 / 6.7 2.6 / 6.1 0.4 / 0.4 2.8 / 18.8 

53 3.7 / 0.6 3.9 / 0.5 2.0 / 0.1 16.6 / 2.4 

80 67.0 / 66.7 64.5 / 61.2 11.3 / 20.3 52.5 / 49.8 

27015 0.7 / 0.1 1.3 / 0.1 0.7 / 0.1 0.1 / 0.6 

Sum 73.7 / 76.8 74.3 / 69.5 14.6 / 21.6 72.6 / 76 

 

D. Evaluation Metrics 

There are several approaches to testing the accuracy of 
supervised learning algorithms. We use the common 
method of k-fold cross validation. In this process the data 
set is divided into k subsets. Each time, one of the k 
subsets is used as the test set and the other k-1 subsets 
form the training set. Error statistics are calculated across 
all k trials. This provides a good indication of how well the 
classifier will perform on unseen data. We use k=10 and 
compute three standard performance metrics:  
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1. Accuracy is the percentage of correctly classified 
instances over the total number of instances. 

2. Precision is the number of class members classified 
correctly over the total number of instances classified 
as class members. 

3. Recall (or true positive rate) is the number of class 
members classified correctly over the total number of 
class members. 

Rates are expressed as a decimal value between 0 and 1 (0 
being equivalent to 0% and 1 being 100%) 

E. ML Software 

Experiments were conducted using the WEKA 
(Waikato Environment for Knowledge Analysis) software 
version 3.4.4 [12]. Widely used in the academic 
community, WEKA contains Java implementations of all 
the algorithms described above. 

VI. RESULTS AND ANALYSIS 

First we compare different feature selection methods 
and identify strong features for discriminating between the 
classes. We then compare the classification accuracy of 
the different algorithms. Finally we investigate other 
factors such as the size of the training data and value of 
the flow timeout. 

A. Feature Selection 

Feature subset selection was performed on the four 
individual traces and a dataset consisting of the all the 
traces combined. Best First, Genetic and Greedy search 
methods were used for the three different subset evaluation 
schemes (see section III). Wrapper feature selection was 
used for all algorithms and trace files except Nearest 
Neighbour, MLP and NBTree due to their very slow 
learning speed.  

Figure 3 shows the size of the subsets identified as 
percentage of the full feature set and the mean accuracy 
for each subset evaluator, compared with the mean 
accuracy obtained using all features. The values are 
averaged for all traces, ML algorithms and search 
techniques.  

Both filter methods show a similar aggressiveness 
(Consistency slightly more) in reducing the size of the 
feature space. On average the wrapper method does not 
reduce subsets as aggressively as the filter methods (~59% 
compared to ~33% for CFS and ~32% for Consistency). 
Both filter methods reduce the classification accuracy, 
while the wrapper method on average provides an increase 
in accuracy when compared to using the full feature set. 
This is because the wrapper method sometimes increases 

accuracy (mainly for algorithms using Bayes) but it never 
decreases accuracy (see Figure 7). In general CFS 
performs considerably faster than Consistency, with 
wrapper evaluation by far the slowest. 
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Figure 3: Mean accuracy and percentage of full feature space for 

different subset evaluators 

On average there is no significant difference in feature 
reduction and accuracy between the search methods. 
Greedy search provides slightly larger reduction for the 
price of slightly lower accuracy. There is, however, a 
substantial difference in the time taken to perform the 
searches. Since the best features sets found on average 
contained only half of the available features forward 
searches were generally at least 2-3 times faster than 
backwards searches (genetic search being somewhere 
between forward and backward search). 

We also examine the frequency at which particular 
features are included in the selected feature subsets. This 
provides an excellent indicator as to which features are 
likely to be better at discriminating the classes. Figure 4 
graphs the percentage of selected feature sets in which a 
given feature was included, across all the tests. 

‘Max forward packet length’ (maxfpktl) is clearly the 
strongest feature, appearing in almost 90% of subsets, 
while ‘max backwards packet length’ (maxbpktl) and 
protocol are also strong discriminators, appearing in over 
65% of subsets. Inter-arrival time and byte volume 
statistics are much less frequently used. 

 In Figure 5 we can see the percentage of feature sets in 
which a feature appears according to subset selection 
method. The difference in the CFS and Consistency 
algorithms is apparent, with the former skewed towards 
using packet length statistics and the latter having a more 
even spread of features, with slight bias towards inter-
arrival times. Interestingly the wrapper method appears 
almost as a combination of the consistency and CFS 
methods, with an even spread across the feature set and 
some bias toward packet length statistics. 
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Figure 4: Percentage of subsets in which feature was selected 
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Figure 5: Percentage of subsets in which feature selected by subset evaluation method 
 

The feature subsets selected by the different methods 
are consistent across the trace files, indicating that better 
discriminating features are independent of location and 
date (and only depend on the traffic classes). 

In summary both CFS and Consistency subsets provide 
aggressive reductions of the feature space, but result in 
greatly reduced accuracy. The wrapper method 
significantly reduces the feature space while increasing 
accuracy for some algorithms, and should be the method 
of choice if accuracy is to be maximised. Using the 
wrapper on larger datasets (>10,000 instances per class) 
and/or large feature would not be recommended due to 
large build times (several hundred hours would not be 
unusual). There was no particular search method that stood 
out as being greatly superior. Best first searches provide a 
slightly better accuracy with slightly less reduction of the 
feature set compared with greedy searches.  

B. Learning Algorithms 

The mean accuracy of each algorithm across all feature 
subsets and traces is shown in Figure 6. The algorithms 
that stand out according to overall accuracy are Bayes Net, 
C4.5 and AdaBosot C4.5, followed by NBTree, AdaBoost 
NBD and Nearest Neighbour. MLP and SMO did not 

perform as well as expected. It should be noted that both 
algorithms have a large number of parameters and tuning 
them could result in higher accuracy. However as we 
achieved very good performance with other algorithms we 
currently do not see the need for tuning of MLP and SMO.  
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Figure 6: Mean accuracy of machine learning algorithms  

The change in overall accuracy for each algorithm 
according to feature subset evaluation method, compared 
with the accuracy obtained using the full feature space is 
shown in Figure 7.  

A surprising result is the poor gains for NBK using the 
CFS selected subsets, as previous work [6] has shown this 
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combination to achieve 95% accuracy (using quite 
different features however). Accuracies in this region were 
only achieved using Naïve Bayes with discretised input 
data. Using a wrapper subset with kernel density 
estimation does show a large improvement, though. This 
may suggest that for our data some features are not well 
represented by continuous distributions. 
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Figure 7: Average change in overall accuracy by subset selection 

method compared against using full feature set 

The algorithms most sensitive to feature space 
reduction are MLP and SMO, which contributes to the low 
average accuracy seen in Figure 6. The decision trees 
showed comparatively small changes with feature 
selection. This is expected as tree-based algorithms 
essentially perform feature reduction as part of the 
learning process (the tree does not include irrelevant 
features). Bayes Net also shows relatively small changes 
in accuracy with feature selection. The Naive Bayes 
algorithms benefit most from using the wrapper technique. 

The mean accuracy in Figure 6 does not necessarily 
indicate the maximum performance of the algorithms, as 
some feature selection methods drastically reduced the 
average (the case for MLP and SMO). In addition, the 
accuracy distributions for all traces and search methods 
were consistent across the traces; it seems that no 
particular trace is harder or easier to classify then the 
others. Therefore, to decide which algorithm provides best 
accuracy we focus on the maximum achievable accuracies 
on the combined trace, and also examine class metrics 

Figure 8 plots the mean precision and recall rates and 
accuracy across the traffic classes for the combined trace 
and the feature subset that maximises the accuracy 
(determined by wrapper for Naive Bayes, otherwise the 
full feature set). 

Algorithms with very high overall accuracies also have 
high precision and recall values, with little difference 
between them. AdaBoost C4.5 (99.167%), C4.5 
(98.643%) and NBTree (98.135%) achieved the highest 
overall accuracy. All other algorithms besides NBK, SMO 
and MLP achieved accuracies above 95%.  
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Figure 8: Average precision and recall of all traffic classes and 

accuracy for the combined trace with best feature set 

To examine if particular traffic classes are harder to 
classify than others we create boxplot of the recall for each 
class obtained from all algorithms and traces using the full 
feature set (see Figure 9). The bottom of a box represents 
the 1st quartile, the line within a box is the median and the 
top represents the 3rd quartile. Whiskers extend 1.5 times 
the inter-quartile range and circles denote outliers. 

Most classes have very high recall across the 
algorithms. DNS in particular has very few outliers and a 
relatively narrow distribution. Telnet and FTP-data appear 
to be the most difficult to classify, with FTP-data having 
several significant outliers. However, the median values 
for each class are quite high, and a high recall is achieved 
for each when using one of the better performing 
algorithms. 
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Figure 9: Recall for each traffic class using all features  

Besides accuracy and tolerance to feature set reduction 
we have also defined several additional criteria to assess 
the algorithms:  

Classifications per second: The number of 
classifications the algorithm performs when testing the 
combined trace with all features. Speed is important to 
perform near real-time classification on large numbers of 
simultaneous networks flows. 

Build Time: The time required to build a classification 
model using the training dataset. Building the classifier 
can be done offline but as building times may reach 
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several days for certain classifiers, shorter build times may 
be more convenient. 

Setup Complexity: The effort required in configuring an 
algorithm and the possible level of ‘fine tuning’ required. 
Algorithms with many parameters must be tailored to 
specific datasets to achieve best performance, which can 
be a cumbersome process and can lead to over fitting. 

Performance metrics were measured using a 3.4 GHz 
Pentium 4 workstation with 4GB of RAM. 

Table 4: Performance and setup complexity by algorithm 

Algorithm 
Classifications 

per second 

Build Time 

(seconds) 
Complexity 

C4.5 54,700 23.77 Moderate 

AdaBoostC4.5 11,188 266.99 Moderate 

Nearest 

Neighbour 
8 NA Low 

NBTree 5,974 1266.12 Moderate 

Bayes Net 9,767 13.14 
Moderate-

high 

NBD 27,049 10.86 Low 

AdaBoost NBD 1,908 158.24 Low 

NBK 22.6 2.97 Low 

SMO 28,958 115.84 Very High 

MLP 14,394 2030.59 High 

 

Examining classifications per second, C4.5 has a 
considerable advantage, and is markedly faster than the 
closest algorithms, NBD, SMO and MLP. Nearest 
Neighbour is by far the slowest algorithm (a result of 
being a lazy learner). NBK is also very slow compared to 
the other algorithms. 

NBK provides the fastest build time of the algorithms, 
followed by Bayes Net and C4.5. NBTree and MLP have 
the longest training times. The increased accuracy of 
AdaBoost comes at a cost of speed, with AdaBoost C4.5 
and AdaBoost NBD performing 7-17 times slower than the 
non-boosted versions.  

C. Accuracy Depending on the Training Data Size 

To investigate the influence of the size of the training 
dataset on the accuracy several new datasets were created 
using the stratified sampling method previously described. 
We use only C4.5, BayesNet and NBD, as they showed 
the best accuracy and also are considerably faster than 
slow algorithms such as MLP or NN. Feature selection 
was not performed for these datasets. 

The per-trace datasets contained up to 10,000, 50,000, 
or 100,000 flow samples of each traffic class. These 
datasets were then combined, creating datasets with up to 

40,000, 200,000 or 400,000 samples of each class. The 
original combined dataset is also included for comparison.  

For traffic classes with flows less than the sample size, 
all flows were included. It should be noted that telnet, 
FTP-data, half-life and SMTP have a maximum of 1,727, 
18,838, 107,227 and 241,251 flows respectively. This 
introduces some bias against these classes (as the 
algorithms optimise towards overall accuracy), but our 
goal here is to show the overall trend. The datasets were 
evaluated using 10-fold cross validation.  

Figure 10 shows an increase in accuracy with 
increasing sample size. The transition between 4,000 and 
40,000 samples provides the largest increase in accuracy. 
The changes in accuracy are more or less proportionate 
between the three algorithms. Overall one might expect 
gains in accuracy to diminish as sample size increases. 
Gains above 200,000 samples per class came at a 
significant processing cost, as training times increased 
significantly with the larger sample size. 
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Figure 10: Overall accuracy by training data size 

D. Accuracy Depending on Flow Timeout 

The original combined dataset was re-created with two 
new flow timeouts, 60 seconds and 1800 seconds, to 
compare the influence of flow timeout on classification 
performance. Short timeouts increase the number of UDP 
flows whereas long timeouts decrease the number of UDP 
flows. Although we use TCP semantics to detect flow 
termination still a number of TCP flows are terminated by 
timeouts. Short timeouts result in the chopping of some 
long-term TCP flows with large idle times. Figure 11 plots 
the overall accuracy depending on the timeout value. 
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Figure 11: Overall accuracy depending on flow timeout 

The overall accuracy for each of the algorithms 
increases slightly with increasing flow timeout length. 
Figure 12 examines the recall for the individual traffic 
classes against flow timeout length for the C4.5 algorithm. 
These trends are similar for Bayes Net and NBD. 
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Figure 12: Recall depending on flow timeout per traffic class, C4.5 

algorithm 

The UDP flows (half-life and DNS) do not benefit 
from an increased flow timeout but the accuracy decrease 
is negligible. SMTP, FTP and HTTP applications benefit 
slightly moving from 60s to 600s, with little difference at 
1800s. It is possible that these classes stay open-and-idle 
more than other classes, and thus benefit from having 
statistics from the entire flow. Against this trend, telnet 
sees a significant reduction in recall, probably a result of 
the significantly reduced number of flow instances (the 
60s timeout has twice the number of training flows as for 
1800s). 

An obvious drawback of using long flow timeouts is 
that there is a longer wait before a flow can be classified. 
Overall, the results suggest that in most cases accuracy is 
essentially unaffected by using short timeouts (e.g. 60 
seconds). 

E. Accuracy for Peer-to-peer Traffic Classes 

To determine whether our method of flow classification 
also extends to other traffic classes, we evaluate a dataset 
containing traffic of peer-to-peer file sharing applications. 
This dataset contains 1,000 flows of DNS, HTTP, 
eDonkey, BitTorrent and Kazaa. These flows are sampled 
from a trace hand-classified by using application protocol 
signatures. CFS, Consistency and wrapper subset 
evaluation were run for C4.5, Bayes Net and NBD 
algorithms. Figure 13 shows the accuracy depending on 
the feature selection technique and the ML algorithm. 
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Figure 13: Accuracy by subset selection method p2p traffic 

Encouragingly the features selected by the three subset 
evaluation methods show a similar trend to those selected 
for the original classes. CFS was again biased towards 
packet length statistics, while Consistency preferred inter-
arrival times. The ranking of subset evaluators is the same, 
with the wrapper method once more providing the highest 
accuracy. The ranking of the algorithms has changed: 
Bayes Net slightly outperformed C4.5. The maximum 
accuracies obtained for each algorithm are 98.98% for 
Bayes Net, 97.88% for C4.5 and 97.28% for NBD. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper we have evaluated the ability of different 
machine learning algorithms to identify network 
applications based on statistical payload-independent flow 
features. We show that there is great potential in using this 
method. With 22 features we are able to achieve 
classification accuracies of over 99% with two algorithms, 
and accuracies above 97% with several others.  

We also have evaluated three different feature selection 
techniques. We found that the wrapper method provides 
the best accuracy, but is slow to execute. It is able to 
improve accuracy over using the whole feature set, while 
still reducing the features space significantly. The filter 
methods are much faster but provide significantly less 
accuracy than using all features. CFS is generally faster 
and more accurate than the Consistency metric. Analysis 
of the selected features shows that packet length statistics 
and protocol are stronger class-discriminating features. 

The majority of algorithms perform very well with our 
datasets, obtaining high accuracies. Particularly strong 
algorithms are C4.5 (99.4%) and Bayes Net (99.3.2%), 
while NBTree (98.3%), NBD (98.3%) and Nearest 
Neighbour (97.7%) were also notable. The AdaBoost 
algorithm does provide some increases in accuracy (1-
2%), but significantly slows down training and 
classification.  

Additional experiments show a short flow timeout of 
60 seconds to be suitable, while increasing the training 
sample size shows significant improvement in accuracy. 
Tests on a dataset containing several popular peer-to-peer 
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file sharing applications demonstrated that our technique 
could be expanded to other traffic classes.  

The results obtained are very promising, but there are a 
number of avenues to be further explored. We plan to 
investigate a wider range of flow features, including 
features based on multiple flows. We will also investigate 
classification accuracies achievable if only one direction 
of a flow can be observed. Additional classes, such as 
different online gaming applications, also need to be 
investigated. Tuning the parameters of the learning 
algorithms, especially for MLP and SMO, and evaluating 
the memory usage is also left for further studies. 
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APPENDIX 

The complete list of flow features and their 
abbreviations: 

 

Feature Description Abbreviation 

Minimum forward packet length minfpktl 

Mean forward packet length meanfpktl 

Maximum forward packet length maxfpktl 

Standard deviation of forward packet length  stdfpktl 

Minimum backward packet length minbpktl 

Mean backward packet length meanbpktl 

Maximum backward packet length maxbpktl 

Standard deviation of backward packet 
length  

stdbpktl 

Minimum forward inter-arrival time minfiat 

Mean forward inter-arrival time meanfiat 

Maximum forward inter-arrival time maxfiat 

Standard deviation of forward inter-arrival 
times 

stdfiat 

Minimum backward inter-arrival time minbiat 

Mean backward inter-arrival time meanbiat 

Maximum backward inter-arrival time maxbiat 

Standard deviation of backward inter-arrival 
times 

stdbiat 

Protocol protocol 

Duration of the flow duration 

Number of packets in forward direction fpackets 

Number of bytes in forward direction fbytes 

Number of packets in backward direction bpackets 

Number of bytes in backward direction bbytes 

 


