
CAIA Technical Report 060410A April 2006 page 1 of 8

Measuring a Wolfenstein Enemy Territory Master

Server’s Response to Game Client Queries

Grenville Armitage, Carl Javier, Sebastian Zander

Centre for Advanced Internet Architectures. Technical Report 060410A
Swinburne University of Technology

Melbourne, Australia
{cjavier,garmitage,szander}@swin.edu.au

Abstract- The game discovery process of many network

games involves game clients querying one or more master servers

who hold a list of all currently active game servers. In this report

we investigate the manner in which a Wolfenstein Enemy

Territory (ET) master server chooses to maintain and report the

list of currently active ET servers around the Internet. We note

how the ordering of game servers in the master server’s reply

influences game server selection by clients, and show that the

master server periodically re-orders the list of active game

servers. Using data gathered between late 2005 and early 2006 we

observe patterns of periodic re-ordering that ensure every active

game server has an equal chance of being polled by game clients,

regardless of the game server’s location on the Internet. To

reduce the probe traffic on game servers we believe some form of

filtering is desirable to bias game client probing towards

closer/local game servers.

Keywords- Game Master Server, Game Server List, Network
Overhead, Suitable Server

I. INTRODUCTION

This paper was motivated by earlier work on the
impact of Wolfenstein Enemy Territory (ET) [1] game
client query traffic on two independent online game
servers [2]. One mechanism used by ET game clients to
discover active game servers involves querying a master
server, receiving a list of active game servers and then
probing all the listed game servers for their current
status. Each probed game server returns information
such as current map, number of other active players and
various related game-state details. Based on this
information the player then chooses a game server to
join – sometimes even before all game servers have
responded to the game client’s probes.

In [2] we noticed two things about the probe traffic
from game clients from around the planet. First, the level
of inbound probe traffic was independent of a game
server’s own popularity with players. Second, the
topological origins of probe traffic seemed proportional
to the population of game players in different parts of the
world. In this new work we set out to test a key
assumption in [2], namely that the master server does not
introduce any bias into the game server probing process.

We implemented an artificial ‘game client’ that
periodically queried the ET master server and logged the
list of game servers returned for each query. By tracking
the ranking of particular game servers in the master
server’s responses over time we made two notable
observations - the master server was not introducing any

particular bias in how it periodically re-ordered
individual game servers, and over time every game
server would be ranked at all positions in the list
returned to each game client.

Due to the well-known latency intolerance of first
person shooter (FPS) games [7], players tend not to
spend much time on game servers that are topologically
distant. In light of this, we believe it would be
advantageous for clients to explicitly bias their probing
of game servers towards game servers believed closer to
the querying client. We hypothesise this would present a
player with attractive game servers more quickly and
decrease the amount of client-initiated probe traffic
inflicted on distant game servers.

The rest of the paper is organized as follows: section
II describes our test methodology; the results are
presented in section III, and section IV concludes with
comments about future work.

II. TEST METHODOLOGY

Our test methodology involved approximating the
experience of a normal ET game client, and querying the
master server over three different rates and periods of
time. We gathered lists of active game servers at 30-
minute intervals over 22 days, 60-second intervals over
4 days and 10-second intervals over 2 days. In this
section we recap the actual game server discovery
process, summarise the consequences for network traffic
and client behaviour and then describe our query
sequences.

A. Enemy Territory Game Server Discovery Process

Figure 1 illustrates the two main stages of game
server discovery. An ET game client first contacts the
master server (etmaster.idsoftware.com) by sending a
UDP request to port 27950 for information about
currently registered game servers (step 1). The master
server then responds (step 2) with a sequence of one or
more UDP packets containing the current game servers,
encoded using 6 bytes for the IPv4 address and UDP
port number of each registered game server1. (There may
be multiple game servers concurrently hosted at a
particular IP address, distinguished by their different
UDP port numbers.)

Once the list is retrieved (step 3), the game client

1 The Kquery [8] website provided directions on encoding and
decoding the ET master server query/response packets.

CAIA Technical Report 060410A April 2006 page 2 of 8

begins probing each game server in sequence (step 4).
The game client populates its on-screen server browser
(step 5) as game servers respond with their current game
information (for example, round trip time to game
server, number of current players and current map). The
player then choses a game server to play on from the
information presented in the on-screen server browser
(step 6).

We observed in step 2 that all but the last UDP
response packet would have a payload of 810 bytes and
contain 112 servers. The final UDP response packet
would be of variable length and contain the identities of
up to 112 servers. During our trials we typically saw
between 26 to 28 packets in any given response,
returning a list of roughly 3000 registered game servers
at any given time.

B. Characteristics of the discovery process

A game client’s normal server discovery mechanism
has three noteworthy characteristics.

During step 4 game servers are queried in the order
they were listed by the master server’s response in step
2. In other words, the first listed game server in the first
UDP response packet is queried first, and so on. At any
given time during step 5 the player may choose to
terminate the probe process and connect to a game
server, even though the in-game server browser is still
being populated. This introduces a slight bias against
eligible game servers who are listed near the bottom of
the master server’s list (as the player may not wait long
enough to see them2).

2 A number of repeated trials using the master server query
tool Qstat [6] revealed that it would take roughly one minute

Many game servers may have high round trip time
(RTT, or lag) relative to the client, and thus are unlikely
to be chosen for game play [7] even though the client
takes time to probe them. Consequently, the browser
population stage would be expedited if the client pre-
sorted the servers in step 3 to query ‘local’ servers first.

Game client probe traffic can contribute noticeably to
overall Internet traffic volume in and out of servers
regardless of the server’s popularity. Our previous study
[2] saw 8 gigabytes of probe traffic over 20 weeks
directed at a little-used ET game server in Canberra,
Australia. Over 80% of this traffic came from overseas
countries whose players were unlikely to find the latency
satisfying for game play. (In other words, the Canberra
ET game server paid to carry probe traffic that was never
likely to result in new and satisfied players.) This probe
traffic from distant game clients might be substantially
reduced if game clients queried ‘local’ servers before
querying distant servers.

C. Estimating the master server response time

By running a series of queries in quick succession we
were able to ascertain that the ET master server responds
to client queries in roughly two seconds. Figure 2 shows
the response sequence to three queries spaced ten
seconds apart. Each query elicited a short burst of
response packets within two seconds, so we could safely
expect to receive all master server response packets even
when sampling as quickly as six times per minute. (We
were 17 hops away from the master server with an RTT
of 220ms. This suggests the master server took roughly
1.7 seconds to create every response.)

Figure 2 – Packet count versus time as ET master server
responds to three game client queries 10 seconds apart

D. Ranking servers within query responses

We intended to primarily focus our analysis on how
each registered game server’s position in the master
server’s response list changed (or did not change) over
time. Consequently we assigned each game server a

to probe all 3000 game servers typically offered by the ET
master server at any given time.

C l i e n t r e q u e s t Q u e r y r e q u e s t
G a m e S e r v e r 2 9 9 9 + n t h

1 G a m e C l i e n tM a s t e r S e r v e r G a m e C l i e n t Q u e r i e sn t h G a m e S e r v e r s4
6 C l i e n t c h o o s e s s e r v e rt o j o i n f r o m G a m e B r o w s e rG a m e S e r v e r n

R e s p o n s e u s e d t o c r e a t e G a m e S e r v e r l i s t3 G a m e S e r v e r 1G a m e S e r v e r 2G a m e S e r v e r 3G a m e S e r v e r 4 N 2 9 9 9 Q u e r i e d
S e r v e r R e s p o n s eG a m e B r o w s e r p o p u l a t e sw i t h S e v e r i n f o r m a t i o nf r o m t h e f i r s t s e r v e rr e s p o n s e r e c e i v e d5

M a s t e r S e r v e rR e s p o n s e S e q u e n c e2
S e r v e r R e s p o n s eS e r v e r R e s p o n s eS e r v e r R e s p o n s e

Q u e r y r e q u e s tQ u e r y r e q u e s tQ u e r y r e q u e s t

Figure 1 – The ET game server discovery process

CAIA Technical Report 060410A April 2006 page 3 of 8

numeric rank based on where their IP address and port
number appeared in the sequence of response packets.
For example, a game server whose IP address and port
number appeared first in the UDP payload of the first
response packet would be ‘at’ position one. A game
server whose IP address and port number appeared 10th
in the UDP payload of the 3rd response packet would be
‘at’ position 234, and so on.

In order to establish clear ‘markers’ within the master
server’s query responses we ran one ET game server at
CAIA for the duration of our experiment. This provided
us with at least one IP address:port that we knew should
appear in all master server responses. (We also briefly
started and stopped a 2nd ET game server at controlled
times to ascertain how the master server treated newly
registered game servers.)

Unfortunately the response sequence shown in step 2
of Figure 1 is intrinsically unreliable. Packets over the
Internet may be lost at any time. In the absence of
embedded sequence numbers there is no direct way for a
client to know if it has received all the packets making
up the master servers’ reply. A lost packet from time to
time could introduce a sudden drop in a game server’s
apparent rank by up to 112 positions (the maximum
number of game servers in the lost packet).

As the ET game client does not compensate for
packet loss we chose to simply accept the ‘noise’ that
loss events would add to our results. (Appendix A has a
discussion on possible methods to detect and
compensate for packet loss across consecutive queries to
the master server. However, we chose not to use any
such techniques because it would not be representative
of how today’s ET clients experience the master server’s
responses.)

E. Periodic querying over different time scales

Our experimental query process involved a trade-off
between maximising sampling accuracy and minimising
network load. We intended to periodically query
(sample) the master server at a rate sufficient to expose
any periodic characteristics in the master server’s
responses3. However, every query generates roughly 28
UDP packets from the master server to our artificial
client, so we intended to minimise this network traffic
load on the master server and intervening networks.

Our initial hypothesis was that the master server
might exhibit hourly, daily or weekly trends in how it
reports the list of registered game servers. Thus our first
experiment involved querying the master server every 30
minutes over roughly 22 days (from October 20th to
November 10th 2005). This sampling interval would
expose any periodic changes in the master server’s
response occurring at intervals of an hour or more. In
Section III we refer to this is the ‘long’ trial.

During our first experiment we also sampled the
activity levels of all registered game servers themselves
every six hours. This sampling interval was considered
sufficient to observe daily trends that have been reported

3 In practice one should sample at least twice the frequency of
any periodic behaviour you might hope to observe.

in other literature (e.g. [2][7]). Every 6 hours we took
the response list from our most recent 30 minute master
server query and fed it to Qstat [6], which returned
current round trip time (RTT) to, and number of active
players on, each responding game server.

Subsequently we ran shorter trials to reveal periodic
behaviours with far smaller intervals. On the 5th and 6th
of December 2005 we issued queries every 10 seconds
over 2 days. We re-confirmed certain master server
behaviours between 13th and 17th of January 2006 using
a less network-intensive rate of one query every 60
seconds over 4 days. As will be discussed in the next
section, the increased sample rates provided valuable
insights into certain periodic behaviour noticed in the
master server’s responses. We did not probe the
individual game servers during the additional 2-day and
4-day sampling periods. In Section III we refer to these
as the ‘short10’ and ‘short60’ trials respectively.

F. Concurrent querying from diverse sources

We made a simplistic attempt to detect whether the
master server modifies its responses based on a querying
client’s IP address. Three artificial clients were set up in
Melbourne (one on a consumer broadband connection
and the other two from within our CAIA lab) and
configured to query the ET master server concurrently.

Unfortunately, this test could only determine whether
a querying client’s precise IP address seemed to
influence the master server’s offered response. If the
master server used a GeoIP database [5] to discriminate
between clients all three of our artificial clients would
appear to be in the ‘same’ location and thus elicit the
same response. We were not able to initiate concurrent
queries from entirely different countries.

III. RESULTS

In this section we will review the raw results and
describe what our data reveals about the ET master
server’s query-response behaviour. In short, we find that
over 36 minute intervals the master server moves every
registered game server across the entire range of possible
positions in the response list sent to querying clients.
Any given client query is as likely to see a particular
server at the top, middle or bottom of the list. The master
server’s rankings appear unaffected by the relative
distance between each game server and the querying
client.

A. Review of the raw results

Our three different trials are summarised in Table 1.
Our 30-minute samples over 22 days are known as the
‘Long’ trial, our 60-second samples over 4 days are the
‘Short60’ trial and our 10-second samples over 2 days
are the ‘Short10’ trial. Figure 3 shows a CDF how many
game servers were returned in each master server
response list for the Long, Short60 and Short10 trials
respectively.

Responses typically returned around 3000 registered
game servers. We discarded responses with less than
2500 game servers on the assumption they’d suffered
substantial packet loss. For example, during the Long

CAIA Technical Report 060410A April 2006 page 4 of 8

trial around 3% of samples were considered anomalous
and discarded because they returned responses with less
than 2500 game servers. (See Appendix A for a longer
discussion of detecting packet loss in master server
responses.)

Table 1 - Summary of Sampling Experiments

Sample
Interval

30 min

(Long trial)

60 sec

(Short60 trial)

10 sec

(Short10
trial)

Duration 22 days 4 days 2 days

Dates

20 October to
10 November

2005

13 to 17
January 2006

5 and 6
December

2005

Samples 1,100 6,000 10,000

Dropped due
to <2500

game servers

34 (3.1%) 235 (3.9%) 14 (1.4%)

Unique game
servers

50,245 15,789 6,798

Game servers
in 90% of all

samples

2,185 2,656 2,758

Unique IP
addresses

6,877 3,734 2,624

Figure 3 – CDF of number of game servers returned per
query during the Long, Short60 and Short10 trials

Table 1 also shows the number of unique game
servers seen over the period of each trial, and the
number of unique IP addresses seen. On first glance it
seems odd that, for example, the 1100 samples in the
Long trial would see 50245 unique game servers and yet
only 6877 unique IP addresses. The raw data revealed a
core of 2185 game servers present over 90% of the entire
22-day trial period and a transient pool of game servers
appearing and disappearing from one query to the next.

The set of transient game servers was dominated by a
small pool of IP addresses (less than 50) that kept re-

registering as new game servers over hundreds (and in
some cases, thousands) of different UDP ports. We also
saw low level ‘noise’ due to transient game servers
appearing once or twice from unique IP address and port
combinations and never seen again. We chose to ignore
the transient servers in our subsequent analysis in this
report (as the vast majority of registered game servers
appeared stable across each sample period4).

B. Geographic distribution of game servers

In previous work [2] the GeoIP database [5] was used
to map client IP addresses to approximate geographic
origins. We saw a distinct bias in the geographic
distribution of game clients querying two ET game
servers under our control. A majority of game client
queries came from Europe and the USA.

Again using the GeoIP database, Figure 4 shows the
geographical distribution of game servers reported by
the master server during our 22 day ‘long’ trial. The
dotted line encompasses the main five European-region
countries, revealing the significant level of game servers
located in Europe. The results in [2] and Figure 4 seem
to agree with our intuition that the density of both game
servers and game clients in particular geographic regions
would be correlated. Where there are lots of clients there
are likely to be lots of people willing to run game servers
(and vice-versa).

Figure 4 – Geographical distribution of ET game servers
during the Long trial

C. Weekly and daily trends in total number of game servers
and levels of game server activity

Figure 5 shows a number of details relating to the
long trial and the probing of registered game servers
every 6 hours. We average together the results from each
6-hour interval from each of the three weeks to reveal
possible weekly or daily trends.

4 The dynamic behaviour of transient server registrations will
be analysed in a later CAIA Technical Report.

ail
art

s
u

A

e
c

n
ar

F

y
n

a
m r

e
G

s
d

n
alr

e
ht

e
N

d
n

al
o

P

d
n

al
g

n
E

n
a

p
a

J

a
cir

e
m

A

s
PI f

o
e

g
at

n
e

cr
e

P

20

40

60

80

10

30

50

70

Europe

2600 2700 2800 2900 3000 3100

Number Of Servers Returned

e
g

at
n

e
cr

e
P

0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

0
1

Long

Short60

Short10

CAIA Technical Report 060410A April 2006 page 5 of 8

The average number of registered game servers
returned by the master server every 6 hours seems to sit
around 3000 and change very little across the week. (The
maximum and minimum bars shown for the “Number of
Servers Returned” reflects the range of values returned
during 30-minute queries over the preceding 6 hours.)

Using the Qstat probes every 6 hours we can also see
the daily fluctuations in the number of game servers
having one or more players (“Servers with players”).
The most active times are in the early morning here in
Melbourne (in other words, late afternoon and evening
in Europe). This is unsurprising considering the
geographic distribution of game servers revealed in
Figure 4.

Figure 5 - Weekly trends using 6-hour samples of game
server activity

Interestingly, the “Inactive Server” data points show
that roughly 90 registered game servers are inactive
(giving no response to our Qstat probes at all) during
each 6-hourly probe. Although these inactive servers are
registered with the master server, a regular game client
would be unable to fully populate its in-game server
browser with information on these 90 game servers.

D. Distribution of Distribution of Game Servers on the list
(Long Term Sampling Results)

Our first test for bias in how the master server ranks
individual game servers involved looking at the
distribution of RTT to each game server in the master
server’s response list. Figure 6 is a scatter plot of each
game server’s RTT (measured from our artificial client)
versus its rank. These RTT values are derived from a
single 6-hourly probe of all game servers using Qstat.

There appears to be no particular relationship
between a game server’s RTT and its position in the list
returned by the master server. Interestingly the scatter
plot clearly shows three distinct regions of game servers
as seen from a client based in Australia. Previous related
work on RTT distributions of ET clients measured from
Melbourne [9] suggests the lower RTT ranges (0 - 100

ms) are most likely to be local game servers within
Australia and surrounding countries. The middle ranges
of RTTs (180 - 270 ms) are likely to be game servers
from America and the servers clustered above 300ms+
are most likely to be based in Europe.

Figure 6 – RTT vs. Game server rank after one query
during the Long trial

E. Distribution of game server rankings over time

Our second test for bias in game server rankings
involved tracking the rank assigned to three specific
servers over the long (22 day) trial. We tracked our own
local ‘CAIA’ server and two other servers known to be
in America and Germany respectively.

Figure 7 – CDF of game server rank during the Long trial

Figure 7 shows a cumulative distribution function for
the rank assigned to each game server over all of the
long trial’s 1100 master server response lists. Over long
periods of time (and multiple queries) each game
server’s likely rank in any given query response list
appears almost uniformly distributed across all possible
rankings.

Time of Day

sr
e

vr
e

S f
o r

e
b

m
u

N

0
0

0
5

0
0

0
1

0
0

5
1

0
0

0
2

0
0

5
2

0
0

0
3

5
4:

0
5

4:
6

5
4:

2
1

5
4:

8
1

5
4:

0
5

4:
6

5
4:

2
1

5
4:

8
1

5
4:

0
5

4:
6

5
4:

2
1

5
4:

8
1

5
4:

0
5

4:
6

5
4:

2
1

5
4:

8
1

5
4:

0
5

4:
6

5
4:

2
1

5
4:

8
1

5
4:

0
5

4:
6

5
4:

2
1

5
4:

8
1

5
4:

0
5

4:
6

5
4:

2
1

5
4:

8
1

Servers Returned

Servers with players

Inactive Servers

Mon Tues Wed Thurs Fri Sat Sun

0 500 1000 1500 2000 2500 3000

Position of Game Server IP address in List

e
g

at
n

e
cr

e
P

CAIA server

American server

German server
0

20

40

60

80

100

0 100 200 300 400 500

0
0

0
5

0
0

0
1

0
0

5
1

0
0

0
2

0
0

5
2

0
0

0
3

Round Trip Time (ms)

t
sil

ni
s

s
er

d
d

a
PI r

e
vr

e
S

e
m

a
G f

o
n

oiti
s

o
P

CAIA Technical Report 060410A April 2006 page 6 of 8

Closer inspection (not shown here) revealed that each
server’s rank jumped around unpredictably (rather than
increase or decrease gradually) from one query to the
next. Either the master server was deliberately
randomising the rankings of game servers in every query
response, or there was a periodic re-ordering whose
period was smaller than 60 minutes. This uncertainty led
us to perform the short10 and short60 trials.

F. Periodicity in the master server’s response list

Figure 8 shows the ranking of three game servers
over a 100-minute segment of the short60 trial. Each
game server’s rank periodically cycled from beginning
to end of the master server’s response list with a period
of roughly 36 minutes. In Figure 8 we tracked three
game servers who were near the beginning (server at
rank 1), middle (server at rank 778) and end (server at
rank 2564) of an early response list5.

Figure 8 –Ranks of three game servers during a fragment
of the Short60 trial

(Although not shown, we observed similar periodic
behaviour in the rankings of other game servers. When a
game server first registers with the master server it is
ranked at the beginning of the response list and then
begins the periodic migration from beginning to end
along with all other registered game servers.)

Based on the short10 trial Figure 9 provides a close-
up view covering four unrelated game servers over 15
minutes with queries every 10 seconds. Each 36-minute
cycle is made up of consecutive, non-linear bursts of
downward migration in ranking6. Each of these short
bursts takes roughly 3 min 40 seconds, with an
asymptotic shape that is as-yet unexplained.

5 The lines are broken in places where particular servers were
not consistently present. This provides some indication of the
uncertainty a player’s client would experience when querying
for available game servers.
6 As with Figure 8, some game servers came and went during
the observation period.

Figure 9 – Ranks of four game servers during a fragment
of the Short10 trial

G. Querying from diversely located clients

Our final attempt to find bias involved concurrently
querying the ET master server from three separate
artificial clients located at different IP addresses (as
described in section II.F). Figure 10 shows the rank of a
particular game server as seen from three different
clients who issued concurrent queries every 10 seconds
over a three minute period. Clients ‘caia1’ and ‘caia2’
were located on the same 136.186.299/24 subnet, whilst
‘homePC’ was located on a totally different ISP within
the same metropolitan area (Melbourne, Australia).

Figure 10 – Rank of one game server while being queried
every 10 seconds from three separate clients

It seems reasonable to conclude that the master server
is not introducing any offset to rankings based on the
specific IP address. However, we cannot rule out the
possibility that a client’s apparent country of origin

0
0

0
3

0
0

5
2

0
0

0
2

0
0

5
1

0
0

0
1

0
0

5
0

Time of Day

t
si

L
ni

s
s

er
d

d
a

PI r
e

vr
e

S
e

m
a

G f
o

n
oiti

s
o

P

4
3:

0
1

5
4:

0
1

5
5:

0
1

5
0:

1
1

6
1:

1
1

6
2:

1
1

7
3:

1
1

7
4:

1
1

7
5:

1
1

8
0:

2
1

Server 1
Server 778
Server 2564

Time

t
si

L
ni

s
s

er
d

d
a

PI r
e

vr
e

S
e

m
a

G f
o

n
oiti

s
o

P

0
0

0
3

0
0

5
2

0
0

0
2

0
0

5
1

0
0

0
1

0
0

5
0

3:30 3:33 3:36 3:39 3:42 3:45

Server 30
Server 100
Server 2000
Server 2501

0
0

0
2

0
0

8
1

0
0

6
1

0
0

4
1

0
0

2
1

0
0

0
1

t
si

L
ni

s
s

er
d

d
a

PI r
e

vr
e

S
e

m
a

G f
o

n
oiti

s
o

P

9
0:

8
2:

5
1

1
3:

8
2:

5
1

3
5:

8
2:

5
1

6
1:

9
2:

5
1

8
3:

9
2:

5
1

0
0:

0
3:

5
1

2
2:

0
3:

5
1

4
4:

0
3:

5
1

6
0:

1
3:

5
1

8
2:

1
3:

5
1

caia1
homePC
caia2

CAIA Technical Report 060410A April 2006 page 7 of 8

might be used to permute the master server’s rankings.
Unfortunately we were not able to run concurrent client
queries from hosts in different countries in order to rule
out this possibility.

IV. GETTING ‘STUCK’ AT THE BOTTOM OF THE LIST

Most of the time game servers experience the
periodic cycling of their rank according to the patterns
shown in Figure 8 and Figure 9. However, from time to
time an active game server would seem to get ‘stuck’
near the bottom of the master server’s list. An example
of this phenomena happening to the CAIA Server is
shown in Figure 11 (with other servers also shown
unaffected at the same time) and in close-up in Figure 12
(showing only the CAIA Server’s rank).

Figure 11 – CAIA’s own server getting ‘stuck’ at the
bottom of the master server’s response list while other
game servers continue the regular 36-minute cycle

Figure 12 – Close-up of CAIA’s own server getting ‘stuck’
at the bottom of the master server’s response list

Getting ‘stuck’ down the bottom of the ranking is a
disadvantage for game servers trying to attract players.
They will be probed and presented to players only after
all the higher ranked servers are presented, possibly
losing an opportunity to catch a potential player’s
attention.

We do not yet have an explanation for this
phenomenon. Fortunately, Figure 7 suggests no
significant long-term influence or bias is introduced into
the distribution of rankings to any given server.

V. CONCLUSION AND FUTURE WORK

This short paper was motivated by the following
goal: test whether a Wolfenstein Enemy Territory (ET)
master server introduces bias into the ordering of
registered game servers that are returned when queried
by ET game clients. Any such bias would influence how
frequently game clients around the world might probe
particular game servers when players trigger the in-client
server browser function. We wished to validate the
assumption in previous work [2] that there was no
particular bias.

We queried the ET master server every 30 minutes
for 22 days, every 60 seconds for 4 days and every 10
seconds for 2 days. From the master server’s responses
we showed:

- The majority of ET game servers are in Europe
(consistent with previous work showing the
majority of clients were in Europe).

- The rank (position) of any given game server in
the master server’s response list periodically
moves from top to bottom every 36 minutes.

- The rank of each game server within the
response list appears to be unaffected by the
topological relationship between each game
server and the querying client.

- No particular bias was observed keeping
particular game servers closer to the top of the
master server’s list. Over a long period of time
every game server is equally likely to appear at
any possible rank in the master server’s
response.

A follow-up experiment suggested by these results is
to pre-sort the master server’s response list so that game
server’s “close” to the querying client are ranked nearer
the top of the response. This may reduce the time it takes
for the client’s in-game server browser to present an
attractive game server on which to play (on the basis that
lower latency is more attractive all other things being
equal). If players promptly select a game server from
near the top of the browser’s list there would be an
associated reduction in unnecessary client probe traffic
to distant game servers further down the list. We intend
to explore implementations of such a scheme, and
quantify the impact on network traffic.

REFERENCES

[1] ”Wolfenstein Enemy Territory”, http://enemy-territory.com, (viewed
on 10th October 2005.)

[2] S.Zander, D.Kennedy, G.Armitage, “Dissecting Server-Discovery

0
0

0
3

0
0

5
2

0
0

0
2

0
0

5
1

0
0

0
1

0
0

5
0

Time

t
si

L
ni

s
s

er
d

d
a

PI r
e

vr
e

S
e

m
a

G f
o

n
oiti

s
o

P

19:48 20:36 21:24 22:12 23:00

CAIA Server
Server 2447
Server 2440

0
0

2
3

0
0

0
3

0
0

8
2

0
0

6
2

0
0

4
2

0
0

2
2

0
0

0
2

Time

t
si

L
ni

s
s

er
d

d
a

PI r
e

vr
e

S
e

m
a

G f
o

n
oiti

s
o

P

20:36 21:00 21:24 21:48

CAIA Server

CAIA Technical Report 060410A April 2006 page 8 of 8

Traffic Patterns Generated By Multiplayer First Person Shooter
games”, ACM NetGames 2005, NY, USA, 10-11 October, 2005

[3] Centre for Advance Internet Architecture, http://caia.swin.edu.au
(viewed on 25th July 2005)

[4] GrangeNet,
http://www.grangenet.net/advancedcommunications/wp/sim/index.html
(viewd on 30th August, 2005)

[5] GeoIP, http://www.maxmind.com/ (view on 25th August, 2005)

[6] ”Qstat Real-time Game Server Status”, http://www.qstat.org (viewd on
10th October, 2005)

[7] G.Armitage, “An Experimental Estimation of Latency Sensitivity In
Multiplayer Quake 3”, 11th IEEE International Conference on
Networks (ICON 2003), Sydney, Australia, September, 2003

[8] Kquery, http://dev.kquery.com/ (viewed on 6th October, 2005)

[9] G.Armitage, C.Javier, S.Zander, “Client RTT and Hop Count
Distributions viewed rom an Australian ‘Enemy Territory’ Server”,
CAIA Technical Report, 6th February, 2006

[10] ServerSpy, www.serverspy.net (viewed on 28th October, 2005)

[11] FreeBSD home page, http://www.freebsd.org/ (viewed on 25th August,
2005)

[12] D.Kennedy, B.Tyo, “Configuring a ‘ Wolfenstein: Enemy Territory’
Server for Online Play”, CAIA Technical Report, August 2004

APPENDIX A. PACKET LOSS IN MASTER SERVER RESPONSES

An ET client cannot easily detect whether any given
master server response list is in fact the complete list of
registered game servers held by the master server at the
time of the query. Packet loss is a fact of life in the
Internet, and a master server response of N packets could
easily arrive with N-1, N-2 or even less packets. As
noted in the report, packets 1 through (N-1) contain IP
address and port number pairs of 112 game servers while
packet N contains from 1 to 112 game servers.

In this report we made no attempt to identify if
packet loss was influencing our results. Rather, we chose
to evaluate the sever distributions that would be
experience by regular game clients regularly querying in
the master server. However, a number of possible
techniques could be deployed to infer packet loss.
Consider a master server response of N packets. A loss
of packet X (where 1<=X<N) would have two
consequences:

• Exactly 112 game servers would temporarily
disappear.

• All game servers between packet X+1 and
packet N would have their apparent rank
jump 112 positions towards the ‘top’ of the
list (at rank 1).

A loss of packet N would have slightly different
consequences:

• Between 1 and 112 game servers would
temporarily disappear

• The ‘last’ packet received from the master
server would contain precisely 112 game
servers.

When sampling the master server repeatedly over
short periods of time we might retrospectively infer
packet loss events by looking for transient fluctuations in
the number of packets returned and the total number of

game servers returned.

For example, packet loss always causes a drop in the
number of packets and number of game servers returned
(relative to the previous, complete master server
response). However, the number of packets may also
drop if the number of registered game servers
legitimately happened to drop across a packet boundary
(e.g. from 113 to 110, or 1120 to 1115) between client
queries. One possible sign that a drop is caused by
packet loss could be when the number of packets drops
and the number of game servers drops by 112 (or more)
at the exact same time.

Naturally, this could also be cause by a sudden,
legitimate loss of 112 (or more) game servers from the
master server’s list. We can be more certain the original
drop is due to transient packet loss if the very next query
returns a matching increase in the number of packets
(and game servers) returned by the master server. Thus,
a transient drop-then-jump of one or more packets (and
112 or more game servers) between response R1, R2 and
R3 would be an indication that R2 had been impacted by
transient packet loss.

If we lost packet X (where 1<=X<N) we might also
strengthen the inference of packet loss by noting if
multiple game servers had their rank suddenly drop-
then-jump 112 positions between responses R1, R2 and
R3. Note that a drop alone is not sufficient, and this only
works if we monitor game servers in packets X+1 to N.
Although we do not know which packet was lost, the
symptom ‘a transient drop-then-jump of one or more
packets (and 112 or more game servers)’ suggests the
lost packet X in response R2 was indeed in the range
1<=X<N. In such cases we can strengthen the inference
of packet loss by noting whether the game servers in
found in the last packets of both R1 and R3 seemed to
jump in rank by 112 positions in R2.

We might even infer where in R2 the packet loss
occurred, on the assumption that the trailing packets
X+1 to N in R1 and R3 will carry much the same list of
game servers as the equivalent set of trailing packets in
R2. Keep stepping back towards the start of R2 until the
trailing game server lists significantly differ – you’ll
have located the likely point of packet loss.

If the last packet is lost there is also transient drop-
then-jump in the number of packets. However, the
number of listed game servers drops and jumps by less
than 112 (since the last packet may contain as few as one
extra game server). In this case we can strengthen the
inference of packet loss by noting whether the game
servers listed in the last packet of R1 and R3 are (a)
basically the same and (b) totally absent from the entire
list of game servers in R2.

The techniques discussed here can be applied to
previously captured packet traces of client query and
master server responses. From this we might calculate
the incidence of packet loss on master server response
lists over time.

