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Abstract- The game discovery process of many network 

games involves game clients querying one or more master servers 

who hold a list of all currently active game servers. In this report 

we investigate the manner in which a Wolfenstein Enemy 

Territory (ET) master server chooses to maintain and report the 

list of currently active ET servers around the Internet. We note 

how the ordering of game servers in the master server’s reply 

influences game server selection by clients, and show that the 

master server periodically re-orders the list of active game 

servers. Using data gathered between late 2005 and early 2006 we 

observe patterns of periodic re-ordering that ensure every active 

game server has an equal chance of being polled by game clients, 

regardless of the game server’s location on the Internet. To 

reduce the probe traffic on game servers we believe some form of 

filtering is desirable to bias game client probing towards 

closer/local game servers. 

Keywords- Game Master Server, Game Server List, Network 
Overhead, Suitable Server 

I. INTRODUCTION 

This paper was motivated by earlier work on the 
impact of Wolfenstein Enemy Territory (ET) [1] game 
client query traffic on two independent online game 
servers [2]. One mechanism used by ET game clients to 
discover active game servers involves querying a master 
server, receiving a list of active game servers and then 
probing all the listed game servers for their current 
status. Each probed game server returns information 
such as current map, number of other active players and 
various related game-state details. Based on this 
information the player then chooses a game server to 
join – sometimes even before all game servers have 
responded to the game client’s probes. 

In [2] we noticed two things about the probe traffic 
from game clients from around the planet. First, the level 
of inbound probe traffic was independent of a game 
server’s own popularity with players. Second, the 
topological origins of probe traffic seemed proportional 
to the population of game players in different parts of the 
world. In this new work we set out to test a key 
assumption in [2], namely that the master server does not 
introduce any bias into the game server probing process.  

We implemented an artificial ‘game client’ that 
periodically queried the ET master server and logged the 
list of game servers returned for each query. By tracking 
the ranking of particular game servers in the master 
server’s responses over time we made two notable 
observations - the master server was not introducing any 

particular bias in how it periodically re-ordered 
individual game servers, and over time every game 
server would be ranked at all positions in the list 
returned to each game client. 

Due to the well-known latency intolerance of first 
person shooter (FPS) games [7], players tend not to 
spend much time on game servers that are topologically 
distant. In light of this, we believe it would be 
advantageous for clients to explicitly bias their probing 
of game servers towards game servers believed closer to 
the querying client. We hypothesise this would present a 
player with attractive game servers more quickly and 
decrease the amount of client-initiated probe traffic 
inflicted on distant game servers. 

The rest of the paper is organized as follows: section 
II describes our test methodology; the results are 
presented in section III, and section IV concludes with 
comments about future work. 

II. TEST METHODOLOGY 

Our test methodology involved approximating the 
experience of a normal ET game client, and querying the 
master server over three different rates and periods of 
time. We gathered lists of active game servers at 30-
minute intervals over 22 days, 60-second intervals over 
4 days and 10-second intervals over 2 days. In this 
section we recap the actual game server discovery 
process, summarise the consequences for network traffic 
and client behaviour and then describe our query 
sequences. 

A.  Enemy Territory Game Server Discovery Process 

Figure 1 illustrates the two main stages of game 
server discovery. An ET game client first contacts the 
master server (etmaster.idsoftware.com) by sending a 
UDP request to port 27950 for information about 
currently registered game servers (step 1). The master 
server then responds (step 2) with a sequence of one or 
more UDP packets containing the current game servers, 
encoded using 6 bytes for the IPv4 address and UDP 
port number of each registered game server1. (There may 
be multiple game servers concurrently hosted at a 
particular IP address, distinguished by their different 
UDP port numbers.) 

Once the list is retrieved (step 3), the game client 

                                                 
1 The Kquery [8] website provided directions on encoding and 
decoding the ET master server query/response packets. 
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begins probing each game server in sequence (step 4). 
The game client populates its on-screen server browser 
(step 5) as game servers respond with their current game 
information (for example, round trip time to game 
server, number of current players and current map). The 
player then choses a game server to play on from the 
information presented in the on-screen server browser 
(step 6). 

We observed in step 2 that all but the last UDP 
response packet would have a payload of 810 bytes and 
contain 112 servers. The final UDP response packet 
would be of variable length and contain the identities of 
up to 112 servers. During our trials we typically saw 
between 26 to 28 packets in any given response, 
returning a list of roughly 3000 registered game servers 
at any given time. 

B. Characteristics of the discovery process 

A game client’s normal server discovery mechanism 
has three noteworthy characteristics. 

During step 4 game servers are queried in the order 
they were listed by the master server’s response in step 
2. In other words, the first listed game server in the first 
UDP response packet is queried first, and so on. At any 
given time during step 5 the player may choose to 
terminate the probe process and connect to a game 
server, even though the in-game server browser is still 
being populated. This introduces a slight bias against 
eligible game servers who are listed near the bottom of 
the master server’s list (as the player may not wait long 
enough to see them2). 

                                                 
2 A number of repeated trials using the master server query 
tool Qstat [6] revealed that it would take roughly one minute 

Many game servers may have high round trip time 
(RTT, or lag) relative to the client, and thus are unlikely 
to be chosen for game play [7] even though the client 
takes time to probe them. Consequently, the browser 
population stage would be expedited if the client pre-
sorted the servers in step 3 to query ‘local’ servers first.   

Game client probe traffic can contribute noticeably to 
overall Internet traffic volume in and out of servers 
regardless of the server’s popularity. Our previous study 
[2] saw 8 gigabytes of probe traffic over 20 weeks 
directed at a little-used ET game server in Canberra, 
Australia. Over 80% of this traffic came from overseas 
countries whose players were unlikely to find the latency 
satisfying for game play. (In other words, the Canberra 
ET game server paid to carry probe traffic that was never 
likely to result in new and satisfied players.) This probe 
traffic from distant game clients might be substantially 
reduced if game clients queried ‘local’ servers before 
querying distant servers. 

C. Estimating the master server response time  

By running a series of queries in quick succession we 
were able to ascertain that the ET master server responds 
to client queries in roughly two seconds. Figure 2 shows 
the response sequence to three queries spaced ten 
seconds apart. Each query elicited a short burst of 
response packets within two seconds, so we could safely 
expect to receive all master server response packets even 
when sampling as quickly as six times per minute. (We 
were 17 hops away from the master server with an RTT 
of 220ms. This suggests the master server took roughly 
1.7 seconds to create every response.) 

Figure 2 – Packet count versus time as ET master server 
responds to three game client queries 10 seconds apart 

D. Ranking servers within query responses 

We intended to primarily focus our analysis on how 
each registered game server’s position in the master 
server’s response list changed (or did not change) over 
time. Consequently we assigned each game server a 

                                                                                     
to probe all 3000 game servers typically offered by the ET 
master server at any given time. 
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Figure 1 – The ET game server discovery process 
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numeric rank based on where their IP address and port 
number appeared in the sequence of response packets. 
For example, a game server whose IP address and port 
number appeared first in the UDP payload of the first 
response packet would be ‘at’ position one. A game 
server whose IP address and port number appeared 10th 
in the UDP payload of the 3rd response packet would be 
‘at’ position 234, and so on. 

In order to establish clear ‘markers’ within the master 
server’s query responses we ran one ET game server at 
CAIA for the duration of our experiment. This provided 
us with at least one IP address:port that we knew should 
appear in all master server responses. (We also briefly 
started and stopped a 2nd ET game server at controlled 
times to ascertain how the master server treated newly 
registered game servers.) 

Unfortunately the response sequence shown in step 2 
of Figure 1 is intrinsically unreliable. Packets over the 
Internet may be lost at any time. In the absence of 
embedded sequence numbers there is no direct way for a 
client to know if it has received all the packets making 
up the master servers’ reply. A lost packet from time to 
time could introduce a sudden drop in a game server’s 
apparent rank by up to 112 positions (the maximum 
number of game servers in the lost packet). 

As the ET game client does not compensate for 
packet loss we chose to simply accept the ‘noise’ that 
loss events would add to our results. (Appendix A has a 
discussion on possible methods to detect and 
compensate for packet loss across consecutive queries to 
the master server. However, we chose not to use any 
such techniques because it would not be representative 
of how today’s ET clients experience the master server’s 
responses.) 

E. Periodic querying over different time scales 

Our experimental query process involved a trade-off 
between maximising sampling accuracy and minimising 
network load. We intended to periodically query 
(sample) the master server at a rate sufficient to expose 
any periodic characteristics in the master server’s 
responses3. However, every query generates roughly 28 
UDP packets from the master server to our artificial 
client, so we intended to minimise this network traffic 
load on the master server and intervening networks. 

Our initial hypothesis was that the master server 
might exhibit hourly, daily or weekly trends in how it 
reports the list of registered game servers. Thus our first 
experiment involved querying the master server every 30 
minutes over roughly 22 days (from October 20th to 
November 10th 2005). This sampling interval would 
expose any periodic changes in the master server’s 
response occurring at intervals of an hour or more. In 
Section III we refer to this is the ‘long’ trial. 

During our first experiment we also sampled the 
activity levels of all registered game servers themselves 
every six hours. This sampling interval was considered 
sufficient to observe daily trends that have been reported 

                                                 
3 In practice one should sample at least twice the frequency of 
any periodic behaviour you might hope to observe. 

in other literature (e.g. [2][7]). Every 6 hours we took 
the response list from our most recent 30 minute master 
server query and fed it to Qstat [6], which returned 
current round trip time (RTT) to, and number of active 
players on, each responding game server. 

Subsequently we ran shorter trials to reveal periodic 
behaviours with far smaller intervals. On the 5th and 6th 
of December 2005 we issued queries every 10 seconds 
over 2 days. We re-confirmed certain master server 
behaviours between 13th and 17th of January 2006 using 
a less network-intensive rate of one query every 60 
seconds over 4 days. As will be discussed in the next 
section, the increased sample rates provided valuable 
insights into certain periodic behaviour noticed in the 
master server’s responses. We did not probe the 
individual game servers during the additional 2-day and 
4-day sampling periods. In Section III we refer to these 
as the ‘short10’ and ‘short60’ trials respectively. 

F. Concurrent querying from diverse sources 

We made a simplistic attempt to detect whether the 
master server modifies its responses based on a querying 
client’s IP address. Three artificial clients were set up in 
Melbourne (one on a consumer broadband connection 
and the other two from within our CAIA lab) and 
configured to query the ET master server concurrently.  

Unfortunately, this test could only determine whether 
a querying client’s precise IP address seemed to 
influence the master server’s offered response. If the 
master server used a GeoIP database [5] to discriminate 
between clients all three of our artificial clients would 
appear to be in the ‘same’ location and thus elicit the 
same response. We were not able to initiate concurrent 
queries from entirely different countries. 

III. RESULTS 

In this section we will review the raw results and 
describe what our data reveals about the ET master 
server’s query-response behaviour. In short, we find that 
over 36 minute intervals the master server moves every 
registered game server across the entire range of possible 
positions in the response list sent to querying clients. 
Any given client query is as likely to see a particular 
server at the top, middle or bottom of the list. The master 
server’s rankings appear unaffected by the relative 
distance between each game server and the querying 
client. 

A. Review of the raw results 

Our three different trials are summarised in Table 1. 
Our 30-minute samples over 22 days are known as the 
‘Long’ trial, our 60-second samples over 4 days are the 
‘Short60’ trial and our 10-second samples over 2 days 
are the ‘Short10’ trial. Figure 3 shows a CDF how many 
game servers were returned in each master server 
response list for the Long, Short60 and Short10 trials 
respectively. 

Responses typically returned around 3000 registered 
game servers. We discarded responses with less than 
2500 game servers on the assumption they’d suffered 
substantial packet loss. For example, during the Long 
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trial around 3% of samples were considered anomalous 
and discarded because they returned responses with less 
than 2500 game servers. (See Appendix A for a longer 
discussion of detecting packet loss in master server 
responses.) 

Table 1 - Summary of Sampling Experiments 

Sample 
Interval 

30 min 

(Long trial) 

60 sec 

(Short60 trial) 

10 sec 

(Short10 
trial) 

Duration 22 days 4 days 2 days 

Dates 

20 October to 
10 November 

2005 

13 to 17 
January 2006 

5 and 6 
December 

2005 

Samples 1,100 6,000 10,000 

Dropped due 
to <2500 

game servers 

34 (3.1%) 235 (3.9%) 14  (1.4%) 

Unique game 
servers 

50,245 15,789 6,798 

Game servers 
in 90% of all 

samples 

2,185 2,656 2,758 

Unique IP 
addresses 

6,877 3,734 2,624 

 

Figure 3 – CDF of number of game servers returned per 
query during the Long, Short60 and Short10 trials 

 

Table 1 also shows the number of unique game 
servers seen over the period of each trial, and the 
number of unique IP addresses seen. On first glance it 
seems odd that, for example, the 1100 samples in the 
Long trial would see 50245 unique game servers and yet 
only 6877 unique IP addresses. The raw data revealed a 
core of 2185 game servers present over 90% of the entire 
22-day trial period and a transient pool of game servers 
appearing and disappearing from one query to the next. 

The set of transient game servers was dominated by a 
small pool of IP addresses (less than 50) that kept re-

registering as new game servers over hundreds (and in 
some cases, thousands) of different UDP ports. We also 
saw low level ‘noise’ due to transient game servers 
appearing once or twice from unique IP address and port 
combinations and never seen again. We chose to ignore 
the transient servers in our subsequent analysis in this 
report (as the vast majority of registered game servers 
appeared stable across each sample period4). 

B. Geographic distribution of game servers 

In previous work [2] the GeoIP database [5] was used 
to map client IP addresses to approximate geographic 
origins. We saw a distinct bias in the geographic 
distribution of game clients querying two ET game 
servers under our control. A majority of game client 
queries came from Europe and the USA. 

Again using the GeoIP database, Figure 4 shows the 
geographical distribution of game servers reported by 
the master server during our 22 day ‘long’ trial. The 
dotted line encompasses the main five European-region 
countries, revealing the significant level of game servers 
located in Europe. The results in [2] and Figure 4 seem 
to agree with our intuition that the density of both game 
servers and game clients in particular geographic regions 
would be correlated. Where there are lots of clients there 
are likely to be lots of people willing to run game servers 
(and vice-versa). 

Figure 4 – Geographical distribution of ET game servers 
during the Long trial 

 

C. Weekly and daily trends in total number of game servers 
and levels of game server activity 

Figure 5 shows a number of details relating to the 
long trial and the probing of registered game servers 
every 6 hours. We average together the results from each 
6-hour interval from each of the three weeks to reveal 
possible weekly or daily trends. 

                                                 
4 The dynamic behaviour of transient server registrations will 
be analysed in a later CAIA Technical Report. 
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The average number of registered game servers 
returned by the master server every 6 hours seems to sit 
around 3000 and change very little across the week. (The 
maximum and minimum bars shown for the “Number of 
Servers Returned” reflects the range of values returned 
during 30-minute queries over the preceding 6 hours.) 

Using the Qstat probes every 6 hours we can also see 
the daily fluctuations in the number of game servers 
having one or more players (“Servers with players”). 
The most active times are in the early morning here in 
Melbourne (in other words, late afternoon and evening 
in Europe). This is unsurprising considering the 
geographic distribution of game servers revealed in 
Figure 4. 

Figure 5 - Weekly trends using 6-hour samples of game 
server activity 

Interestingly, the “Inactive Server” data points show 
that roughly 90 registered game servers are inactive 
(giving no response to our Qstat probes at all) during 
each 6-hourly probe. Although these inactive servers are 
registered with the master server, a regular game client 
would be unable to fully populate its in-game server 
browser with information on these 90 game servers. 

D. Distribution of Distribution of Game Servers on the list 
(Long Term Sampling Results) 

Our first test for bias in how the master server ranks 
individual game servers involved looking at the 
distribution of RTT to each game server in the master 
server’s response list. Figure 6 is a scatter plot of each 
game server’s RTT (measured from our artificial client) 
versus its rank. These RTT values are derived from a 
single 6-hourly probe of all game servers using Qstat. 

There appears to be no particular relationship 
between a game server’s RTT and its position in the list 
returned by the master server. Interestingly the scatter 
plot clearly shows three distinct regions of game servers 
as seen from a client based in Australia. Previous related 
work on RTT distributions of ET clients measured from 
Melbourne [9] suggests the lower RTT ranges (0 - 100 

ms) are most likely to be local game servers within 
Australia and surrounding countries. The middle ranges 
of RTTs (180 - 270 ms) are likely to be game servers 
from America and the servers clustered above 300ms+ 
are most likely to be based in Europe. 

Figure 6 – RTT vs. Game server rank after one query 
during the Long trial 

E. Distribution of game server rankings over time 

Our second test for bias in game server rankings 
involved tracking the rank assigned to three specific 
servers over the long (22 day) trial. We tracked our own 
local ‘CAIA’ server and two other servers known to be 
in America and Germany respectively. 

Figure 7 – CDF of game server rank during the Long trial 

Figure 7 shows a cumulative distribution function for 
the rank assigned to each game server over all of the 
long trial’s 1100 master server response lists. Over long 
periods of time (and multiple queries) each game 
server’s likely rank in any given query response list 
appears almost uniformly distributed across all possible 
rankings. 
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Closer inspection (not shown here) revealed that each 
server’s rank jumped around unpredictably (rather than 
increase or decrease gradually) from one query to the 
next. Either the master server was deliberately 
randomising the rankings of game servers in every query 
response, or there was a periodic re-ordering whose 
period was smaller than 60 minutes. This uncertainty led 
us to perform the short10 and short60 trials. 

F. Periodicity in the master server’s response list 

Figure 8 shows the ranking of three game servers 
over a 100-minute segment of the short60 trial. Each 
game server’s rank periodically cycled from beginning 
to end of the master server’s response list with a period 
of roughly 36 minutes. In Figure 8 we tracked three 
game servers who were near the beginning (server at 
rank 1), middle (server at rank 778) and end (server at 
rank 2564) of an early response list5. 

Figure 8 –Ranks of three game servers during a fragment 
of the Short60 trial 

(Although not shown, we observed similar periodic 
behaviour in the rankings of other game servers. When a 
game server first registers with the master server it is 
ranked at the beginning of the response list and then 
begins the periodic migration from beginning to end 
along with all other registered game servers.) 

Based on the short10 trial Figure 9 provides a close-
up view covering four unrelated game servers over 15 
minutes with queries every 10 seconds. Each 36-minute 
cycle is made up of consecutive, non-linear bursts of 
downward migration in ranking6. Each of these short 
bursts takes roughly 3 min 40 seconds, with an 
asymptotic shape that is as-yet unexplained. 

                                                 
5 The lines are broken in places where particular servers were 
not consistently present. This provides some indication of the 
uncertainty a player’s client would experience when querying 
for available game servers. 
6 As with Figure 8, some game servers came and went during 
the observation period. 

Figure 9 – Ranks of four game servers during a fragment 
of the Short10 trial  

G. Querying from diversely located clients 

Our final attempt to find bias involved concurrently 
querying the ET master server from three separate 
artificial clients located at different IP addresses (as 
described in section II.F). Figure 10 shows the rank of a 
particular game server as seen from three different 
clients who issued concurrent queries every 10 seconds 
over a three minute period. Clients ‘caia1’ and ‘caia2’ 
were located on the same 136.186.299/24 subnet, whilst 
‘homePC’ was located on a totally different ISP within 
the same metropolitan area (Melbourne, Australia). 

Figure 10 – Rank of one game server while being queried 
every 10 seconds from three separate clients  

It seems reasonable to conclude that the master server 
is not introducing any offset to rankings based on the 
specific IP address. However, we cannot rule out the 
possibility that a client’s apparent country of origin 
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might be used to permute the master server’s rankings. 
Unfortunately we were not able to run concurrent client 
queries from hosts in different countries in order to rule 
out this possibility. 

IV. GETTING ‘STUCK’ AT THE BOTTOM OF THE LIST 

Most of the time game servers experience the 
periodic cycling of their rank according to the patterns 
shown in Figure 8 and Figure 9. However, from time to 
time an active game server would seem to get ‘stuck’ 
near the bottom of the master server’s list. An example 
of this phenomena happening to the CAIA Server is 
shown in Figure 11 (with other servers also shown 
unaffected at the same time) and in close-up in Figure 12 
(showing only the CAIA Server’s rank). 

Figure 11 – CAIA’s own server getting ‘stuck’ at the 
bottom of the master server’s response list while other 
game servers continue the regular 36-minute cycle 

Figure 12 – Close-up of CAIA’s own server getting ‘stuck’ 
at the bottom of the master server’s response list 

Getting ‘stuck’ down the bottom of the ranking is a 
disadvantage for game servers trying to attract players. 
They will be probed and presented to players only after 
all the higher ranked servers are presented, possibly 
losing an opportunity to catch a potential player’s 
attention. 

We do not yet have an explanation for this 
phenomenon. Fortunately, Figure 7 suggests no 
significant long-term influence or bias is introduced into 
the distribution of rankings to any given server. 

V. CONCLUSION AND FUTURE WORK 

This short paper was motivated by the following 
goal: test whether a Wolfenstein Enemy Territory (ET) 
master server introduces bias into the ordering of 
registered game servers that are returned when queried 
by ET game clients. Any such bias would influence how 
frequently game clients around the world might probe 
particular game servers when players trigger the in-client 
server browser function. We wished to validate the 
assumption in previous work [2] that there was no 
particular bias. 

We queried the ET master server every 30 minutes 
for 22 days, every 60 seconds for 4 days and every 10 
seconds for 2 days. From the master server’s responses 
we showed: 

- The majority of ET game servers are in Europe 
(consistent with previous work showing the 
majority of clients were in Europe). 

- The rank (position) of any given game server in 
the master server’s response list periodically 
moves from top to bottom every 36 minutes. 

- The rank of each game server within the 
response list appears to be unaffected by the 
topological relationship between each game 
server and the querying client. 

- No particular bias was observed keeping 
particular game servers closer to the top of the 
master server’s list. Over a long period of time 
every game server is equally likely to appear at 
any possible rank in the master server’s 
response.  

A follow-up experiment suggested by these results is 
to pre-sort the master server’s response list so that game 
server’s “close” to the querying client are ranked nearer 
the top of the response. This may reduce the time it takes 
for the client’s in-game server browser to present an 
attractive game server on which to play (on the basis that 
lower latency is more attractive all other things being 
equal). If players promptly select a game server from 
near the top of the browser’s list there would be an 
associated reduction in unnecessary client probe traffic 
to distant game servers further down the list. We intend 
to explore implementations of such a scheme, and 
quantify the impact on network traffic. 
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APPENDIX A. PACKET LOSS IN MASTER SERVER RESPONSES 

An ET client cannot easily detect whether any given 
master server response list is in fact the complete list of 
registered game servers held by the master server at the 
time of the query. Packet loss is a fact of life in the 
Internet, and a master server response of N packets could 
easily arrive with N-1, N-2 or even less packets. As 
noted in the report, packets 1 through (N-1) contain IP 
address and port number pairs of 112 game servers while 
packet N contains from 1 to 112 game servers.  

In this report we made no attempt to identify if 
packet loss was influencing our results. Rather, we chose 
to evaluate the sever distributions that would be 
experience by regular game clients regularly querying in 
the master server. However, a number of possible 
techniques could be deployed to infer packet loss. 
Consider a master server response of N packets. A loss 
of packet X (where 1<=X<N) would have two 
consequences:  

• Exactly 112 game servers would temporarily 
disappear. 

• All game servers between packet X+1 and 
packet N would have their apparent rank 
jump 112 positions towards the ‘top’ of the 
list (at rank 1). 

A loss of packet N would have slightly different 
consequences: 

• Between 1 and 112 game servers would 
temporarily disappear 

• The ‘last’ packet received from the master 
server would contain precisely 112 game 
servers. 

When sampling the master server repeatedly over 
short periods of time we might retrospectively infer 
packet loss events by looking for transient fluctuations in 
the number of packets returned and the total number of 

game servers returned. 

For example, packet loss always causes a drop in the 
number of packets and number of game servers returned 
(relative to the previous, complete master server 
response). However, the number of packets may also 
drop if the number of registered game servers 
legitimately happened to drop across a packet boundary 
(e.g. from 113 to 110, or 1120 to 1115) between client 
queries. One possible sign that a drop is caused by 
packet loss could be when the number of packets drops 
and the number of game servers drops by 112 (or more) 
at the exact same time. 

Naturally, this could also be cause by a sudden, 
legitimate loss of 112 (or more) game servers from the 
master server’s list. We can be more certain the original 
drop is due to transient packet loss if the very next query 
returns a matching increase in the number of packets 
(and game servers) returned by the master server. Thus, 
a transient drop-then-jump of one or more packets (and 
112 or more game servers) between response R1, R2 and 
R3 would be an indication that R2 had been impacted by 
transient packet loss. 

If we lost packet X (where 1<=X<N) we might also 
strengthen the inference of packet loss by noting if 
multiple game servers had their rank suddenly drop-
then-jump 112 positions between responses R1, R2 and 
R3. Note that a drop alone is not sufficient, and this only 
works if we monitor game servers in packets X+1 to N. 
Although we do not know which packet was lost, the 
symptom ‘a transient drop-then-jump of one or more 
packets (and 112 or more game servers)’ suggests the 
lost packet X in response R2 was indeed in the range 
1<=X<N. In such cases we can strengthen the inference 
of packet loss by noting whether the game servers in 
found in the last packets of both R1 and R3 seemed to 
jump in rank by 112 positions in R2. 

We might even infer where in R2 the packet loss 
occurred, on the assumption that the trailing packets 
X+1 to N in R1 and R3 will carry much the same list of 
game servers as the equivalent set of trailing packets in 
R2. Keep stepping back towards the start of R2 until the 
trailing game server lists significantly differ – you’ll 
have located the likely point of packet loss. 

If the last packet is lost there is also transient drop-
then-jump in the number of packets. However, the 
number of listed game servers drops and jumps by less 
than 112 (since the last packet may contain as few as one 
extra game server). In this case we can strengthen the 
inference of packet loss by noting whether the game 
servers listed in the last packet of R1 and R3 are (a) 
basically the same and (b) totally absent from the entire 
list of game servers in R2. 

The techniques discussed here can be applied to 
previously captured packet traces of client query and 
master server responses. From this we might calculate 
the incidence of packet loss on master server response 
lists over time. 

 

 


