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Abstract--Public traffic traces are often obfuscated for 

privacy reasons, leaving network historians with only port 
numbers from which to identify past application traffic trends. 
However, it is misleading to make assumptions based on default 
port numbers for many applications (such as peer-to-peer file 
sharing or online games). Traffic classification based on machine 
learning could provide a solution. By training a classifier using 
representative traffic samples, we can classify (and differentiate 
between) distinct, but possibly similar, applications of interest in 
previously anonymised trace files. Using popular peer-to-peer 
and online game applications as examples, we show that their 
traffic flows can be separated after-the-fact without using port 
numbers or packet payload. We also address how to obtain 
negative training examples, propose an approach that works with 
any existing supervised machine-learning algorithm, and present 
a preliminary evaluation based on real traffic data. 

Keywords--Traffic Classification, Machine Learning 

I. INTRODUCTION 
Over the last decade a large number of traffic traces 

have been captured within the Internet. Estimating traffic 
trends in these traces is essential in uncovering past 
network usage and could help predicting future usage. 
Currently the most reliable method of identifying 
applications is through packet payload inspection. This 
approach is limited however, as often payload data is 
either partially represented (few bytes of the payload are 
captured) or absent altogether. Even in cases where a 
few bytes of payload remain, studies have shown 
accurate identification to be difficult [1]. This leaves 
port numbers as only method of estimating traffic trends. 

With an ever-increasing number of network 
applications, extensive use of network address 
translation (NAT), dynamic port allocation and end-
users deliberately choosing non-default ports, port-based 
identification is becoming ineffectual. The most 
prominent examples are peer-to-peer file sharing (p2p) 
applications, of which a significant amount of traffic is 
found on non-default ports (see [2]). 

Machine learning (ML) is a possible solution to 
overcome the shortcomings of port and payload-based 
analysis. ML algorithms can be trained on data that 
describes each application by packet payload 
independent traffic characteristics (e.g. packet length, 

inter-arrival time distributions), and as such are ideal for 
use with anonymised traces. Previous work has 
predominantly focussed on the classification of flows 
into application types, such as interactive and non-
interactive. Our approach differs in that we attempt to 
classify flows into specific applications, which presents 
several new challenges. Firstly, we need to differentiate 
between distinct applications with possibly similar 
traffic profiles. Secondly, we need to obtain a proper set 
of data to train the ML algorithm. This dataset must 
include representative data for each application of 
interest (positive examples) and data representing all 
other applications (negative examples). 

Obtaining the positive examples �only� requires some 
representative traffic of the applications of interest. That 
traffic could be captured in the network or traffic models 
could be used to generate representative (but artificial) 
traffic. Negative examples representing all other 
applications are also required; otherwise the number of 
false positives would be high. It is not possible to 
construct this part of the training data set as we do not 
know what other traffic is in the historic trace, and the 
number of possible applications is simply too large. 
Therefore, we propose a simple approach that takes the 
negative examples from the historic trace itself.  

We find that individual applications, even those of 
the same application category (e.g. eDonkey, BitTorrent, 
Kazaa) can be separated with accuracies of over 90%. 
Traffic characteristics of the applications have not 
changed significantly when comparing a hand-classified 
training dataset with two historic datasets, but the hand 
classified dataset also shows some limitations, as it does 
not sufficiently cover the whole range of flow 
characteristics present in the historic traces. 
Furthermore, we show that a significant amount of 
traffic of the applications of interest was using non-
default ports and thus would have not been discovered 
with a purely port number based approach. 

The paper is structured as follows. Section II 
provides a brief overview about related work. Section III 
outlines our approach, explains our machine learning 
technique and describes our datasets. Section IV presents 
the results of evaluating the proposed approach and 
Section V concludes and outlines future work. 
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II. RELATED WORK 
A number of researchers have proposed machine 

learning or statistical clustering techniques to separate 
network application types based on traffic statistics. In 
[3] the authors use nearest neighbour (NN) and linear 
discriminate analysis (LDA) to map different 
applications to different QoS classes. The Expectation 
Maximization (EM) algorithm is used in [4] to cluster 
flows into different application types. The authors of [5] 
have used correlation-based feature selection and a 
Na�ve Bayes classifier to differentiate between different 
application types. The authors of [8] use principal 
component analysis (PCA) and density estimation to 
classify traffic into different applications. We have 
proposed an approach for identifying different network 
applications based on forward feature search and EM in 
[7]. The authors of [6] have developed a method that 
characterises host behaviour on different levels to 
classify traffic into different application types. 

III.  APPROACH 
We use a hand-classified packet trace as a 

representative sample of the applications of interest. This 
trace has been separated into classes using payload 
information and port numbers. Two other public traces 
without payload serve as historic traces. For the historic 
traces we obtain the classes based on the application 
default port numbers, assuming that a major amount of 
traffic of each application would have used default ports 
([2] confirms this for p2p traffic). 

Initially we investigate if different applications, 
especially of the same �category�, can be separated purely 
based on traffic characteristics by performing 10-fold 
cross-validation on each trace separately. k-fold cross 
validation randomly divides the data into k subsets. Each 
time, one of the k subsets is used as the test set and the 
other k-1 subsets form the training set. Error statistics are 
calculated across all k trials. Cross-validation provides a 
much better indication of how well the classifier will 
perform on unseen data than the overly optimistic 
accuracy obtained on the full training dataset. 

We then evaluate how effective a classifier trained on 
the hand-classified trace can identify traffic flows in the 
historic traces. We also train classifiers on each of the 
historic traces and test against the other. Our hand-
classified dataset is limited in terms of size and lacks a 
suitably large range of flow characteristics. Therefore, 
we also combine the hand-classified data with each 
historic trace into one dataset and perform 10-fold cross-
validation, computing accuracy separately for instances 
from the hand-classified and historic traces to evaluate if 
application characteristics have changed. 

Our final goal is to estimate the amount of traffic of 
the applications of interest in the historic trace. As the 
hand-classified trace does not seem to cover the whole 
range of application characteristics, in these tests we use 
the traffic on default application ports of the historic 
traces as training data. 

We also need an additional class of negative 
examples, into which traffic not of interest will be 
classified. Without this class, flows from all applications 

would be classified as one of our applications of interest 
(whichever is most similar). It is not possible to 
construct this part of the training data set as we do not 
know what other traffic is in the historic traces, and the 
number of possible applications is simply too large. 

Dealing with missing negative examples is also 
known as one-class classification problem and is not 
unique to our situation [9]. In general, one-class 
classification is harder than conventional classification 
because only one side of the class boundary is supported 
by examples. The two common approaches to this 
problem are: the generation of artificial negative training 
instances or the usage of special one-class classifiers [9]. 
In some preliminary tests we found that none of the 
approaches worked very well with our dataset.  

Therefore we use a different approach, in which 
negative examples are taken from the historic traces. We 
first train a classifier on the applications of interest and 
all other port numbers with a significant number of 
flows (each port as separate class). We then examine the 
crossover between the applications of interest and all 
other ports. The crossover is defined as sum of false 
negatives and false positives rates between the two 
classes (see appendix). 

If a particular port has maximum crossover with one 
of the applications we assume traffic flows on this port is 
of that application and we include the traffic into the 
application class (positive examples). If a particular port 
does not crossover with any of our applications we 
assume that traffic flows on this port is from a different 
application and include the traffic into the other class 
(negative examples). 

Finally, we test the classifier on the whole historic 
datasets and compare the amount of application traffic 
identified using machine learning with the amount of 
traffic on the default ports. 

A. Flow Attributes 
We use NetMate [10] to compute the flow 

characteristics (features) based on packet traces. We 
classify packets to flows based on source IP and source 
port, destination IP and destination port. Flows are 
bidirectional and the first packet seen by the classifier 
determines the forward direction of the flow.  

Flows have limited duration. UDP flows are 
terminated by a flow timeout, while TCP flows are 
terminated upon proper connection teardown (TCP state 
machine) or after a timeout (whichever occurs first). We 
use a 600 second flow timeout as short timeouts such as 
60 seconds can cause few long-lived TCP connections to 
be chopped into multiple flows. In our analysis we 
consider only UDP and TCP flows that have at least 1 
packet in each direction and transport at least 1 byte of 
payload. This excludes flows without payload (e.g. 
failed connection attempts) or �unsuccessful� flows (e.g. 
requests without responses). Flows devoid of payload 
data do not reveal information about the generating 
application. Flows with only a single packet do not 
resemble a successful communication (without payload 
inspection it is difficult to determine if these are failed 
connections or malicious traffic such as port scans).  
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We compute the following features: protocol, 
duration, volume in bytes and packets, packet length 
(minimum, mean, maximum, standard deviation), inter-
arrival times (minimum, mean, maximum, standard 
deviation), active and idle times (minimum, mean, 
maximum, standard deviation) and the number of pushed 
packets (TCP only). Aside from protocol and duration 
all features are computed separately in both directions of 
a flow. All packet length derived features are based on 
the IP length excluding link layer overhead. All of our 
features can be efficiently computed and are packet and 
flow-level features, meaning packet traces are needed 
but no wider context (multiple flows) is required to 
compute the features.  

We distinguish active and idle periods by using an 
idle threshold, which is 1 second by default. Periods 
where no packets are observed for 1 second or more are 
treated as idle periods. A flow is active when not in an 
idle period. When a flow is terminated by timeout the 
time from the last packet until the timeout is not counted 
as idle time. Besides computing the volume for the 
whole flow we also compute the average volume of 
active periods (bytes and packets). 

B. C4.5 Decision Tree Algorithm 
The C4.5 algorithm [11] creates a classifier based on 

a tree structure. Nodes in the tree represent features, with 
branches representing possible values connecting 
features. A series of nodes and branches is terminated 
with a leaf representing the class. Determining the class 
of an instance is simply a matter of tracing the path of 
feature nodes and branches to the terminating leaf node. 

C4.5 uses the divide and conquer method to construct 
a tree from a set of S training instances. If all cases in S 
belong to the same class, the decision tree is a leaf 
labelled with that class. Otherwise the algorithm will use 
some test to divide S into several non-trivial partitions. 
Each of the partitions becomes a child node of the 
current node and the tests to separate S are assigned to 
the branches.  

C4.5 uses two types of tests each involving only a 
single attribute A. For discrete attributes the test is A=? 
with one outcome for each value of A. For numeric 
attributes the test is A≤θ where θ is a constant threshold. 
Possible threshold values are found by sorting the 
distinct values of A that appear in S and then identifying 
a threshold between each pair of adjacent values. For 
each attribute a test set is generated. To find the optimal 
partitions of S C4.5 relies on greedy search and in each 
step selects the test set that maximizes the splitting 

criterion. C4.5 uses the entropy based gain ratio (see 
[11]) to select the best split.  

The divide and conquer approach partitions the data 
until every leaf contains instances from only one class or 
a further partition is not possible e.g. because two 
instances have the same features but different class. If 
there are no conflicting cases the tree will correctly 
classify all training instances. However, this over-fitting 
leads to a decrease of the prediction accuracy on a set of 
unseen instances.  

C4.5 attempts to avoid over-fitting by removing some 
structure from the tree after it has been built. This 
pruning is based on estimated true error rates. After 
building a classifier the ratio of misclassified instances 
and total instances can be viewed as the real error. But 
this error is minimised because the classifier was 
constructed specifically for the training instances. 
Instead of using the real error the C4.5 pruning 
algorithm uses a more conservative estimate, which is 
the upper limit of a confidence interval constructed 
around the real error probability. With a given 
confidence CF the real error will be below the upper 
limit with 1-CF. C4.5 uses subtree replacement or 
subtree raising to prune the tree as long as the estimated 
error can be decreased. 

We compared C4.5 with other algorithms such as 
Na�ve Bayes and Neural Networks and found it to be the 
most effective. It provides high accuracy, training and 
classification are fast and memory usage is moderate. 
Because C4.5 selects the tests in order of decreasing 
gain, it already performs feature selection during the 
training. Important features will appear at the top of the 
tree and irrelevant features are not used. Therefore C4.5 
does not suffer (as e.g. Na�ve Bayes) if irrelevant 
features are present in the data set. Furthermore, the tree 
output can be easily interpreted by humans (although 
this is complicated for large trees) or translated into 
rules, which is another advantage over other algorithms 
(e.g. neural networks are essentially black boxes). 

C. Traffic Traces 
We captured several hours of p2p and other 

application traffic on an ADSL link in September 2005. 
The different p2p applications were run independently 
and the first 68 bytes of each packet were captured to 
allow for later �hand classification� of the flows. We used 
the following p2p applications: eDonkey (eMule 0.46c), 
Kazaa 3.0 and BitTorrent 4.0.4. All p2p applications 
were run on the preconfigured default ports. 

Table 1: P2P application signatures 

P2P Application Signatures Protocol Default ports 
eDonkey 
(EMule 0.46c) 

0xe3, 0xe4, 0xe5, 0xc5, 0xd4 (first byte) TCP 
UDP 

4661-4666 
4671-4673 

BitTorrent 4.0.4 0x13BitTorrent, 
GET /announce?info_hash 

TCP 
UDP 

6881-6889 

Kazaa 3.0 GET /.hash, GIVE, GET /.sig, POST /.pkt, 
GET /.file 

TCP 
UDP 

1214, 3415 
3531 
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Table 2: Traffic statistics of applications of interest in traces used for training 

Application Payload Classified (PC) Twente  Leipzig 
 Flows MBytes Flows MBytes Flows MBytes 
Edonkey 3062 2,325.7 50,000 10,032.8 50,000 32,833.1 
BitTorrent 3216 856.7 32,261 4,121.7 NA NA 
Kazaa 882 524.7 47,893 3,308.0 50,000 7,360.6 
Half-Life 1902 592.8 50,000 211.8 50,000 3,688.3 
HTTP 7894 221.2 50,000 993.1 50,000 1,461.8 
HTTPS 560 67.9 27,835 247.2 50,000 372.6 
DNS 143 2.1 21,115 14.3 50,000 60.4 
Total 17,659 4,591.1 229,104 18,928.9 300,000 45,776.8 
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Figure 1: Percentage of flows (left) and bytes (right) correctly classified performing 10-fold cross-validation separately for each trace. Note: 
Leipzig trace does not contain BitTorrent. 

As in [2] we use a mixture of port numbers and 
signatures to identify the p2p traffic. Interestingly the 
application signatures as identified in [2] were not able 
to detect all the p2p traffic. The old signatures were still 
valid (as far as they appeared in our trace) but we found 
a number of new signatures, most likely a result of new 
client and/or protocol versions (see Table 1). This shows 
that when using signatures care must be taken that the 
signatures are accurate and complete. 

We also captured traffic of the game Half-Life 1, as a 
representative for online games, as well as HTTP, 
HTTPS and DNS traffic, as these are among the most 
prominent network applications. 

We use two publicly available traces as our historic 
data. We use the first 8 days of [12] (location 4) captured 
in February 2004 and one day of Leipzig-II [13] 
(leipzig-ii-20030221) captured in February 2003. Both 
traces are anonymised and packet payload information 
had been removed. As these traces contain many flows 
they were randomly sampled taking up to 50,000 flows 
for each application based on the default ports for the 
training datasets. The Leipzig trace does not contain any 
BitTorrent traffic. 

The eDonkey protocol generates a large amount of 
flows with very small volumes and only few flows with 
larger volumes, which causes several problems. Firstly, 
eDonkey produced substantially more flows than any 
other application in the hand-classified dataset. 
Secondly, sampling of the Leipzig and Twente traces for 
eDonkey obtained almost only small flows. Therefore, 
for all traces we have generated the eDonkey classes by 
sampling 50% large flows and 50% small flows.  

 

Table 2 shows the data used for training the classifier 
to the applications of interest. We also randomly 
sampled 350,000 other flows from each historic trace of 
which we select the negative training examples. 

IV. EVALUATION  
Classification and training is performed using the 

Weka Machine Learning suite [14], and its 
implementation of the C4.5 algorithm, J48. We use a 
confidence level of 0.25 and the minimum number of 
instances per leaf is 2. We use subtree replacement and 
subtree raising when pruning. 

A. Separating the Different Applications 
We initially determine if each of our nominated 

applications can be separated from each other. We 
perform training and 10-fold cross validation on each 
dataset separately. Figure 1 shows the percentage of 
flows and bytes that was correctly identified. The results 
show high accuracy for all applications and datasets. 
Overall flow accuracy was very high, with 99.75% of 
the PC trace flows being identified, 96.19% of Twente 
flows and 98.84% of Leipzig flows. 

For the three traces, all applications were identified 
with greater than 90% accuracy. The results for byte 
accuracy are less consistent, but quite good for the p2p 
applications. HTTPS has very low byte accuracy in the 
PC trace because most of the volume was in a single 
large flow that was misclassified. 
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Figure 2: Percentage of flows (left) and bytes (right) correctly classified when trained on PC and tested on Twente or Leipzig. Note: Leipzig 
trace does not contain BitTorrent. 
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Figure 3: Percentage of flows (left) and bytes (right) correctly classified when training on Twente or Leipzig and testing on the other. 

B. Evaluating the Similarity of Application  
Characteristics Across Traces   
To investigate if the traffic characteristics of the 

different applications are similar between the recent and 
past traces we train on the PC dataset and test the 
classifier against the Leipzig and Twente datasets. 
Figure 2 shows the flow and byte accuracies.  

When training on the payload classified dataset and 
testing on Twente flow-based accuracy is not very high. 
However, this may be due to a lack of training instances 
for some of the applications (such as DNS), as accuracy 
of the different applications appears somewhat 
proportional to the number of flows in the PC dataset. 
Byte accuracy improves somewhat for the p2p and Half-
Life traffic classes. While only 40% of Half-Life flows 
were correctly identified, these represented more than 
80% of the volume. This indicates that the majority of 
correctly classified instances were actual game flows but 
a significant number of small probe flows were 
misclassified (see [15] for a discussion on game vs. 
probe flows). Accuracies for Leipzig were generally 
better than for Twente, except for Kazaa. 

It seems that our hand-classified dataset is limited in 
terms of the number and representative quality of 
instances and therefore unable to predict the data in the 
historic traces with very high accuracy. The results do 
show however a significant correlation between classes 
in the training and testing sets, and a larger training set 
would likely produce better results. 

To investigate if the traffic characteristics of the 
different applications are similar between the historic 
traces we trained on each historic dataset and tested 
against the other. Figure 3 shows the flow and byte 
accuracies. The increased size and variance within the 
training classes provides some increase in classification 
accuracy, when compared to training on the PC dataset. 
In general training on Twente and testing on Leipzig 
provides better results, though both scenarios identified 
p2p and game traffic quite accurately with 80-90% 
accuracy. 

The lower prediction accuracy of the PC training data 
does not necessarily mean that application characteristics 
have significantly changed. To test this we combine the 
PC dataset with each of the historic traces and perform 
10-fold cross validation on the combined sets. We 
compute not only the overall accuracy but also the 
accuracy for PC and historic dataset separately. 

Figure 4 shows the results when combining the PC 
and Leipzig datasets. Overall accuracy and the 
accuracies for the individual datasets are obtained by 
separating the instances after cross-validation. The 
results obtained for PC and Leipzig when separated are 
essentially the same as in Section IV.A, with the PC 
dataset actually seeing increased accuracy for 
HTTP/HTTPS. DNS also increases markedly for PC, 
clearly benefiting from the additional DNS instances in 
the Leipzig trace. 
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Figure 4: Overall and separate flow (left) and byte (right) accuracy statistics for PC and Leipzig traces after combined training and cross-
validation. 
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Figure 5: Overall and separate flow (left) and byte (right) accuracy statistics for PC and Twente traces after combined training and cross-
validation. 

Figure 5 graphs the results when combining PC and 
Twente datasets. Again there is little difference in 
accuracy when compared to individual cross-validation 
of both datasets, an indication that combining the two 
training sets did not introduce additional errors, and that 
the characteristics of all applications are very similar 
between the datasets. 

To test whether the classifier had been over-fitting 
the datasets (and providing inflated accuracies), we 
switched the labels of two classes in one part of the 
combined set (i.e. either the PC or historic) and re-ran 
the cross-validation tests. As expected changing the 
labels greatly reduces accuracy. If classes differ in size 
between traces the majority class only experiences a 
small accuracy reduction, whereas the minority class 
suffers from a huge accuracy decrease. 

C. Estimating Traffic of Interest in the Historic Traces 
In this section we focus on p2p applications and Half-

Life, as in our set of applications these are the most 
likely to run on non-default port numbers. We obtain 
positive training examples solely from the default ports 
in the historic traces. To estimate the presence of p2p 
and Half-Life traffic within the anonymised traces we 
must also generate an �other� class containing negative 
examples.   

We do this by calculating the crossover between the 
applications classes and other classes representing 
individual ports within the historic traces. As there are 
many thousand ports used in the traces, we remove ports 

with less than 25 flows from each dataset (due to limited 
computing resources). Using our default-port application 
classes and each other port as a class, we train a 
classifier and perform cross-validation testing. If the 
maximum crossover between two classes is higher than 
0.5 we integrate both. (A value of 0.5 is equivalent to 
25% false negatives and false positives between the 
classes, which is a much higher error than found in 
Section IV.A and IV.B.) After integrating highly similar 
traffic on non-default ports into our p2p and Half-Life 
classes a total of 249,586 and 303,307 instances were 
still left in the �other� class for the Leipzig and Twente 
traces respectively (and were used as negative 
examples). 

Figure 6 shows histograms of ports that were 
identified as being potential members of the p2p classes 
for the Twente and Leipzig traces (few ports >20000 
excluded). A bin size of 100 is used in both histograms. 
There is a clear distinction between the identified ports 
for each application, and the distributions are fairly 
similar for both traces. Similar distributions were also 
found for the payload-classified trace (not shown). 

Kazaa appears to have a large number of flows on 
non-default ports mostly distributed across ports 1000-
4000 (default port 1214). eDonkey is found on a wider 
distribution of ports, though most are concentrated on 
either side of the default ports (around 4662). In the 
Twente trace BitTorrent is centered mostly on the 
default port (6881), with 40% of flows occurring in this 
region (peak not shown in figure). 
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Figure 6: Histogram of non-default peer-to-peer port numbers for Twente (left) and Leipzig (right). 

Figure 7 plots the distribution of non-default Half-
Life ports for the historic datasets. Again a bin size of 
100 is used. We see that the majority of game flows on 
non-default ports are in the space immediately above the 
default port (27015). Interestingly, few servers were 
apparently running on �multiples� of the default port, 
such as 28015 or 29015. 
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Figure 7: Histograms of Half-Life non-default port distributions for 
the Twente and Leipzig traces. 

After aggregating the identified ports into either the 
application classes or the negative examples class, a 
classifier was built and tested on each respective historic 
trace (detailed in Table 3). 

Table 3: Total number of flows and volume of two historic traces. 

Trace Flows [M] Volume [GB] 
Twente 3.4M 79.3GB 
Leipzig 9.1M 238.8GB 

 
Figure 8 compares the application traffic estimates 

for the Twente trace using default port analysis and ML-
based analysis. Port-based analysis underestimates the 
number of flows for each of the applications other than 
eDonkey. In terms of volume, ML-based analysis 
uncovers 13GB of potential p2p traffic that remained 
unidentified using port-base analysis. This represents 
approximately 16% of the trace volume. Kazaa appears 
to have the largest amount of traffic on non-default 
ports, as was suggested by the wide port distributions. 
37.9GB (47%) of traffic was predicted as other 
applications. 

Figure 9 compares the application traffic estimates 
for the Leipzig trace using port-based analysis and ML-
based analysis. Again port-based analysis underestimates 
the number of applications flows, except eDonkey. As 
with Twente, ML-based analysis shows significantly 
more volume than was identified using port-based 
analysis, with 36GB of additional p2p traffic, or about 
15% of the trace volume. 72GB (30%) of the traffic was 
predicted as other applications. 

Table 4 shows the traffic volume of each application 
on the default ports, and the percentage this volume 
represents out of the total volume estimated by the ML 
classifier (as given in Figures 8 and 9). It shows that 
port-based analysis would have significantly understated 
application flows and volume. Even for Half-Life 20-
30% of the traffic would have not been detected. There 
are some similarities in the results obtained, for example 
eDonkey and Half-Life have the highest and Kazaa has 
the lowest percentage of traffic on the default ports for 
both historic traces. We also find the same trends for the 
hand-classified trace, although the percentages are 
different as port usage is biased towards a specific client 
(e.g. all p2p applications were run on default port 
numbers).  

Standing out against the overall trend is the predicted 
number of eDonkey flows when using ML-based 
classification. For both Twente and Leipzig, the ML 
classifier predicted 10% less flows than found using 
port-based filtering. Further analysis found the cause to 
be a combination of the unique behaviour of the 
eDonkey protocol and a weakness in the current 
methodology.  

As discussed in Section III.C, the eDonkey protocol 
generates significantly more flows than the other 
applications, the majority of which are small-volume 
signalling flows. By restricting the sample size to 50,000 
flows, the eDonkey training dataset is a much smaller 
fraction of the total flow population compared to the 
other applications. Different eDonkey/eMule signalling 
protocol operations [16] occur at different frequencies 
and it is likely that the less frequent operations would be 
underrepresented after sampling. As our training 
examples were sampled with a 50/50 split of large and 
small volume flows, the variety of training examples for 
the signalling flows is further reduced. 
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Figure 8: Traffic estimates in terms of flows (left) and volume (right) for Twente trace using port-based and ML-based methods. 
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Figure 9: Traffic estimates in terms of flows (left) and volume (right) for Leipzig trace using port-based and ML-based methods. 

Table 4: Traffic on default ports (as percentage of ML estimate) 

 Traffic on default ports 
(Twente estimate) 

Traffic on default ports 
(Leipzig estimate) 

 Flows Volume Flows Volume 
EDonkey  1.1M 

(111%) 
11.5GB 
(70.9%) 

 3.3M 
(110%) 

36.9GB 
(83.9%) 

BitTorrent 33K 
(55.6%) 

3.36GB 
(63.1%) 

- - 

Kazaa 51.4K 
(44.6%) 

4.1GB 
(37.8%) 

207.1K 
(39.5%) 

30.7GB 
(52.3%) 

Half-Life 60.7K 
(86.9%) 

216.7MB 
(71%) 

124.2K 
(80.3%) 

3.7GB 
(82.8%) 

 
Our method of selecting the �other� class only selects 

training instances on a port-by-port basis. We found that 
some ports contain eDonkey signalling among a much 
larger number of flows from an unknown application 
(according to the port number it could be Gnutella). The 
PC trace confirms that eDonkey traffic occurs on these 
ports. Although the eDonkey flows only represented a 
small portion of the total flows on these ports their 
number is slightly larger than the number of similar 
flows in the eDonkey training class. Therefore, many of 
these signalling flows in the test data � including those 
on the default port � are classified into the �other� class 
(although with low prediction probability around 60%). 

D. Limitations 
An obvious drawback with our approach of obtaining 

negative training examples is that it only selects on a 
port-by-port basis and thus cannot properly deal with 
ports that are significantly used by multiple applications 
of interest and/or the �other� class. This problem occurred 

for the eDonkey class, which has a significant number of 
flows on ports whose predominant application is 
unknown (see previous section).  

Another drawback is that due to processing and 
memory limits we cannot perform crossover analysis on 
all ports within a dataset but must focus only on the most 
prominent ones. 

V. CONCLUSIONS AND FUTURE WORK 
In this paper we have shown that individual 

applications can be separated with high accuracy without 
using port numbers or payload information even if they 
are of similar type (e.g. different p2p file-sharing 
applications). We have shown that the traffic 
characteristics of the applications have not significantly 
changed in the time between capture dates of the traces 
used. We have also proposed a method for obtaining the 
negative examples required for training a classifier. Our 
method takes into account the traffic mix in the historic 
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traces and the fact that the traffic of interest is spread 
across many ports other than the default.  

The ML-based classifier detected a significant 
amount of traffic that would have not been detected 
purely based on port numbers. The non-default port 
number distributions found for the different p2p and 
game applications provide some circumstantial evidence 
of the efficiency of our method, as there is clearly some 
correlation between non-default port numbers and the 
actual application. 

A number of issues need to be addressed in future 
work. Currently our evaluation is limited by the fact that 
we lack access to historic traces with packet payloads 
necessary to validate our results. We have not yet 
investigated the effects of different parameters such as 
different crossover threshold values etc. and our method 
for identifying non-default ports has some limitations 
that need to be improved in the future. We also plan to 
investigate better ways of obtaining training data for 
applications with a wide variance of different traffic 
flows, such as eDonkey. 
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APPENDIX 
A confusion table provides the basis for the 

evaluation metrics and contains information about actual 
and predicted classifications for each class. Table 5 
shows the confusion matrix for a two-class classifier 
(classes - and +). 

Table 5: Confusion matrix 

Assignment  

Label - + 

- TN FP 

+ FN TP 

 

Each instance is associated with a label, which 
accounts for the true class. The classification produces 
an assignment indicating whether it believes an object to 
belong to a certain class.  

Then for each instance there are four possible 
outcomes: TP stands for true positive, TN stands for true 
negative, FP stands for false positive and FN stands for 
false negative. The false positive rate and false negative 
rate are defined as: 

_ ,

_ .

FP
FP rate

TN FP
FN

FN rate
FN TP

=
+

=
+

 (1) 

The maximum crossover of a class x with all other 
classes from a set of classes C is: 

( )

max{ , | _ ( , ) _ ( , )}

crossover x

c C c x FP rate x c FN rate x c

=
∀ ∈ ≠ +

.     (2) 

 

 


