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Abstract--Public traffic traces are often obfuscated for
privacy reasons, leaving network historians with only port
numbers from which to identify past application traffic trends.
However, it is misleading to make assumptions based on default
port numbers for many applications (such as peer-to-peer file
sharing or online games). Traffic classification based on machine
learning could provide a solution. By training a classifier usng
representative traffic samples, we can classify (and differentiate
between) distinct, but possibly similar, applications of interest in
previously anonymised trace files. Using popular peer-to-peer
and online game applications as examples, we show that ther
traffic flows can be separated after-the-fact without using port
numbers or packet payload. We also address how to obtain
negative training examples, propose an approach that wor ks with
any existing supervised machine-lear ning algorithm, and present
a preliminary evaluation based on real traffic data.

Keywords--Traffic Classification, Machine Learning

|. INTRODUCTION

inter-arrival time distributions), and as such are ideal
use with anonymised traces. Previous work has
predominantly focussed on the classification of flows
into application types, such as interactive and non-
interactive. Our approach differs in that we attempt to
classify flows into specific applications, which presents
several new challenges. Firstly, we need to differentiate
between distinct applications with possibly similar
traffic profiles. Secondly, we need to obtain a proper set
of data to train the ML algorithm. This dataset must
include representative data for each application of
interest (positive examples) and data representing all
other applications (negative examples).

Obtaining the positive exampl&nly’ requires some
representative traffic of the applications of interestatTh
traffic could be captured in the network or traffic models
could be used to generate representative (but artificial)
traffic. Negative examples representing all other
applications are also required; otherwise the number of
false positives would be high. It is not possible to

Over the last decade a large number of traffic tracesonstruct this part of the training data set as we do not
have been captured within the Internet. Estimating traffiknow what other traffic is in the historic trace, and the
trends in these traces is essential in uncovering pastimber of possible applications is simply too large.
network usage and could help predicting future usag&herefore, we propose a simple approach that takes the
Currently the most reliable method of identifying negative examples from the historic trace itself.

applications is through packet payload inspection. This
approach is limited however, as often payload data
either partially represented (few bytes of the payload a
captured) or absent altogether. Even in cases wher
few bytes of payload remain, studies have sho
accurate identification to be difficult [1]. This leave
port numbers as only method of estimating traffic trend

With an
applications,

ever-increasing number of
extensive use of

. We find that individual applications, even those of

%e same application category (e.g. eDonkey, BitTorrent,

ﬁazaa) can be separated with accuracies of over 90%.
ffic characteristics of the applications have not

eﬂhanged significantly when comparing a hand-classified
straining dataset with two historic datasets, but the hand

¢lassified dataset also shows some limitations, dseis

networknot sufficiently cover the whole range of flow
network addressharacteristics

present in the historic traces.

translation (NAT), dynamic port allocation and end-Furthermore, we show that a significant amount of
users deliberately choosing non-default ports, port-baserhffic of the applications of interest was using non-

identification is becoming ineffectual.

The mostdefault ports and thus would have not been discovered

prominent examples are peer-to-peer file sharing (p2myith a purely port number based approach.

applications, of which a significant amount of traffic is

found on non-default ports (see [2]).

The paper is structured as follows. Section |lI
provides a brief overview about related work. Section lll

Machine learning (ML) is a possible solution tooutlines our approach, explains our machine learning

overcome the shortcomings of port and payload-basadchnique and describes our datasets. Section IV presents
analysis. ML algorithms can be trained on data thahe results of evaluating the proposed approach and
describes each application by packet payloagection V concludes and outlines future work.
independent traffic characteristics (e.g. packet length,
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Il. RELATED WORK would be classified as one of our applications of interes

A number of researchers have proposed machir{(‘é\’h'Cheverh.'s mostf i'm'lar)'. It O;S not possnblt(aj to
learning or statistical clustering techniques to separaf@nStruct this part of the training data set as we do not
network application types based on traffic statistics. Ii{"OW What other traffic is in the historic traces, and the
[3] the authors use nearest neighbour (NN) and linedlmMper of possible applications is simply too large.
discriminate analysis (LDA) to map different Dealing with missing negative examples is also
applications to different QoS classes. The Expectatioknown as one-class classification problem and is not
Maximization (EM) algorithm is used in [4] to cluster uniqgue to our situation [9]. In general, one-class
flows into different application types. The authors of [5]classification is harder than conventional classification
have used correlation-based feature selection and bacause only one side of the class boundary is supported
Naive Bayes classifier to differentiate between differenby examples. The two common approaches to this
application types. The authors of [8] use principaproblem are: the generation of artificial negative training
component analysis (PCA) and density estimation tmstances or the usage of special one-class clas§#fiers
classify traffic into different applications. We haveln some preliminary tests we found that none of the
proposed an approach for identifying different networkapproaches worked very well with our dataset.
%ﬁpllfﬁgOgjtr?c?rssegfo[%]fOr:g\?éddfg\?é%gesdegCr?]e?ﬂngm n Therefore we use a different approach, in which

) ; ’ ; aQegaﬂve examples are taken from the historic traces. We
characterises host behaviour on different levels t - s ot :
classify traffic into different application types rst train a classifier on the applications of interast

' all other port numbers with a significant number of
flows (each port as separate class). We then examine the
lll. APPROACH crossover between the applications of interest and all

We use a hand-classified packet trace as @ather ports. The crossover is defined as sum of false
representative sample of the applications of interess. Thnegatives and false positives rates between the two
trace has been separated into classes using payladdsses (see appendix).

information and port numbers. Two other public iraces If a particular port has maximum crossover with one
without payload serve as historic traces. For the histori c - - -
; - ~..0f the applications we assume traffic flows on this peort i
traces we obtain the classes based on the applicati P : L
- - that application and we include the traffic into the
default port numbers, assuming that a major amount o L -
: . pplication class (positive examples). If a particular port
traffic of each application would have used default port i ith f licati
(12] confirms this for p2p traffic). oes not crossover with any of our applications we
- _ _ T o assume that traffic flows on this port is from a différen
Initially we investigate if different applications, application and include the traffic into the other class
especially of the sameategory, can be separated purely (negative examples).

based on traffic characteristics by performing 10-fold Finally, we test the classifier on the whole historic

cross-validation on each trace separatiifold crossh datasets and compare the amount of application traffic

validation randomly divides the data irksubsets. Eac P ; . . "
: ; entified using machine learning with the amount of
time, one of th&k subsets is used as the test set and I:Eaﬁic on the default ports.

otherk-1 subsets form the training set. Error statistics a
calculated across ditrials. Cross-validation provides a .
much better indication of how well the classifier will A~ Flow Attributes

perform on unseen data than the overly optimistc We use NetMate [10] to compute the flow
accuracy obtained on the full training dataset. characteristics (features) based on packet traces. We

We then evaluate how effective a classifier trained Oﬁlassﬁy packets to flows based on source IP and source

s ; / . . ort, destination IP and destination port. Flows are
the hand-classified trace can identify traffic flowstlie P : e
historic traces. We also train classi¥iers on each of th idirectional and the first packet seen by the classifier

historic traces and test against the other. Our han etermines the forward direction of the flow.

classified dataset is limited in terms of size aack$ a Flows have limited duration. UDP flows are
suitably large range of flow characteristics. Thereforeterminated by a flow timeout, while TCP flows are
we also combine the hand-classified data with eacterminated upon proper connection teardown (TCP state
historic trace into one dataset and perform 10-fold crossaachine) or after a timeout (whichever occurs first). We
validation, computing accuracy separately for instancegse a 600 second flow timeout as short timeouts such as
from the hand-classified and historic traces to evaluate @0 seconds can cause few long-lived TCP connections to
application characteristics have changed. be chopped into multiple flows. In our analysis we

Our final goal is to estimate the amount of traffic ofcggigmoen;%huggcat‘%% Lﬁg tl;lg:/]vss th,‘?t P?ve tatl Igast 1f
the applications of interest in the historic trace. As th : port at ‘eas yte o

e load. This excludes flows without payload (e.g.

hand-classified trace does not seem to cover the what&y -

L P iled connection attempts) arnsuccessfliflows (e.g.
range of application characteristics, in these testasge requests without responses). Flows devoid of payload
{chetrsagflsctrg?niggfgg{;appllcat|on ports of the hlstor'cdata_ do not reveal information about the generating

' application. Flows with only a single packet do not
We also need an additional class of negativeesemble a successful communication (without payload
examples, into which traffic not of interest will be inspection it is difficult to determine if these are fdile
classified. Without this class, flows from all applicationsconnections or malicious traffic such as port scans).
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We compute the following features: protocol,criterion. C4.5 uses the entropy based gain ratio (see
duration, volume in bytes and packets, packet lengtfil]) to select the best split.

(minimum, mean, maximum, standard deviation), inter- The divide and conquer approach partitions the data

S(rar\ll\i/:tli O%neg ct(i\r/r:aml%lijm’i dlg‘eﬁrr:f e sme(‘mirﬂrrrrpdmaarggg;qmt“ every leaf contains instances from only one class or
' ' 'a, further partition is not possible e.g. because two

maximum, standard deviation) and the number of push :
packcts (TCP only). ASie oM protocc and cufaio =ia'Ses N2Ve 1he same [eaures bt diferent olace, I
all features are computed separately in both directions assify all training instances. However, this over-fitting

a flow. All packet length derived features are based o e
LI ads to a decrease of the prediction accuracy on 4 set o
the IP length excluding link layer overhead. All of our pseen instances.

features can be efficiently computed and are packet ar _ o _
flow-level features, meaning packet traces are needed C4.5 attempts to avoid over-fitting by removing some
but no wider context (multiple flows) is required tostructure from the tree after it has been built. This
compute the features. pruning is based on estimated true error rates. After

We distinguish active and idle periods by using a uilding a classifier the ratio of misclassified instsc

idle threshold, which is 1 second by default. Period '?g tg';?cl)rlnisstarxiier:]smc]:ggdbeb\élfg\lljes% afhéheclfsaslif?erﬁmwgs
where no packets are observed for 1 second or more énstructed specifically for the training instances.
treated as idle periods. A flow is active when not in alstead  of using the real error the C4.5 pruning
idle period. When a flow is terminated by timeout the Igorithm uses a more conservative estimate, which is
time from the last packet until the timeout is not counte e upper limit of a confidence interval constructed
as idle time. Besides computing the volume for th

round the real error probability. With a given
\ggﬁ/lg p];!s(\)r\i%dvgezbstlz(s) ;r?énggéﬁegg)e average volume o onfidence CF the real error will be below the upper

limit with 1-CF. C4.5 uses subtree replacement or
.. . subtree raising to prune the tree as long as the estimated
B. C4.5 Decision Tree Algorithm error can be dgecregsed. g

The C4.5 algorithm [11] creates a classifier based on
a tree structure. Nodes in the tree represent featuitbs, w,
branches representing possible values connecti
features. A series of nodes and branches is terminat
with a leaf representing the class. Determining thescla

of an instance is simply a matter of tracing the pth P - -
I ain, it already performs feature selection during the
feature nodes and branches to the terminating leaf nod raining. Important features will appear at the top of the

C4.5 uses the divide and conquer method to construgkee and irrelevant features are not used. Therefore C4.5
a tree from a set @ training instances. If all cases$ does not suffer (as e.g. Na Bayes) if irrelevant
belong to the same class, the decision tree is a lefdatures are present in the data set. Furthermoreaethe t
labelled with that class. Otherwise the algorithm wsku output can be easily interpreted by humans (although
some test to divid& into several non-trivial partitions. this is complicated for large trees) or translated into
Each of the partitions becomes a child node of theules, which is another advantage over other algorithms
c#rrgnt n%de and the tests to sepa&tee assigned to (e.g. neural networks are essentially black boxes).
the branches.

C4.5 uses two types of tests each involving only &- Traffic Traces
single attributeA. For discrete attributes the testAs? We captured several hours of p2p and other
with one outcome for each value 8f For numeric application traffic on an ADSL link in September 2005.
attributes the test iB<@where@fis a constant threshold. The different p2p applications were run independently
Possible threshold values are found by sorting thand the first 68 bytes of each packet were captured to
distinct values ofA that appear it$ and then identifying allow for later'hand classificatiorof the flows. We used
a threshold between each pair of adjacent values. Ftire following p2p applications: eDonkey (eMule 0.46c¢),
each attribute a test set is generated. To find the dptimidazaa 3.0 and BitTorrent 4.0.4. All p2p applications
partitions ofS C4.5 relies on greedy search and in eackwvere run on the preconfigured default ports.
step selects the test set that maximizes the splitting

We compared C4.5 with other algorithms such as
aive Bayes and Neural Networks and found it to be the

st effective. It provides high accuracy, training and

ssification are fast and memory usage is moderate.
ecause C4.5 selects the tests in order of decreasing

Table 1. P2P application signatures

P2P Application Signatures Protocol Default ports

eDonkey 0Oxe3, 0xe4, Oxe5, 0xc5, 0xd4 (first byte) TCP 4661-4666

(EMule 0.46¢) UDP 4671-4673

BitTorrent 4.0.4 0x13BitTorrent, TCP 6881-6889
GET /announce?info_hash UDP

Kazaa 3.0 GET /.hash, GIVE, GET /.sig, POST /.pkt| TCP 1214, 3415
GET /file UDP 3531
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Table 2: Traffic statistics of applications of interest indea used for training

Application Payload Classified (PC) Twente Leipzig
Flows M Bytes Flows MBytes | Flows M Bytes
Edonkey 3062 2,325.7 50,000 10,032/8 50,000 32,833(1
BitTorrent 3216 856.7 32,261 4,121.7 NA NA
Kazaa 882 524.7 47,893 3,308.0 50,000 7,360.6
Half-Life 1902 592.8 50,000 211.8 50,00 3,688.3
HTTP 7894 221.2 50,000 993.1 50,00 1,461.8
HTTPS 560 67.9 27,835 247.2 50,00( 372.6
DNS 143 2.1 21,115 14.3 50,000 60.4
Total 17,659 4,591.1 229,104 18,928{9 300,J00 45,776.8
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Figure 1: Percentage of flows (left) and bytes (right) correctissified performing 10-fold cross-validation sepdydta each trace. Note:
Leipzig trace does not contain BitTorrent.

As in [2] we use a mixture of port numbers and
signatures to identify the p2p traffic. Interestingly the
application signatures as identified in [2] were not abl%
to detect all the p2p traffic. The old signatures weitle st
valid (as far as they appeared in our trace) but we fou
a number of new signatures, most likely a result of ne
client and/or protocol versions (see Table 1). This shows

that when using signatures care must be taken that the _ IV.EVALUATION _
signatures are accurate and complete. Classification and training is performed using the

, . Weka Machine Learning suite [14], and its
We also captured traffic of the game Half-Life 1, as g, jementation of the C4.5 algorithm, J48. We use a

ﬁa1p%%s§ntagv%l\}‘grtor#_me gatlrr]nes, as well as,thHTT confidence level of 0.25 and the minimum number of
an raftic, as these are among th€ MORistances per leaf is 2. We use subtree replacement and

prominent network applications. subtree raising when pruning.
We use two publicly available traces as our historic
data. We use the first 8 days of [12] (location 4) captured. Separating the Different Applications
in February 2004 and one day of Leipzig-ll [13] \ye initially determine if each of our nominated
(leipzig-ii-20030221) captured in February 2003. BOtl’%plicaﬁons Zan be separated from each other. We

Table2 shows the data used for training the classifier

the applications of interest. We also randomly

sampled 350,000 other flows from each historic trace of
hich we select the negative training examples.

traces are anonymised and packet payload informatiib torm training and 10-fold cross validation on each

had been removed. As these traces contain many flowisaset separately. Figure 1 shows the percentage of

they were randomly sampled taking up to 50,000 flowgqys and bytes that was correctly identified. Thaultes

for each application based on the default ports for thg,q; high ‘accuracy for all applications and datasets.

training datasets. The Leipzig trace does not contain afy erall flow accuracy was very high, with 99.75% of

BitTorrent traffic. the PC trace flows being identified, 96.19% of Twente
The eDonkey protocol generates a large amount dfows and 98.84% of Leipzig flows.

flows with very small volumes and only few flows with £ the three traces, all applications were identified

larger volumes, which causes several problems. Firstly..y greater than 90% accuracy. The results for byte

eDonkey produced substantially more flows than anyccracy are less consistent, but quite good for the p2p

other application in the hand-classified datasety,jications. HTTPS has very low byte accuracy in the
Secondly, sampling of the Leipzig and Twente traces fQb¢ trace because most of the volume was in a single
eDonkey obtained almost only small flows. Therefore%‘rge flow that was misclassified

y .

for all traces we have generated the eDonkey classes
sampling 50% large flows and 50% small flows.
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Figure 2: Percentage of flows (left) and bytes (right) correctissified when trained on PC and tested on TwenteipzigeNote: Leipzig
trace does not contain BitTorrent.
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Figure 3: Percentage of flows (left) and bytes (right) correcthssified when training on Twente or Leipzig and testimg¢he other.

. I - To investigate if the traffic characteristics of the
B. Evaluating the Smilarity of Application different applications are similar between the historic
Characteristics Across Traces traces we trained on each historic dataset and tested
To investigate if the traffic characteristics of theagainst the other. Figure 3 shows the flow and byte
different applications are similar between the recent angccuracies. The increased size and variance within the
past traces we train on the PC dataset and test ttfgining classes provides some increase in classification
classifier against the Leipzig and Twente dataset@ccuracy, when compared to training on the PC dataset.
Figure 2 shows the flow and byte accuracies. In general training on Twente and testing on Leipzig

. s rovides better results, though both scenarios identified
When training on the payload classified dataset ar;Ezp and game traffic quite accurately with 80-90%

testing on Twente flow-based accuracy is not very high; ¢ ;4
However, this may be due to a lack of training instances y. . o

for some of the applications (such as DNS), as accuracy The lower prediction accuracy of the PC training data
of the different applications appears somewha@loes not necessarily mean that application characteristics
proportional to the number of flows in the PC datasethave significantly changed. To test this we combine the
Byte accuracy improves somewhat for the p2p and HalPC dataset with each of the historic traces and perform
Life traffic classes. While only 40% of Half-Life flows 10-fold cross validation on the combined sets. We
were correctly identified, these represented more thagompute not only the overall accuracy but also the
80% of the volume. This indicates that the majority oficcuracy for PC and historic dataset separately.

correctly classified instances were actual game flaws b Figyre 4 shows the results when combining the PC

a _significant number of small probe flows weregng ™| eipzig datasets. Overall accuracy and the
misclassified (see [15] for a discussion on game V§ccyracies for the individual datasets are obtained by
probe flows). Accuracies for Leipzig were generallyseparating the instances after cross-validation. The
better than for Twente, except for Kazaa. results obtained for PC and Leipzig when separated are
It seems that our hand-classified dataset is limiited essentially the same as in Section IV.A, with the PC
terms of the number and representative quality oflataset actually seeing increased accuracy for
instances and therefore unable to predict the data in th TP/HTTPS. DNS also increases markedly for PC,
historic traces with very high accuracy. The results delearly benefiting from the additional DNS instances in
show however a significant correlation between classdbe Leipzig trace.
in the training and testing sets, and a larger traingig s
would likely produce better results.
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Figure 4: Overall and separate flow (left) and byte (right) acoustatistics for PC and Leipzig traces after combingiding and cross-
validation.
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Figure5: Overall and separate flow (left) and byte (right) acoustatistics for PC and Twente traces after combirading and cross-
validation.

Figure 5 graphs the results when combining PC andith less than 25 flows from each dataset (due toduhnit
Twente datasets. Again there is little difference ircomputing resources). Using our default-port application
accuracy when compared to individual cross-validatiomlasses and each other port as a class, we train a
of both datasets, an indication that combining the twaolassifier and perform cross-validation testing. If the
training sets did not introduce additional errors, and thahaximum crossover between two classes is higher than
the characteristics of all applications are very similaf.5 we integrate both. (A value of 0.5 is equivalent to

between the datasets. 25% false negatives and false positives between the
. < classes, which is a much higher error than found in
To test whether the classifier had been over-fittin 2 : : : o
the datasets (and providing inflated accuracies), ection IV.A and IV.B.) After integrating highly similar

switched the labels of two classes in one part of thgafic on non-default ports into our p2p and Half-Life
combined set (i.e. either the PC or historic) and re-ra {:Illslsef? a tﬁtql ?]f %4?’586]: an(rj] 383-’30-7 |nséa$ces were
the cross-validation tests. As expected changing t Il left in the ot el cassdort € e|p2|g and Twente
labels greatly reduces accuracy. If classes diffesiza agre:]s | ersspectlvey (and were used as negative
between traces the majority class only experiencese&( ples).

small accuracy reduction, whereas the minority class Figure 6 shows histograms of ports that were

suffers from a huge accuracy decrease. identified as being potential members of the p2p classes
for the Twente and Leipzig traces (few por20000
C. Estimating Traffic of Interest in the Historic Traces excluded). A bin size of 100 is used in both histograms.

In this section we focus on p2p applications and Halff Nére is a clear distinction between the identifiedspor
Life, as in our set of applications these are the modpr €ach application, and the distributions are fairly
likely to run on non-default port numbers. We obtairsimilar for both traces. Similar distributions wereoals
positive training examples solely from the default portdound for the payload-classified trace (not shown).
in the historic traces. To estimate the presence of p2p Kazaa appears to have a large number of flows on
and Half-Life traffic within the anonymised traces wenon-default ports mostly distributed across ports 1000-
must also generate aathef class containing negative 4000 (default port 1214). eDonkey is found on a wider
examples. distribution of ports, though most are concentrated on

We do this by calculating the crossover between th ither side of the default ports (around 4662). In the

s wente trace BitTorrent is centered mostly on the
applications classes and other classes representi . 2y 5 !
individual ports within the historic traces. As there ar Q]Icau“ port (6881), with 40% of flows occurring in this

many thousand ports used in the traces, we remove poffJion (peak not shown in figure).
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Figure 6: Histogram of non-default peer-to-peer port numbers for Tev@ett) and Leipzig (right).

Figure 7 plots the distribution of non-default Half- Figure 9 compares the application traffic estimates
Life ports for the historic datasets. Again a bin site for the Leipzig trace using port-based analysis and ML-
100 is used. We see that the majority of game flows onased analysis. Again port-based analysis underestimates
non-default ports are in the space immediately above tltbe number of applications flows, except eDonkey. As
default port (27015). Interestingly, few servers weravith Twente, ML-based analysis shows significantly
apparently running ofmultiples of the default port, more volume than was identified using port-based

such as 28015 or 29015. analysis, with 36GB of additional p2p traffic, or about
15% of the trace volume. 72GB (30%) of the traffic was
8 - predicted as other applications.
- lwente
3 “ Leipzig Table 4 shows the traffic volume of each application

on the default ports, and the percentage this volume
i represents out of the total volume estimated by the ML
classifier (as given in Figures 8 and 9). It shows that
port-based analysis would have significantly understated
application flows and volume. Even for Half-Life 20-

o
<

Percentage

o
N

o A IV A A ] 30% of the traffic would have not been detected. There

! ! ! ! ! are some similarities in the results obtained, for examp
24000 26000 28000 30000 32000 eDonkey and Half-Life have the highest and Kazaa has
Port Number the lowest percentage of traffic on the default ports for

both historic traces. We also find the same trendshfor t
Figure 7: Histograms of Half-Life non-default port distributions fo hand-classified trace, although the percentages are
the Twente and Leipzig traces. different as port usage is biased towards a speciéatcli
_ _ -~ _ _ (e.g. all p2p applications were run on default port
After aggregating the identified ports into either thenumbers).

application classes or the negative examples class, a Standin - - -
P : - - g out against the overall trend is the predicted
ﬁggg'zgétg?:dt}ﬂ'ﬁ:&gt?)e)Sted on each respectivertusto number of eDonkey flows when using ML-based
' classification. For both Twente and Leipzig, the ML
classifier predicted 10% less flows than found using
Table 3: Total number of flows and volume of two historic trace port-based filtering. Further analysis found the cause to
be a combination of the unique behaviour of the

Trace | Flows[M] | Volume[GB]

eDonkey protocol and a weakness in the current

Leipzig 9.1M 238.8GB

As discussed in Section 11l.C, the eDonkey protocol

. . . : generates significantly more flows than the other
Figure 8 compares the application traffic estimate pplications, the majority of which are small-volume

for the Twente trace using default port analysis and MLgjgnalling flows. By restricting the sample size to 50,000
based analysis. Port-based analysis underestimates s, the eDonkey training dataset is a much smaller
number of flows for each of the applications other thagsction of the total flow population compared to the
eDonkey. In terms of volume, ML-based analysisyher applications. Different eDonkey/eMule signalling
uncovers 13GB of potential p2p traffic_that remainedygtocol operations [16] occur at different frequencies
unidentified using port-base analysis. This represenig.q it is likely that the less frequent operations e
approximately 16% of the trace volume. Kazaa appeaisderrepresented after sampling. As our training
to have the largest amount of traffic on non-defauI[;exammes were sampled with a 50/50 split of large and

ports, as was suggested by the wide port distributiongma|i'volume flows, the variety of training examples for

applications.
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Figure 8: Traffic estimates in terms of flows (left) and volafright) for Twente trace using port-based and ML-basettiods.
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Figure 9: Traffic estimates in terms of flows (left) and voleifright) for Leipzig trace using port-based and ML-basethous.

Table 4: Traffic on default ports (as percentage of ML este@hat

Traffic on default ports | Traffic on default ports

(Twente estimate) (Leipzig estimate)

Flows Volume Flows Volume
EDonkey 1.1M 11.5GB 3.3M 36.9GB

(111%) | (70.9%) (110%) (83.9%)

BitTorrent 33K 3.36GB
(55.6%) | (63.1%)

Kazaa 514K | 4.1GB 207.1K | 30.7GB
(44.6%) | (37.8%) (39.5%) | (52.3%)
Half-Life | 60.7K | 216.7MB 1242K | 3.7GB
(86.9%) | (71%) (80.3%) | (82.8%)

Our method of selecting thether class only selects for the eDonkey class, which has a significant number of
training instances on a port-by-port basis. We found thdtows on ports whose predominant application is
some ports contain eDonkey signalling among a muchnknown (see previous section).

larger number of flows from an unknown application A : -
: : nother drawback is that due to processing and
(according to the port number it could be Gnutella). Th emory limits we cannot perform crossover analysis on

PC trace confirms that eDonkey traffic occurs on thes S
ports. Although the eDonkey flows only represented 'rlo%)irrir\fg'f)hﬁgsa dataset but must focus only on the most

small portion of the total flows on these ports thei
number is slightly larger than the number of similar
flows in the eDonkey training class. Therefore, many of V CONCLUSIONS ANDFUTURE WORK o
these signalling flows in the test datdncluding those In this paper we have shown that individual
on the default port are classified into thether class applications can be separated with high accuracy without

(although with low prediction probability around 60%). using port numbers or payload information even if they
are of similar type (e.g. different p2p file-sharing

D. Limitations applications). We have shown that the traffic

characteristics of the applications have not significantly
hanged in the time between capture dates of the traces
sed. We have also proposed a method for obtaining the
egative examples required for training a classifiem O
ethod takes into account the traffic mix in the historic

An obvious drawback with our approach of obtainin
negative training examples is that it only selects on
port-by-port basis and thus cannot properly deal wit
ports that are significantly used by multiple application
of interest and/or thethef class. This problem occurred
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traces and the fact that the traffic of interest is are and Knowledge Discovery, chapter 16.1.3, pages 267-276,
across many ports other than the default. Oxford University Press, 2002.

- L 12. Remco van de Meent, M2C Measurement Data Repository,
The ML-based classifier detected a significant University of Twente, Enschede, The Netherlands, http://m2c-

amount of traffic that would have not been detected 4 cs utwente.nlirepository/, December 2003.

purely based on port numbers. The non-default pofi3, NLANR traces: http://pma.nlanr.net/Speciall (as of rdfla
number distributions found for the different p2p and  2006).

game applications provide some circumstantial evidences. WEKA 3.4.4, http://www.cs.waikato.ac.nz/ml/weka/ (as of
of the efficiency of our method, as there is clearly some March 2006).

correlation between non-default port numbers and th&s. S. Zander, D. Kennedy, G. Armitage, "Dissecting Server-
actual application. Discovery Traffic Patterns Generated By MultiplayersFi

A number of issues need to be addressed in future Person Shooter Games”, ACM NetGames 2005, NY, USA, 10-
11 October 2005.

work. Currently our eYa'U?‘t'O” IS “m't_ed by the factttha 6. Y. Kulbak, D. Bickson “The eMule Protocol Specification”

we lack access to historic traces with packet payloads Technical Report, Distributed Algorithms Networking and

necessary to validate our results. We have not yet secure Systems Lab, The Hebrew University of Jerusalem,

investigated the effects of different parameters such as Jerusalem, January 2005.

different crossover threshold values etc. and our method

for identifying non-default ports has some limitations APPENDIX

that need to be improved in the future. We also plan to A confusion table provides the basis for the

investigate better ways of obtaining training data foevaluation metrics and contains information about actual

applications with a wide variance of different trafficand predicted classifications for each class. Table 5

flows, such as eDonkey. shows the confusion matrix for a two-class classifier
(classes - and +).
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