
CAIA Technical Report 060313A March 2006 Page 1 of 9

Internet Archeology: Estimating Individual
Application Trends in Incomplete Historic Traffic

Traces

Sebastian Zander, Nigel Williams, Grenville Armitage
Centre for Advanced Internet Architectures. Technical Report 060313A

Swinburne University of Technology
Melbourne, Australia

{szander, niwilliams, garmitage}@swin.edu.au

Abstract--Public traffic traces are often obfuscated for

privacy reasons, leaving network historians with only port
numbers from which to identify past application traffic trends.
However, it is misleading to make assumptions based on default
port numbers for many applications (such as peer-to-peer file
sharing or online games). Traffic classification based on machine
learning could provide a solution. By training a classifier using
representative traffic samples, we can classify (and differentiate
between) distinct, but possibly similar, applications of interest in
previously anonymised trace files. Using popular peer-to-peer
and online game applications as examples, we show that their
traffic flows can be separated after-the-fact without using port
numbers or packet payload. We also address how to obtain
negative training examples, propose an approach that works with
any existing supervised machine-learning algorithm, and present
a preliminary evaluation based on real traffic data.

Keywords--Traffic Classification, Machine Learning

I. INTRODUCTION
Over the last decade a large number of traffic traces

have been captured within the Internet. Estimating traffic
trends in these traces is essential in uncovering past
network usage and could help predicting future usage.
Currently the most reliable method of identifying
applications is through packet payload inspection. This
approach is limited however, as often payload data is
either partially represented (few bytes of the payload are
captured) or absent altogether. Even in cases where a
few bytes of payload remain, studies have shown
accurate identification to be difficult [1]. This leaves
port numbers as only method of estimating traffic trends.

With an ever-increasing number of network
applications, extensive use of network address
translation (NAT), dynamic port allocation and end-
users deliberately choosing non-default ports, port-based
identification is becoming ineffectual. The most
prominent examples are peer-to-peer file sharing (p2p)
applications, of which a significant amount of traffic is
found on non-default ports (see [2]).

Machine learning (ML) is a possible solution to
overcome the shortcomings of port and payload-based
analysis. ML algorithms can be trained on data that
describes each application by packet payload
independent traffic characteristics (e.g. packet length,

inter-arrival time distributions), and as such are ideal for
use with anonymised traces. Previous work has
predominantly focussed on the classification of flows
into application types, such as interactive and non-
interactive. Our approach differs in that we attempt to
classify flows into specific applications, which presents
several new challenges. Firstly, we need to differentiate
between distinct applications with possibly similar
traffic profiles. Secondly, we need to obtain a proper set
of data to train the ML algorithm. This dataset must
include representative data for each application of
interest (positive examples) and data representing all
other applications (negative examples).

Obtaining the positive examples �only� requires some
representative traffic of the applications of interest. That
traffic could be captured in the network or traffic models
could be used to generate representative (but artificial)
traffic. Negative examples representing all other
applications are also required; otherwise the number of
false positives would be high. It is not possible to
construct this part of the training data set as we do not
know what other traffic is in the historic trace, and the
number of possible applications is simply too large.
Therefore, we propose a simple approach that takes the
negative examples from the historic trace itself.

We find that individual applications, even those of
the same application category (e.g. eDonkey, BitTorrent,
Kazaa) can be separated with accuracies of over 90%.
Traffic characteristics of the applications have not
changed significantly when comparing a hand-classified
training dataset with two historic datasets, but the hand
classified dataset also shows some limitations, as it does
not sufficiently cover the whole range of flow
characteristics present in the historic traces.
Furthermore, we show that a significant amount of
traffic of the applications of interest was using non-
default ports and thus would have not been discovered
with a purely port number based approach.

The paper is structured as follows. Section II
provides a brief overview about related work. Section III
outlines our approach, explains our machine learning
technique and describes our datasets. Section IV presents
the results of evaluating the proposed approach and
Section V concludes and outlines future work.

CAIA Technical Report 060313A March 2006 Page 2 of 9

II. RELATED WORK
A number of researchers have proposed machine

learning or statistical clustering techniques to separate
network application types based on traffic statistics. In
[3] the authors use nearest neighbour (NN) and linear
discriminate analysis (LDA) to map different
applications to different QoS classes. The Expectation
Maximization (EM) algorithm is used in [4] to cluster
flows into different application types. The authors of [5]
have used correlation-based feature selection and a
Na�ve Bayes classifier to differentiate between different
application types. The authors of [8] use principal
component analysis (PCA) and density estimation to
classify traffic into different applications. We have
proposed an approach for identifying different network
applications based on forward feature search and EM in
[7]. The authors of [6] have developed a method that
characterises host behaviour on different levels to
classify traffic into different application types.

III. APPROACH
We use a hand-classified packet trace as a

representative sample of the applications of interest. This
trace has been separated into classes using payload
information and port numbers. Two other public traces
without payload serve as historic traces. For the historic
traces we obtain the classes based on the application
default port numbers, assuming that a major amount of
traffic of each application would have used default ports
([2] confirms this for p2p traffic).

Initially we investigate if different applications,
especially of the same �category�, can be separated purely
based on traffic characteristics by performing 10-fold
cross-validation on each trace separately. k-fold cross
validation randomly divides the data into k subsets. Each
time, one of the k subsets is used as the test set and the
other k-1 subsets form the training set. Error statistics are
calculated across all k trials. Cross-validation provides a
much better indication of how well the classifier will
perform on unseen data than the overly optimistic
accuracy obtained on the full training dataset.

We then evaluate how effective a classifier trained on
the hand-classified trace can identify traffic flows in the
historic traces. We also train classifiers on each of the
historic traces and test against the other. Our hand-
classified dataset is limited in terms of size and lacks a
suitably large range of flow characteristics. Therefore,
we also combine the hand-classified data with each
historic trace into one dataset and perform 10-fold cross-
validation, computing accuracy separately for instances
from the hand-classified and historic traces to evaluate if
application characteristics have changed.

Our final goal is to estimate the amount of traffic of
the applications of interest in the historic trace. As the
hand-classified trace does not seem to cover the whole
range of application characteristics, in these tests we use
the traffic on default application ports of the historic
traces as training data.

We also need an additional class of negative
examples, into which traffic not of interest will be
classified. Without this class, flows from all applications

would be classified as one of our applications of interest
(whichever is most similar). It is not possible to
construct this part of the training data set as we do not
know what other traffic is in the historic traces, and the
number of possible applications is simply too large.

Dealing with missing negative examples is also
known as one-class classification problem and is not
unique to our situation [9]. In general, one-class
classification is harder than conventional classification
because only one side of the class boundary is supported
by examples. The two common approaches to this
problem are: the generation of artificial negative training
instances or the usage of special one-class classifiers [9].
In some preliminary tests we found that none of the
approaches worked very well with our dataset.

Therefore we use a different approach, in which
negative examples are taken from the historic traces. We
first train a classifier on the applications of interest and
all other port numbers with a significant number of
flows (each port as separate class). We then examine the
crossover between the applications of interest and all
other ports. The crossover is defined as sum of false
negatives and false positives rates between the two
classes (see appendix).

If a particular port has maximum crossover with one
of the applications we assume traffic flows on this port is
of that application and we include the traffic into the
application class (positive examples). If a particular port
does not crossover with any of our applications we
assume that traffic flows on this port is from a different
application and include the traffic into the other class
(negative examples).

Finally, we test the classifier on the whole historic
datasets and compare the amount of application traffic
identified using machine learning with the amount of
traffic on the default ports.

A. Flow Attributes
We use NetMate [10] to compute the flow

characteristics (features) based on packet traces. We
classify packets to flows based on source IP and source
port, destination IP and destination port. Flows are
bidirectional and the first packet seen by the classifier
determines the forward direction of the flow.

Flows have limited duration. UDP flows are
terminated by a flow timeout, while TCP flows are
terminated upon proper connection teardown (TCP state
machine) or after a timeout (whichever occurs first). We
use a 600 second flow timeout as short timeouts such as
60 seconds can cause few long-lived TCP connections to
be chopped into multiple flows. In our analysis we
consider only UDP and TCP flows that have at least 1
packet in each direction and transport at least 1 byte of
payload. This excludes flows without payload (e.g.
failed connection attempts) or �unsuccessful� flows (e.g.
requests without responses). Flows devoid of payload
data do not reveal information about the generating
application. Flows with only a single packet do not
resemble a successful communication (without payload
inspection it is difficult to determine if these are failed
connections or malicious traffic such as port scans).

CAIA Technical Report 060313A March 2006 Page 3 of 9

We compute the following features: protocol,
duration, volume in bytes and packets, packet length
(minimum, mean, maximum, standard deviation), inter-
arrival times (minimum, mean, maximum, standard
deviation), active and idle times (minimum, mean,
maximum, standard deviation) and the number of pushed
packets (TCP only). Aside from protocol and duration
all features are computed separately in both directions of
a flow. All packet length derived features are based on
the IP length excluding link layer overhead. All of our
features can be efficiently computed and are packet and
flow-level features, meaning packet traces are needed
but no wider context (multiple flows) is required to
compute the features.

We distinguish active and idle periods by using an
idle threshold, which is 1 second by default. Periods
where no packets are observed for 1 second or more are
treated as idle periods. A flow is active when not in an
idle period. When a flow is terminated by timeout the
time from the last packet until the timeout is not counted
as idle time. Besides computing the volume for the
whole flow we also compute the average volume of
active periods (bytes and packets).

B. C4.5 Decision Tree Algorithm
The C4.5 algorithm [11] creates a classifier based on

a tree structure. Nodes in the tree represent features, with
branches representing possible values connecting
features. A series of nodes and branches is terminated
with a leaf representing the class. Determining the class
of an instance is simply a matter of tracing the path of
feature nodes and branches to the terminating leaf node.

C4.5 uses the divide and conquer method to construct
a tree from a set of S training instances. If all cases in S
belong to the same class, the decision tree is a leaf
labelled with that class. Otherwise the algorithm will use
some test to divide S into several non-trivial partitions.
Each of the partitions becomes a child node of the
current node and the tests to separate S are assigned to
the branches.

C4.5 uses two types of tests each involving only a
single attribute A. For discrete attributes the test is A=?
with one outcome for each value of A. For numeric
attributes the test is A≤θ where θ is a constant threshold.
Possible threshold values are found by sorting the
distinct values of A that appear in S and then identifying
a threshold between each pair of adjacent values. For
each attribute a test set is generated. To find the optimal
partitions of S C4.5 relies on greedy search and in each
step selects the test set that maximizes the splitting

criterion. C4.5 uses the entropy based gain ratio (see
[11]) to select the best split.

The divide and conquer approach partitions the data
until every leaf contains instances from only one class or
a further partition is not possible e.g. because two
instances have the same features but different class. If
there are no conflicting cases the tree will correctly
classify all training instances. However, this over-fitting
leads to a decrease of the prediction accuracy on a set of
unseen instances.

C4.5 attempts to avoid over-fitting by removing some
structure from the tree after it has been built. This
pruning is based on estimated true error rates. After
building a classifier the ratio of misclassified instances
and total instances can be viewed as the real error. But
this error is minimised because the classifier was
constructed specifically for the training instances.
Instead of using the real error the C4.5 pruning
algorithm uses a more conservative estimate, which is
the upper limit of a confidence interval constructed
around the real error probability. With a given
confidence CF the real error will be below the upper
limit with 1-CF. C4.5 uses subtree replacement or
subtree raising to prune the tree as long as the estimated
error can be decreased.

We compared C4.5 with other algorithms such as
Na�ve Bayes and Neural Networks and found it to be the
most effective. It provides high accuracy, training and
classification are fast and memory usage is moderate.
Because C4.5 selects the tests in order of decreasing
gain, it already performs feature selection during the
training. Important features will appear at the top of the
tree and irrelevant features are not used. Therefore C4.5
does not suffer (as e.g. Na�ve Bayes) if irrelevant
features are present in the data set. Furthermore, the tree
output can be easily interpreted by humans (although
this is complicated for large trees) or translated into
rules, which is another advantage over other algorithms
(e.g. neural networks are essentially black boxes).

C. Traffic Traces
We captured several hours of p2p and other

application traffic on an ADSL link in September 2005.
The different p2p applications were run independently
and the first 68 bytes of each packet were captured to
allow for later �hand classification� of the flows. We used
the following p2p applications: eDonkey (eMule 0.46c),
Kazaa 3.0 and BitTorrent 4.0.4. All p2p applications
were run on the preconfigured default ports.

Table 1: P2P application signatures

P2P Application Signatures Protocol Default ports
eDonkey
(EMule 0.46c)

0xe3, 0xe4, 0xe5, 0xc5, 0xd4 (first byte) TCP
UDP

4661-4666
4671-4673

BitTorrent 4.0.4 0x13BitTorrent,
GET /announce?info_hash

TCP
UDP

6881-6889

Kazaa 3.0 GET /.hash, GIVE, GET /.sig, POST /.pkt,
GET /.file

TCP
UDP

1214, 3415
3531

CAIA Technical Report 060313A March 2006 Page 4 of 9

Table 2: Traffic statistics of applications of interest in traces used for training

Application Payload Classified (PC) Twente Leipzig
 Flows MBytes Flows MBytes Flows MBytes
Edonkey 3062 2,325.7 50,000 10,032.8 50,000 32,833.1
BitTorrent 3216 856.7 32,261 4,121.7 NA NA
Kazaa 882 524.7 47,893 3,308.0 50,000 7,360.6
Half-Life 1902 592.8 50,000 211.8 50,000 3,688.3
HTTP 7894 221.2 50,000 993.1 50,000 1,461.8
HTTPS 560 67.9 27,835 247.2 50,000 372.6
DNS 143 2.1 21,115 14.3 50,000 60.4
Total 17,659 4,591.1 229,104 18,928.9 300,000 45,776.8

0

20

40

60

80

100

D
N

S

H
T

T
P

H
T

T
P

S

B
itT

or
re

nt

eD
on

ke
y

K
az

aa

H
al

f-
Li

fe

F
lo

w
s

C
o

rr
ec

tly
 Id

e
nt

ifi
ed

 (
%

)

PC Leipzig Twente

0

20

40

60

80

100

D
N

S

H
T

T
P

H
T

T
P

S

B
itT

or
re

nt

eD
on

ke
y

K
az

aa

H
al

f-
Li

fe

B
yt

es
 C

or
re

ct
ly

 Id
en

tif
ie

d
(%

)
PC Leipzig Twente

Figure 1: Percentage of flows (left) and bytes (right) correctly classified performing 10-fold cross-validation separately for each trace. Note:
Leipzig trace does not contain BitTorrent.

As in [2] we use a mixture of port numbers and
signatures to identify the p2p traffic. Interestingly the
application signatures as identified in [2] were not able
to detect all the p2p traffic. The old signatures were still
valid (as far as they appeared in our trace) but we found
a number of new signatures, most likely a result of new
client and/or protocol versions (see Table 1). This shows
that when using signatures care must be taken that the
signatures are accurate and complete.

We also captured traffic of the game Half-Life 1, as a
representative for online games, as well as HTTP,
HTTPS and DNS traffic, as these are among the most
prominent network applications.

We use two publicly available traces as our historic
data. We use the first 8 days of [12] (location 4) captured
in February 2004 and one day of Leipzig-II [13]
(leipzig-ii-20030221) captured in February 2003. Both
traces are anonymised and packet payload information
had been removed. As these traces contain many flows
they were randomly sampled taking up to 50,000 flows
for each application based on the default ports for the
training datasets. The Leipzig trace does not contain any
BitTorrent traffic.

The eDonkey protocol generates a large amount of
flows with very small volumes and only few flows with
larger volumes, which causes several problems. Firstly,
eDonkey produced substantially more flows than any
other application in the hand-classified dataset.
Secondly, sampling of the Leipzig and Twente traces for
eDonkey obtained almost only small flows. Therefore,
for all traces we have generated the eDonkey classes by
sampling 50% large flows and 50% small flows.

Table 2 shows the data used for training the classifier
to the applications of interest. We also randomly
sampled 350,000 other flows from each historic trace of
which we select the negative training examples.

IV. EVALUATION
Classification and training is performed using the

Weka Machine Learning suite [14], and its
implementation of the C4.5 algorithm, J48. We use a
confidence level of 0.25 and the minimum number of
instances per leaf is 2. We use subtree replacement and
subtree raising when pruning.

A. Separating the Different Applications
We initially determine if each of our nominated

applications can be separated from each other. We
perform training and 10-fold cross validation on each
dataset separately. Figure 1 shows the percentage of
flows and bytes that was correctly identified. The results
show high accuracy for all applications and datasets.
Overall flow accuracy was very high, with 99.75% of
the PC trace flows being identified, 96.19% of Twente
flows and 98.84% of Leipzig flows.

For the three traces, all applications were identified
with greater than 90% accuracy. The results for byte
accuracy are less consistent, but quite good for the p2p
applications. HTTPS has very low byte accuracy in the
PC trace because most of the volume was in a single
large flow that was misclassified.

CAIA Technical Report 060313A March 2006 Page 5 of 9

0

20

40

60

80

100

D
N

S

H
T

T
P

H
T

T
P

S

B
itT

or
re

nt

eD
on

ke
y

K
az

aa

H
al

f-
Li

fe

F
lo

w
s

C
or

re
ct

ly
 I

de
nt

ifi
ed

 (
%

)

Test Leipzig Test Twente

0

20

40

60

80

100

D
N

S

H
T

T
P

H
T

T
P

S

B
itT

or
re

nt

eD
on

ke
y

K
az

aa

H
al

f-
Li

fe

B
yt

es
 C

or
re

ct
ly

 I
de

nt
ifi

ed
 (

%
)

Test Leipzig Test Twente

Figure 2: Percentage of flows (left) and bytes (right) correctly classified when trained on PC and tested on Twente or Leipzig. Note: Leipzig
trace does not contain BitTorrent.

0

20

40

60

80

100

D
N

S

H
T

T
P

H
T

T
P

S

eD
on

ke
y

K
az

aa

H
al

f-
Li

fe

F
lo

w
s

C
or

re
ct

ly
 I

de
nt

ifi
ed

 (
%

)

Train Leipzig Train Twente

0

20

40

60

80

100

D
N

S

H
T

T
P

H
T

T
P

S

eD
on

ke
y

K
az

aa

H
al

f-
Li

fe

B
yt

es
 C

or
re

ct
ly

 I
de

nt
ifi

ed
 (

%
)

Train Leipzig Train Twente

Figure 3: Percentage of flows (left) and bytes (right) correctly classified when training on Twente or Leipzig and testing on the other.

B. Evaluating the Similarity of Application
Characteristics Across Traces
To investigate if the traffic characteristics of the

different applications are similar between the recent and
past traces we train on the PC dataset and test the
classifier against the Leipzig and Twente datasets.
Figure 2 shows the flow and byte accuracies.

When training on the payload classified dataset and
testing on Twente flow-based accuracy is not very high.
However, this may be due to a lack of training instances
for some of the applications (such as DNS), as accuracy
of the different applications appears somewhat
proportional to the number of flows in the PC dataset.
Byte accuracy improves somewhat for the p2p and Half-
Life traffic classes. While only 40% of Half-Life flows
were correctly identified, these represented more than
80% of the volume. This indicates that the majority of
correctly classified instances were actual game flows but
a significant number of small probe flows were
misclassified (see [15] for a discussion on game vs.
probe flows). Accuracies for Leipzig were generally
better than for Twente, except for Kazaa.

It seems that our hand-classified dataset is limited in
terms of the number and representative quality of
instances and therefore unable to predict the data in the
historic traces with very high accuracy. The results do
show however a significant correlation between classes
in the training and testing sets, and a larger training set
would likely produce better results.

To investigate if the traffic characteristics of the
different applications are similar between the historic
traces we trained on each historic dataset and tested
against the other. Figure 3 shows the flow and byte
accuracies. The increased size and variance within the
training classes provides some increase in classification
accuracy, when compared to training on the PC dataset.
In general training on Twente and testing on Leipzig
provides better results, though both scenarios identified
p2p and game traffic quite accurately with 80-90%
accuracy.

The lower prediction accuracy of the PC training data
does not necessarily mean that application characteristics
have significantly changed. To test this we combine the
PC dataset with each of the historic traces and perform
10-fold cross validation on the combined sets. We
compute not only the overall accuracy but also the
accuracy for PC and historic dataset separately.

Figure 4 shows the results when combining the PC
and Leipzig datasets. Overall accuracy and the
accuracies for the individual datasets are obtained by
separating the instances after cross-validation. The
results obtained for PC and Leipzig when separated are
essentially the same as in Section IV.A, with the PC
dataset actually seeing increased accuracy for
HTTP/HTTPS. DNS also increases markedly for PC,
clearly benefiting from the additional DNS instances in
the Leipzig trace.

CAIA Technical Report 060313A March 2006 Page 6 of 9

0

20

40

60

80

100

D
N

S

H
T

T
P

H
T

T
P

S

eD
on

ke
y

K
az

aa

H
al

f-
Li

fe

F
lo

w
s

C
or

re
ct

ly
 I

de
nt

ifi
ed

 (
%

)

PC Leipzig Combined

0

20

40

60

80

100

D
N

S

H
T

T
P

H
T

T
P

S

eD
on

ke
y

K
az

aa

H
al

f-
Li

fe

B
yt

es
 C

or
re

ct
ly

 I
de

nt
ifi

ed
 (

%
)

PC Leipzig Combined

Figure 4: Overall and separate flow (left) and byte (right) accuracy statistics for PC and Leipzig traces after combined training and cross-
validation.

0

20

40

60

80

100

D
N

S

H
T

T
P

H
T

T
P

S

B
itT

or
re

nt

eD
on

ke
y

K
az

aa

H
al

f-
Li

fe

F
lo

w
s

C
or

re
ct

ly
 I

de
nt

ifi
ed

 (
%

)

PC Twente Combined

0

20

40

60

80

100

D
N

S

H
T

T
P

H
T

T
P

S

B
itT

or
re

nt

eD
on

ke
y

K
az

aa

H
al

f-
Li

fe

B
yt

es
 C

or
re

ct
ly

 I
de

nt
ifi

ed
 (

%
)

PC Twente Combined

Figure 5: Overall and separate flow (left) and byte (right) accuracy statistics for PC and Twente traces after combined training and cross-
validation.

Figure 5 graphs the results when combining PC and
Twente datasets. Again there is little difference in
accuracy when compared to individual cross-validation
of both datasets, an indication that combining the two
training sets did not introduce additional errors, and that
the characteristics of all applications are very similar
between the datasets.

To test whether the classifier had been over-fitting
the datasets (and providing inflated accuracies), we
switched the labels of two classes in one part of the
combined set (i.e. either the PC or historic) and re-ran
the cross-validation tests. As expected changing the
labels greatly reduces accuracy. If classes differ in size
between traces the majority class only experiences a
small accuracy reduction, whereas the minority class
suffers from a huge accuracy decrease.

C. Estimating Traffic of Interest in the Historic Traces
In this section we focus on p2p applications and Half-

Life, as in our set of applications these are the most
likely to run on non-default port numbers. We obtain
positive training examples solely from the default ports
in the historic traces. To estimate the presence of p2p
and Half-Life traffic within the anonymised traces we
must also generate an �other� class containing negative
examples.

We do this by calculating the crossover between the
applications classes and other classes representing
individual ports within the historic traces. As there are
many thousand ports used in the traces, we remove ports

with less than 25 flows from each dataset (due to limited
computing resources). Using our default-port application
classes and each other port as a class, we train a
classifier and perform cross-validation testing. If the
maximum crossover between two classes is higher than
0.5 we integrate both. (A value of 0.5 is equivalent to
25% false negatives and false positives between the
classes, which is a much higher error than found in
Section IV.A and IV.B.) After integrating highly similar
traffic on non-default ports into our p2p and Half-Life
classes a total of 249,586 and 303,307 instances were
still left in the �other� class for the Leipzig and Twente
traces respectively (and were used as negative
examples).

Figure 6 shows histograms of ports that were
identified as being potential members of the p2p classes
for the Twente and Leipzig traces (few ports >20000
excluded). A bin size of 100 is used in both histograms.
There is a clear distinction between the identified ports
for each application, and the distributions are fairly
similar for both traces. Similar distributions were also
found for the payload-classified trace (not shown).

Kazaa appears to have a large number of flows on
non-default ports mostly distributed across ports 1000-
4000 (default port 1214). eDonkey is found on a wider
distribution of ports, though most are concentrated on
either side of the default ports (around 4662). In the
Twente trace BitTorrent is centered mostly on the
default port (6881), with 40% of flows occurring in this
region (peak not shown in figure).

CAIA Technical Report 060313A March 2006 Page 7 of 9

Port Number

P
er

ce
nt

ag
e

5
10

15
20

0 5000 10000 15000

eDonkey
BitTorrent
Kazaa

 Port Number

P
er

ce
nt

ag
e

5
1

0
1

5
20

0 5000 10000 15000

eDonkey
Kazaa

Figure 6: Histogram of non-default peer-to-peer port numbers for Twente (left) and Leipzig (right).

Figure 7 plots the distribution of non-default Half-
Life ports for the historic datasets. Again a bin size of
100 is used. We see that the majority of game flows on
non-default ports are in the space immediately above the
default port (27015). Interestingly, few servers were
apparently running on �multiples� of the default port,
such as 28015 or 29015.

Port Number

P
er

ce
nt

ag
e

0
20

40
60

80

24000 26000 28000 30000 32000

Twente
Leipzig

Figure 7: Histograms of Half-Life non-default port distributions for
the Twente and Leipzig traces.

After aggregating the identified ports into either the
application classes or the negative examples class, a
classifier was built and tested on each respective historic
trace (detailed in Table 3).

Table 3: Total number of flows and volume of two historic traces.

Trace Flows [M] Volume [GB]
Twente 3.4M 79.3GB
Leipzig 9.1M 238.8GB

Figure 8 compares the application traffic estimates

for the Twente trace using default port analysis and ML-
based analysis. Port-based analysis underestimates the
number of flows for each of the applications other than
eDonkey. In terms of volume, ML-based analysis
uncovers 13GB of potential p2p traffic that remained
unidentified using port-base analysis. This represents
approximately 16% of the trace volume. Kazaa appears
to have the largest amount of traffic on non-default
ports, as was suggested by the wide port distributions.
37.9GB (47%) of traffic was predicted as other
applications.

Figure 9 compares the application traffic estimates
for the Leipzig trace using port-based analysis and ML-
based analysis. Again port-based analysis underestimates
the number of applications flows, except eDonkey. As
with Twente, ML-based analysis shows significantly
more volume than was identified using port-based
analysis, with 36GB of additional p2p traffic, or about
15% of the trace volume. 72GB (30%) of the traffic was
predicted as other applications.

Table 4 shows the traffic volume of each application
on the default ports, and the percentage this volume
represents out of the total volume estimated by the ML
classifier (as given in Figures 8 and 9). It shows that
port-based analysis would have significantly understated
application flows and volume. Even for Half-Life 20-
30% of the traffic would have not been detected. There
are some similarities in the results obtained, for example
eDonkey and Half-Life have the highest and Kazaa has
the lowest percentage of traffic on the default ports for
both historic traces. We also find the same trends for the
hand-classified trace, although the percentages are
different as port usage is biased towards a specific client
(e.g. all p2p applications were run on default port
numbers).

Standing out against the overall trend is the predicted
number of eDonkey flows when using ML-based
classification. For both Twente and Leipzig, the ML
classifier predicted 10% less flows than found using
port-based filtering. Further analysis found the cause to
be a combination of the unique behaviour of the
eDonkey protocol and a weakness in the current
methodology.

As discussed in Section III.C, the eDonkey protocol
generates significantly more flows than the other
applications, the majority of which are small-volume
signalling flows. By restricting the sample size to 50,000
flows, the eDonkey training dataset is a much smaller
fraction of the total flow population compared to the
other applications. Different eDonkey/eMule signalling
protocol operations [16] occur at different frequencies
and it is likely that the less frequent operations would be
underrepresented after sampling. As our training
examples were sampled with a 50/50 split of large and
small volume flows, the variety of training examples for
the signalling flows is further reduced.

CAIA Technical Report 060313A March 2006 Page 8 of 9

0

200

400

600

800

1,000

1,200

ed bt ka hl

F
lo

w
s

 (
th

ou
sa

nd
s)

ML-based Port-based

0
2
4

6
8

10
12

14
16
18

ed bt ka hl

V
ol

um
e

(G
B

)

ML-based Port-based

Figure 8: Traffic estimates in terms of flows (left) and volume (right) for Twente trace using port-based and ML-based methods.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

ed ka hl

F
lo

w
s

(t
ho

us
an

ds
)

ML-based Port-based

0

10

20

30

40

50

60

70

ed ka hl

V
ol

um
e

(G
B

)

ML-based Port-based

Figure 9: Traffic estimates in terms of flows (left) and volume (right) for Leipzig trace using port-based and ML-based methods.

Table 4: Traffic on default ports (as percentage of ML estimate)

 Traffic on default ports
(Twente estimate)

Traffic on default ports
(Leipzig estimate)

 Flows Volume Flows Volume
EDonkey 1.1M

(111%)
11.5GB
(70.9%)

 3.3M
(110%)

36.9GB
(83.9%)

BitTorrent 33K
(55.6%)

3.36GB
(63.1%)

- -

Kazaa 51.4K
(44.6%)

4.1GB
(37.8%)

207.1K
(39.5%)

30.7GB
(52.3%)

Half-Life 60.7K
(86.9%)

216.7MB
(71%)

124.2K
(80.3%)

3.7GB
(82.8%)

Our method of selecting the �other� class only selects

training instances on a port-by-port basis. We found that
some ports contain eDonkey signalling among a much
larger number of flows from an unknown application
(according to the port number it could be Gnutella). The
PC trace confirms that eDonkey traffic occurs on these
ports. Although the eDonkey flows only represented a
small portion of the total flows on these ports their
number is slightly larger than the number of similar
flows in the eDonkey training class. Therefore, many of
these signalling flows in the test data � including those
on the default port � are classified into the �other� class
(although with low prediction probability around 60%).

D. Limitations
An obvious drawback with our approach of obtaining

negative training examples is that it only selects on a
port-by-port basis and thus cannot properly deal with
ports that are significantly used by multiple applications
of interest and/or the �other� class. This problem occurred

for the eDonkey class, which has a significant number of
flows on ports whose predominant application is
unknown (see previous section).

Another drawback is that due to processing and
memory limits we cannot perform crossover analysis on
all ports within a dataset but must focus only on the most
prominent ones.

V. CONCLUSIONS AND FUTURE WORK
In this paper we have shown that individual

applications can be separated with high accuracy without
using port numbers or payload information even if they
are of similar type (e.g. different p2p file-sharing
applications). We have shown that the traffic
characteristics of the applications have not significantly
changed in the time between capture dates of the traces
used. We have also proposed a method for obtaining the
negative examples required for training a classifier. Our
method takes into account the traffic mix in the historic

CAIA Technical Report 060313A March 2006 Page 9 of 9

traces and the fact that the traffic of interest is spread
across many ports other than the default.

The ML-based classifier detected a significant
amount of traffic that would have not been detected
purely based on port numbers. The non-default port
number distributions found for the different p2p and
game applications provide some circumstantial evidence
of the efficiency of our method, as there is clearly some
correlation between non-default port numbers and the
actual application.

A number of issues need to be addressed in future
work. Currently our evaluation is limited by the fact that
we lack access to historic traces with packet payloads
necessary to validate our results. We have not yet
investigated the effects of different parameters such as
different crossover threshold values etc. and our method
for identifying non-default ports has some limitations
that need to be improved in the future. We also plan to
investigate better ways of obtaining training data for
applications with a wide variance of different traffic
flows, such as eDonkey.

ACKNOWLEDGMENTS
This paper has been made possible in part by a grant

from the Cisco University Research Program Fund at
Community Foundation Silicon Valley.

REFERENCES
1. T. Karagiannis, A. Broido, N. Brownlee, k claffy, M. Faloutsos,

“File-sharing in the Internet: A characterization of P2P traffic in
the backbone”, Technical report, November 2003.

2. Thomas Karagiannis, Andre Broido, Nevil Brownlee, kc claffy,
“Is P2P dying or just hiding?”, Proceedings of Globecom 2004,
November/December 2004.

3. M. Roughan, S. Sen, O. Spatscheck, N. Duffield, “Class-of-
Service Mapping for QoS: A statistical signature-based
approach to IP traffic classification, ACM SIGCOMM Internet
Measurement Workshop 2004, Taormina, Sicily, Italy, 2004.

4. A. McGregor, M. Hall, P. Lorier, J. Brunskill, “Flow Clustering
Using Machine Learning Techniques”, Passive & Active
Measurement Workshop 2004 (PAM 2004), France, April 19-
20, 2004.

5. Andrew W. Moore and Denis Zuev, "Internet Traffic
Classification Using Bayesian Analysis Techniques", ACM
SIGMETRICS June 2005, Banff, Canada.

6. T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC:
Multilevel Traffic Classification in the Dark”, ACM Sigcomm,
Philadelphia, PA, August 2005.

7. S. Zander, T.T.T. Nguyen, G. Armitage, "Automated Traffic
Classification and Application Identification using Machine
Learning", IEEE LCN 2005, Sydney, Australia, 15-17
November 2005.

8. T. Dunnigan, G. Ostrouchov, “Flow Characterization for
Intrusion Detection”, Oak Ridge National Laboratory, Technical
Report, http://www.csm.ornl.gov/~ost/id/tm.ps, November
2000.

9. D. M. J. Tax, R. P. W. Duin, “Uniform Object Generation for
Optimizing One-class Classifiers”, Journal of Machine Learning
Research 2, pp. 155-173, 2001.

10. NetMate, http://sourceforge.net/projects/netmate-meter/ (as of
March 2006).

11. R. Kohavi and J. R. Quinlan, “Decision-tree discovery”, In Will
Klosgen and Jan M. Zytkow, editors, Handbook of Data Mining

and Knowledge Discovery, chapter 16.1.3, pages 267-276,
Oxford University Press, 2002.

12. Remco van de Meent, M2C Measurement Data Repository,
University of Twente, Enschede, The Netherlands, http://m2c-
a.cs.utwente.nl/repository/, December 2003.

13. NLANR traces: http://pma.nlanr.net/Special/ (as of March
2006).

14. WEKA 3.4.4, http://www.cs.waikato.ac.nz/ml/weka/ (as of
March 2006).

15. S. Zander, D. Kennedy, G. Armitage, ”Dissecting Server-
Discovery Traffic Patterns Generated By Multiplayer First
Person Shooter Games”, ACM NetGames 2005, NY, USA, 10-
11 October 2005.

16. Y. Kulbak, D. Bickson “The eMule Protocol Specification”,
Technical Report, Distributed Algorithms Networking and
Secure Systems Lab, The Hebrew University of Jerusalem,
Jerusalem, January 2005.

APPENDIX
A confusion table provides the basis for the

evaluation metrics and contains information about actual
and predicted classifications for each class. Table 5
shows the confusion matrix for a two-class classifier
(classes - and +).

Table 5: Confusion matrix

Assignment

Label - +

- TN FP

+ FN TP

Each instance is associated with a label, which
accounts for the true class. The classification produces
an assignment indicating whether it believes an object to
belong to a certain class.

Then for each instance there are four possible
outcomes: TP stands for true positive, TN stands for true
negative, FP stands for false positive and FN stands for
false negative. The false positive rate and false negative
rate are defined as:

_ ,

_ .

FP
FP rate

TN FP
FN

FN rate
FN TP

=
+

=
+

 (1)

The maximum crossover of a class x with all other
classes from a set of classes C is:

()

max{ , | _ (,) _ (,)}

crossover x

c C c x FP rate x c FN rate x c

=
∀ ∈ ≠ +

. (2)

