
ANGEL - Machine Learning Classification
Sebastian Zander

Centre for Advanced Internet Architectures, Technical Report 060301A
Swinburne University of Technology

Melbourne, Australia
szander@swin.edu.au

Abstract—The Automated Network Games Enhance-
ment Layer (ANGEL) project aims to leverage machine
learning techniques to automate the classification and
isolation of interactive (e.g. games, voice over IP) and non-
interactive (e.g. web) traffic. This information is then used
to dynamically reconfigure the network to improve the
Quality of Service provided to the current interactive traf-
fic flows and subsequently deliver improved performance
to the end users.

In this document we first describe the current solutions
for network traffic classification and their shortfalls. Then
we present the novel approach of classifying network
traffic flows based on machine learning techniques and
statistical flow attributes such as packet length and inter-
arrival time statistics. We evaluate if a machine learning
based approach meets the accuracy and performance
requirements of the ANGEL architecture and select ap-
propriate machine learning algorithms. The evaluation is
based on results obtained for real game traffic captured
in the network.

I. INTRODUCTION

Highly interactive applications, such as First Person
Shooter (FPS) games or Voice over IP (VoIP), have a
narrow tolerance to delay, jitter and packet loss (see [1],
[2]) necessitating more rigid Quality of Service (QoS)
compared to the best effort service used for traditional
Internet applications such as web or email. In order for
QoS to be effective, an accurate and timely method of
identifying and classifying interactive flows is required.
As it is unlikely that end-host applications will ever
explicitly signal their QoS demands to the network,
the network itself must identify interactive flows and
establish adequate QoS for these flows by giving them
priority over other traffic in the network. The ANGEL
system is an architecture capable of improving QoS
for interactive applications. An early version of this
architecture was presented in [3].

From February 2007 and July 2010 this report was a confidential
deliverable to the Smart Internet Technologies CRC. With permission
it has now been released to the wider community.

A key component of the ANGEL architecture is the
flow classifier. Its purpose is classifying network flows
into interactive flows and non-interactive flows. Current
popular methods of identifying the network applications
responsible for traffic flows are TCP/UDP port-based
and packet payload-based identification. The latter can
be further divided into protocol decoding and signature-
based identification. With protocol decoding the classi-
fier actually decodes the application-layer protocol while
signature-based methods search for application specific
byte sequences in the packet payload.

Port-based classification systems are moderately accu-
rate at best and will become less effective in the near
future. For example, a host (one IP address) running
multiple servers of the same game must run all but the
first on arbitrary port numbers rather than the specified
default port, making server port-based classification un-
reliable. Many game clients are behind Network Address
Translators (NATs), which may change the client port.
We have studied the distribution of client and server ports
for a specific FPS game and found that a significant
number of flows could not be identified purely based
on default port numbers [4].

Payload-based classification relies on specific applica-
tion data, making it difficult to detect a wide range of
applications or stay up to date with new applications. In
addition, the process of creating rules for signature-based
classification must often be done by hand, which can
be very time consuming. Protocol decoding for games
would require a significant amount of reverse engineer-
ing as the game protocols are not openly specified to
prevent users from cheating.

Machine learning (ML) techniques [5] provide a
promising alternative through classifying flows based
on application protocol (payload) independent features
such as packet length and inter-arrival time statistics.
This approach does not require packet payload and
the classifier can be trained automatically assuming a
representative training dataset can be obtained. A more

CAIA Technical Report 060301A March 2006 page 1 of 6

mailto:szander@swin.edu.au


general introduction to the problem is presented in [6].
We have previously used a wide range of machine

learning algorithms to separate common network appli-
cations, such as web and mail, from traffic produced by
different games (see [7] and [8]). The requirements for
the ANGEL flow classifier have been specified in the
ANGEL architecture [9]. In this paper we evaluate if
machine learning based classification algorithms would
be suitable for ANGEL. Our evaluation is based on real
game traffic captured in the network for a number of
popular FPS games.

We find that some ML algorithms are able to separate
the different games from each other and other traffic
with very high (≥99%) accuracy. Results for separating
game fron non-game traffic were good (≥90%) even
when using a reduced number of features after feature
selection. Preliminary results suggest that game flows
can be classified with high accuracy within 1-2 seconds
of their lifetime, which is fast enough for typical game
applications [10].

We also find that some of the accurate ML techniques
are fast enough for real-time classification of a fairly
large number of simultaneous flows (at least several
thousands per second). Furthermore, most of the algo-
rithms are able to train fast enough allowing for frequent
updates of the classifier (training times of less than half
an hour).

The paper is structured as follows. Section 2 discusses
the shortfalls of current classification approaches and
outlines our machine learning approach. Section 3 evalu-
ates if ML algorithms can be used in the ANGEL system
to identify interactive game traffic. Section 4 concludes
and outlines future work.

II. ML-BASED CLASSIFICATION

First we describe the currently used techniques and
explain their shortfalls. Then we describe the ML-based
approach.

A. Current Classification Techniques

1) Port Numbers: The oldest and still most common
technique is based on the inspection of known port
numbers. While some applications use symmetric ports
(all communicating peers use the same port number),
many client-server applications, such as the web, are port
asymmetric (only the server is using the well-known port
whereas clients use dynamic ports). Therefore in this
paper we refer to either port numbers or the server port
as the port that identifies an application.

The Internet Assigned Numbers Authority (IANA)
[11] assigns the well-known ports from 0-1023 and regis-
ters port numbers in the range from 1024-49151. Many
applications do not have IANA assigned or registered
ports however and only utilise ’well known’ default
ports. Often these ports overlap with IANA ports and
an unambiguous identification is no longer possible. A
port database [12] that lists not only the IANA ports but
also ports reported by users for different applications
shows that many applications have overlapping ports
in the IANA registered port range. As more and more
applications emerge, this overlap will become larger
since the port number range is not likely to increase.

Even applications with well-known or registered ports
can end up using different port numbers when users
attempt to hide their application’s existence or bypass
port-based filters, or when multiple servers are sharing a
single IP address (host). Furthermore some applications
(e.g. passive FTP or video/voice communication) use
dynamic ports unknowable in advance.

Online games usually only have a commonly known
default port (but no IANA registered port), which means
other non-game applications are potentially using the
same port number. Often online gaming servers run
multiple server applications on a single physical host
(IP address), which means all servers but the first must
run on different ports. Therefore many servers run on
non-default ports. Usually game clients use the default
port but many are behind NATs that can change the
port number. A study in [4] shows that for a particular
FPS game a significant number of flows could not be
identified based on the default port number.

2) Protocol Decoding: A more reliable technique
used in many current industry products involves stateful
reconstruction of session and application information
from packet content (e.g. [13]). This technique avoids
reliance on fixed port numbers and provides very accu-
rate and reliable application identification, but imposes
significant complexity and processing load on the traffic
identification device. It must be kept up-to-date with ex-
tensive knowledge of application semantics and network-
level syntax, and must be powerful enough to perform
concurrent analysis of a potentially large number of
flows.

This approach can be difficult or impossible when
dealing with proprietary protocols or encrypted traffic.
Another problem is that direct analysis of session and ap-
plication layer content may represent an explicit breach
of organisational privacy policies or violation of relevant
privacy legislation.

CAIA Technical Report 060301A March 2006 page 2 of 6



This method currently provides the highest accuracy
and reliability for classifying network traffic. The ma-
jor problems of this method are the performance re-
quired (especially considering the ever-increasing net-
work bandwidths) and the effort required for implement-
ing and keeping the protocol definitions up to date. In
our opinion this method seems only feasible for few
applications when the incentives to provide very reliable
classification are high.

With game traffic this approach is also difficult to
realise, as there are many existing games and their
protocols are usually not openly specified (to prevent
players from cheating) and high effort would need to be
spend into reverse engineering.

3) Signature-based Approaches: To overcome the in-
efficiencies of protocol decoding some researchers have
proposed to use signature-based methods. These methods
search for specific application-characteristic patterns in
the payload of the packets. The advantage of this ap-
proach is that it is more effective than pure port-based
classifications and more efficient than protocol decoding.

On the other hand signature-based methods are less ac-
curate than protocol decoding. However, these methods
are still protocol dependent as signatures are application-
specific and must be developed with a protocol spec-
ification or through reverse engineering. In the past
developing signatures for some unspecified binary pro-
tocols has been found to be difficult. Overall, signature-
based methods provide a very good trade-off between
resource efficiency and classification performance, but
there are a number of ways to defeat simple signature-
based detection.

This approach seems feasible for online games but
very cumbersome for the scenario in which real-time
interactive flows need to be separate from non-interactive
flows, as signatures would need to be developed for every
game (or alternatively for every non-game).

B. ML-based Classification

Figure 1 visualizes a machine learning based classi-
fication architecture. Training input data can be taken
from previously captured traffic traces (or possibly from
live capturing). Then packets are grouped into flows
based on IP addresses, TCP/UDP ports and protocol
and the flow characteristics (features) are computed.
The flow data used for training each class must be
representative for the particular network application. For
supervised learning algorithms the flow data needs to be
labeled with class labels corresponding to the network
applications or application classes (e.g. interactive and

non-interactive) prior to training. For large data traces it
is necessary to limit the number of flows passed to the
learning algorithm by sampling flows before training.

The flow characteristics and a set of algorithm pa-
rameters are then used to build a classification model
(see Figure 1 top). The algorithm parameters range from
very simple to very complex and depend on the ML
algorithm. For some algorithms no parameters may be
needed. Once the classifier has been trained, new flows
can be classified based on their flow characteristics (see
Figure 1 bottom). New flows are taken from live network
capture or from trace files. Again sampling can be used
to only classify a fraction of the overall flow data for
example if the classification performance is insufficient.
The results of the classification process is then used to
map network traffic to different QoS classes.

III. EVALUATION

In this section we evaluate different machine learning
techniques against the requirements of the ANGEL flow
classifier. We only consider the requirements that depend
on the classification technique. Requirements such as
’data export’ are not concerned with how the classifica-
tion is done. Our evaluation is based on results obtained
in previous experiments published in [8] and [7]. These
papers also briefly describe the used algorithms.

A. Classification Accuracy

The ANGEL classifier must provide a reasonable high
accuracy when differentiating real-time from non real-
time flows (≥95 percent). Besides outputting the pre-
dicted class for each flow the ANGEL classifier should
also compute a measure on how correct the prediction
is.

In [8] we have shown that accuracy, recall and pre-
cision for separating game from non-game traffic are
very high (≥99%) when using the C4.5, Bayes Network
or NBTree algorithm both measured on the number of
instances and the number of bytes (Bayes Networks only
had (≥95%) recall on the bytes though). Naive Bayes
with discretisation provides acceptable recall and byte-
based precision (≥97%).

Though the Bayes algorithms are not as accurate as
algorithms such as C4.5, they are useful when over-
fitting is a great concern. Over-fitting means the classifier
model built by the ML algorithm is very tuned to the
training data and not general enough to classify new
instances accurately. Our experience has also shown C4.5
default tree pruning to be very effective in preventing
over-fitting.

CAIA Technical Report 060301A March 2006 page 3 of 6



 [Sampling] 

Output 
 

Machine Learning 

Offline Traces 

Online 
 
 

Packet 
Classification 

Flow  
Statistics 

ML 
Algorithm 
Parameters 

 
 

 
ML 

 
 

Classifier 

Packet Classification 

Packet 
Sniffing 

 [Sampling] 

Output 
 

Machine Learning 

Offline Traces 

Online 
 
 

Packet 
Classification 

Flow  
Statistics 

 
Classifier 

 
 

 
ML 

 
QoS 

mapping, 
trend 

analysis 
etc. 

Packet Classification 

Packet 
Sniffing 

Fig. 1. ML-based flow classification approach: learning phase (top) and classification phase (bottom)

B. Classification Time

The classifier must provide the required accuracy a
short time after the flow has started and maintain the
accuracy during the flow’s lifetime. The time in which an
accurate prediction is needed depends on the application
e.g. for games this may be longer as joining a game
server usually takes some time, but for Voice over IP
(VoIP) it may be shorter. In [14] it was shown that
classification can occur after seeing as few a 25 packets
of a flow - which is a very short time given the inter-
arrival time of packets in online game flows. Thus QoS
can be provided within a very short period of time.

Besides the actual game flows (traffic exchanged be-
tween client and server during the time the client is
playing) client-server-based games also exchange a large
number of very short probe flows during the process
of server discovery (see [8]). In [8] probe flows were
included in the dataset, hence we know that both probe
flows and game flows can be accurately classified. How-
ever, probe flows are problematic as they are so short-
lived that QoS rules generated for probe flows would
always arrive ’too late’ at the ANGEL router. They
would not be effective unless the client probes the same
server again within the rule timeout limit. Furthermore,
as there are usually hundreds up to a few thousand

servers available for popular FPS games hundreds or
even thousands of rules would be send to the ANGEL
router in short time period. This results in a significant
amount of bandwidth used by the ANGEL protocol on
the bottleneck link and also means possible performance
degradation and higher memory consumption on the
ANGEL router itself.

It is probably not necessary to provide QoS for probe
flows as they are not responsible for a users game play
experience. However, there is one benefit in classifying
these flows as game traffic. If probe flows are classified
as game traffic ping times in the client’s server browser
would more properly reflect the latency later occurring
during game play when ANGEL has detected and pri-
oritised (assuming the access link is congested when
probing). Due to the nature of probe flows

C. Flexibility

The ANGEL classifier must be flexible regarding the
classification techniques and features used. The ANGEL
classifier may use different techniques and or features
simultaneously for different flows. The ANGEL classi-
fier may also use different classification techniques and
different features simultaneously to determine the class
of a single flow.

CAIA Technical Report 060301A March 2006 page 4 of 6



Basically all machine learning algorithms are flexible
in terms of what features can be used. Different machine
learning algorithms could be used for different flows
at the same time. It is also possible to use different
machine learning techniques at the same time on one
flow and combine their classification results into a single
classification e.g. by using voting schemes.

D. Classification Performance

The ANGEL classifier must be fast enough to classify
hundreds of flows per second.

All of the machine learning techniques evaluated in
[8] can classify more than 20,000 flows per second.
This is pure classification time and excludes overhead
such as reading the packet data from a network socket.
However, we believe that even when including this
overhead classification performance would be suitable.
In [7] we have investigated the classification performance
of further algorithms. The numbers in both papers cannot
be directly compared, because the number of classes
and features used for training is different. However,
all algorithms evaluated in [7], with the exception of
Nearest Neighbour and Naives Bayes with kernel density
estimation, are fast enough to classify at least a couple
of thousand flows per second.

E. Training Performance

It should not take an unreasonable long time to up-
date/change the classifier. For example, some machine
learning algorithms have very long training times, which
would prevent reacting quickly to changes in the network
traffic mix e.g. if new games with different characteris-
tics appear.

As shown in [8] all algorithms (except NBTree)
train fairly quickly and would allow regular updates.
NBTree is very slow if the dataset is large in terms
of number of instances and/or features and could only
be used if very infrequent updates would be sufficient.
In [7] we have evaluated training times for a larger
number of algorithms. Again the numbers in the two
papers cannot be directly compared because the training
datasets were different. However, the trends are the same.
Also unsuitable for regular updates would be neural
networks (which train even slower than NBTree) and
the adaboosted C4.5 and Naive Bayes. Support vector
machines are also significantly slower than the quick
training algorithms C4.5, Bayes Net and Naive Bayes
but much faster than NBTree and neural networks.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have evaluated if machine learning
algorithms can be used to separate interactive game
traffic from non-interactive traffic under the constraints
of the ANGEL architecture requirements for flow clas-
sification. We found that games can be separated both
from each other, and from other network traffic. With a
feature space of 36 flow statistics, overall classification
accuracies of greater than 99% were achieved. The
results for the byte accuracy are similar - though slightly
worse - when compared to the flow-based results. We
believe the byte accuracy could be improved however
as algorithms optimise classifiers only on the number
instances during training. Increased per-byte accuracy
may be gained if a classifier is trained with instances
given different weights based on flow volume.

Based on the previous evaluation in [8] the best
performance was obtained using the C4.5 decision tree
and Bayes Network algorithms. Both algorithms provide
very high accuracy and are fast. C4.5 provides slightly
better accuracy and classification times while Bayes
Networks train quicker. The NBTree algorithm provides
good accuracy, but has very long training times and could
only be used if the classifier does not need to be changed
quickly. The Naive Bayes algorithm with discretisation
could also be used as it is a simple algorithm with a
good trade-off between accuracy and speed.

C4.5 and Bayes Network algorithms have the advan-
tage that the classifier can be interpreted by humans.
In case of C4.5 the classifier is a decision tree, that
can be translated into if-then rules. In case of Bayes
Networks the classifier is a graph where the nodes
represent features or classes and weights are conditional
probabilities. However, for very complex classifiers hu-
man interpretation remains difficult due to the sheer size
of the tree or graph.

In terms of ease of use, Bayes Network is the most
difficult as there are numerous metrics and search tech-
niques for identifying the network structure, and multiple
techniques for estimating the probabilities. Naive Bayes
is the most straightforward, as it does not require any
parameters and the algorithm is quite simple. C4.5 and
NBTree algorithms lie somewhere in between.

In [7] we also evaluated neural networks and support
vector machines (SVMs). Neural networks and SVMs
did not perform as well as expected. On average they
produced accuracies of 10% less than the best algo-
rithms. However, with careful parameter tuning they
might be able to provide high accuracies. But param-

CAIA Technical Report 060301A March 2006 page 5 of 6



eter tuning is cumbersome and may in result in over-
fitting the classifier to a specific training dataset. Both
algorithms have the disadvantage that their classification
models lack the ability of being understandable for
humans. Especially neural networks are black boxes.
Furthermore, evaluation in [7] has shown that both
algorithms are not among the fastest. However, SVMs
still provide sufficiciently fast classification and training
times. Neural networks can classify fairly fast but train-
ing is very slow and would prohibit frequent classifier
updates.

In [7] we also evaluated the use of a boosting algo-
rithm with C4.5 and Naive Bayes with discretisation.
Boosting is a technique that trains multiple ’weak’
classifiers and combines them into one efficient. We
found that the accuracy increase was only small since
both boosted algorithms already perform very good.
But boosting severely reduces classification and training
speeds. Given the high accuracy measured for separating
game traffic from non-game traffic in [8] we think
boosting should not be used as it would not significantly
increase accuracy but severely slow down classification
and training.

We found the most useful features for separating
game from non-game traffic were packet length statistics
(most importantly the minimum forward packet length),
protocol and idle times (see [8]). A similiar dominance of
packet length statistics and protocol over other statistics
such as inter-arrival times or volume was also observed
in [7].

V. ACKNOWLEDGEMENTS

This work was supported from 2005 to early 2007
by the Smart Internet Technology Cooperative Research
Centre, http://www.smartinternet.com.au.

Intellectual content within this report builds on
knowledge obtained during an earlier project at CAIA
(http://caia.swin.edu.au/urp/dstc), supported in part by a
grant from the Cisco University Research Program Fund
at Community Foundation Silicon Valley.

REFERENCES

[1] G. Armitage, “An Experimental Estimation of Latency Sen-
sitivity in Multiplayer Quake3,” in Proceedings 11th IEEE
International Conference on Networks (ICON) 2003, September
2003.

[2] S. Zander, G. Armitage, “Empirically Measuring the QoS
Sensitivity of Interactive Online Game Players,” in Aus-
tralian Telecommunications Networks & Applications Confer-
ence (ATNAC) 2004, December 2004.

[3] L. Stewart, G. Armitage, P. Branch, S. Zander, “An Architec-
ture for Automated Network Control of QoS over Consumer
Broadband Links,” in IEEE TENCON 2005, November 2005.

[4] S. Zander, “Misclassification of Game Traffic based on Port
Numbers: A Case Study using Enemy Territory,” CAIA, Tech.
Rep., March 2006, http://caia.swin.edu.au/urp/dstc/.

[5] Tom M. Mitchell, Machine Learning. McGraw-Hill Education
(ISE Editions), December 1997.

[6] S. Zander, T.T.T. Nguyen, G. Armitage, “Automated Traffic
Classification and Application Identification using Machine
Learning,” in IEEE 30th Conference on Local Computer Net-
works (LCN 2005), November 2005.

[7] N. Williams, S. Zander, G. Armitage, “Evaluating Machine
Learning Algorithms for Automated Network Application Iden-
tification,” CAIA, Tech. Rep. 060410B, April 2006, http://caia.
swin.edu.au/urp/dstc/.

[8] ——, “Evaluating Machine Learning Methods for Online Game
Traffic Identification,” CAIA, Tech. Rep. 060410C, April 2006,
http://caia.swin.edu.au/urp/dstc/.

[9] J. But, L. Stewart, S. Zander, “ANGEL - Architecture,” CAIA,
Tech. Rep. 070228A, February 2007.

[10] N.Williams, S. Zander, “Timeliness and Stability of Network
Flow Classification using Machine Learning,” CAIA, Tech.
Rep., March 2006, http://caia.swin.edu.au/urp/dstc/.

[11] “IANA Port Numbers,” http://www.iana.org/assignments/
port-numbers.

[12] “Ports database,” http://www.portsdb.org/.
[13] Cisco Systems, Inc., “Network-Based Application Recognition

and Distributed Network-Based Application Recognition,”
http://www.cisco.com/univercd/cc/td/doc/product/software/
ios122/122newft/122t/122t8/dtnbarad.htm.

[14] T.T.T. Nguyen, G. Armitage, “Training on multiple sub-flows to
optimise the use of Machine Learning classifiers in real-world
IP networks,” in IEEE 31st Conference on Local Computer
Networks, November 2006.

CAIA Technical Report 060301A March 2006 page 6 of 6

http://caia.swin.edu.au/urp/dstc/
http://caia.swin.edu.au/urp/dstc/
http://caia.swin.edu.au/urp/dstc/
http://caia.swin.edu.au/urp/dstc/
http://caia.swin.edu.au/urp/dstc/
http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers
http://www.portsdb.org/
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122newft/122t/122t8/dtnbarad.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122newft/122t/122t8/dtnbarad.htm

	Introduction
	ML-based Classification
	Current Classification Techniques
	Port Numbers
	Protocol Decoding
	Signature-based Approaches

	ML-based Classification

	Evaluation
	Classification Accuracy
	Classification Time
	Flexibility
	Classification Performance
	Training Performance

	Conclusions and Future Work
	Acknowledgements
	References

