
CAIA Technical Report 060119A January 2006 page 1 of 8

Implementing a Testbed for the Evaluation of
FAST TCP in DOCSIS-based

Access Networks

David Kennedy and Irena Atov
Centre for Advanced Internet Architectures. Technical Report 060119A

Swinburne University of Technology
Melbourne, Australia

{dkennedy,iatov}@swin.edu.au

Abstract-This technical report describes the process of

implementing a testbed, which was used in [1] to experimentally
evaluate the performance of FAST under typical ‘edge of
network’ scenarios involving DOCSIS (Data Over Cable Service
Interface Specification) cable system.

Keywords- FAST TCP, testbed, DOCSIS cable network.

I. INTRODUCTION
Given the importance of controlling the congestion

and stability of the Internet, there have been many TCP
(Transmission Control Protocol) proposals aiming to
improve the current standard version of TCP, known as
NewReno [2], [3]. One such popular proposal that has
received significant attention in recent years is FAST
(Fast AQM Scalable TCP) [4], [5], which has been
designed at Caltech (California Institute of Technology)
to improve performance in high speed networks,
especially those with long propagation delays.

IETF standardization and worldwide deployment
requires that any new TCP variant must be tested and
validated experimentally in real-world trials and in a
wide variety of network environments. It is also crucial
that independent groups repeat these tests. To date,
FAST has been tested by Caltech and independent
groups such as SLAC (Stanford Linear Accelerator
Center) and CERN (The European Particle Physics
Laboratory) in a wide range of high speed environments.
However, there is a pressing need for testing in low
speed environments which are more typical of the
existing Internet. The current and medium term future of
access networks is in the 1-10 Mbps range, using such
technologies as xDSL, cable modems, and 802.11
wireless LANs. FAST needs to work in these
environments, as well as being able to scale to the high
speed regime.

The experimental study presented in [1] evaluated the
performance of FAST in typical low-speed access
network scenarios involving DOCSIS cable system [6].
This technical report explains our implementation of the
FAST TCP testbed employed in [1]. The testbed uses
real world DOCSIS equipment and is integrated with the
existing Broadband Access Research Testbed at CAIA
[7].

 Section II describes the physical layout of the FAST
TCP testbed. Detailed specification of its hardware and
software components is provided in Section III and,
finally, the configuration steps for each of the testbed
components are outlined in Section IV.

II. TESTBED LAYOUT
The experimental work reported on in [1] required

the setup of two different configurations of the FAST
testbed in order to emulate two low-speed environments,
respectively, each involving a typical access link. One
contained a DOCSIS cable modem and the other was a
simple rate-limited link. The setup containing the
DOCSIS link is shown in Fig. 1, along with the interface
and address information for each host/device; the setup
for the simple link experiments is described in Section
V.

The testbed consists of two end hosts: a sender (TCP
server), which runs Linux with Caltech’s FAST patches
and a receiver, which runs standard Linux. In addition to
the DOCSIS cable network – comprised of a cable
modem (CM) and a cable modem termination system
(CMTS) – a bridge running Dummynet [9] under
FreeBSD and a standard Ethernet switch are used to
emulate a typical ISP network. All the links in the
network except for the bottleneck link have capacity 100
Mbps. The bottleneck DOCSIS link was configured with
various bandwidths in the downstream (DS) and
upstream (US) channels (in the range of 0.5-3Mbps)
through adequate configuration of the CMTS, which
governs transmission in the DOCSIS network. The
buffering on the bottleneck link was set to the default
value of the CMTS configuration (details of the CMTS
channel capacity and buffer configuration are provided
in Section IV.D). The Dummynet was configured to
emulate a high-speed Wide Area Network (WAN) path
without imposing any limitation on the downstream
(DS) and usptream (US) channel capacity. Also, the
Dummynet was configured with sufficiently large
buffering in both DS and US in order to ensure that no
packet loss occured in the core network (details of the
Dummynet configuration are provided in Section IV.C).

For the experiments involving a simple low-speed
link, the DOCSIS system was bypassed. Instead the
same Dummynet that emulated the WAN delay was also

CAIA Technical Report 060119A January 2006 page 2 of 8

configured to emulate the bottleneck capacity limits in
both the DS and US, and the limited buffering on the
bottleneck link.

III. TESTBED HARDWARE AND SOFTWARE
The systems used for the sender, receiver and the

Dummynet bridge consisted of:
• Intel Celeron 2.4GHz Single Processor
• ASUS P4P800VM ATX Motherboard
• Intel 82801BA 10/100 Mbps on-board NIC
• 256MB PC3200 DDR RAM

These machines also had an extra NIC added to their
PCI slots, which were either Intel 1000MT (82540em
chipset) or Intel 100/Pro (82559 chipset).

The cable modem was a Cisco uBR900 series, which
also acts as a router, the CMTS was a Cisco uBR7111
series router [10], and the switch was a Cisco Catalyst
3550 series. All Cisco devices ran Cisco’s
Internetworking Operating System (IOS). The CMTS
and the switch ran version 12.1, and the cable modem
ran version 12.2.

The TCP receiver was running Suse Linux 9.1 with
kernel version 2.6.4, and used standard TCP. Since the
latest version of FAST at the time of this experimental
work was written for Linux kernel version 2.4.22, the
FAST TCP sender was running Suse Linux 9.0, with the
2.4.22 version of the kernel. FAST TCP is available for
download for research and educational use from [5]. The
bridge was running FreeBSD 4.10 [11] with Dummynet
[9], to emulate WAN paths of various delays.

The program that we used to generate TCP traffic and
measure its throughput was iperf 1.7.0, which can be
downloaded from [8]. We set up and ran different
experiments from the TCP sender (on the downlink) by
using an automatic script generator to start multiple
iperf sessions to emulate multiple TCP connections.

IV. CONFIGURATION

A. FAST TCP Sender
Since the FAST patches were written for Linux

kernel version 2.4.22, for the TCP sender we required a
Linux distribution that ran on kernel version 2.4.x. To
achieve

this, we used Suse Linux 8.0, which came with kernel
version 2.4.27, and we patched it with 2.4.22 kernel
version.

The FAST TCP download consists of two patch files:
an operating system independent file, and an operating
system dependent file [5]. These files are called
“os.ind.patch” and “os.dep.patch” respectively. It is
required that the kernel is patched with both of these
files. Also, FAST TCP must be enabled by executing the
following command:

echo “1” > /proc/sys/net/ipv4/tcp_fast

Alpha tuning is a feature of FAST that dynamically
sets the alpha value according to the network
environment [5]. In our experiments, it was required that
we have control of the alpha parameter, so alpha tuning
was disabled by executing the following command:

echo “0” > /proc/sys/net/ipv4/tcp_fast_at

Burstiness control is a feature of FAST that spreads
large packet transmission bursts over time so that the
instantaneous transmission rate is smoother. This feature
was enabled for our experiments by executing the
following command:

echo “1” > /proc/sys/net/ipv4/tcp_fast_bc

The ideal TCP window size is approximately equal to
the bandwidth-delay product. For some of the
experiments, the window size required is higher than the
default allowed by Linux. To be able to use the proper
window sizes required for the experiments, the TCP
buffers must be tuned. The five Linux configuration
values tcp_mem, tcp_rmem, tcp_wmem, wmem_max
and rmem_max must be modified to accommodate the
higher window sizes. This is done by executing the
following commands on both the sender and the
receiver.

echo “48128 48640 49152” >

/proc/sys/net/ipv4/tcp_mem

echo 4096 33554432 33554432 >

/proc/sys/net/ipv4/tcp_rmem

echo 4096 33554432 33554432 >

/proc/sys/net/ipv4/tcp_wmem

echo “33554432” > /proc/sys/net/core/wmem_max

echo “33554432” > /proc/sys/net/core/rmem_max

TCP FAST Sender
eth0

192.168.10.130

TCP Receiver
eth0

10.10.10.22

100 Mbps 100 Mbps 100 Mbps DS

US

100 Mbps

DOCSIS system

Cable Modem

cable modem0
172.16.10.?

ethernet0
10.10.10.21

CMTS

cable 1/0
172.16.10.1

fastethernet0/1
192.168.10.1

DummyNet
Bridge

WAN Emulator

Ethernet Switch

 DS - downstream
US - upstream

Figure 1 – FAST testbed layout with DOCSIS cable link

CAIA Technical Report 060119A January 2006 page 3 of 8

Both the sender and the receiver were configured
with two interfaces, one for traffic flow within the
testbed, and another to enable access to the Swinburne
University network. Therefore, they were configured
with a default route to the Swinburne gateway (IP
address 136.186.229.1) and separate routes were set for
within the testbed. To configure the sender with the
these routes and IP addresses one needs to enter the
following commands:

ifconfig eth1 136.186.229.130 netmask

255.255.255.0 broadcast 136.186.229.255

route add –net default 136.186.229.1 eth1

route add –net 10.10.10.20 gw 192.168.10.1 eth0

route add –net 172.16.10.0 gw 192.168.10.1 eth0

All of these commands must be executed again after
a reboot of the machine. It would be possible to put these
commands into a script such as /etc/rc.d/network so that
they are executed automatically upon boot up.

B. TCP Receiver
On the receiver machine, it is necessary to tune the

TCP buffers and set the IP addresses and routes, just as
on the sender. The commands for the TCP buffer tuning
are the same as on the sender:

echo “48128 48640 49152” >

/proc/sys/net/ipv4/tcp_mem

echo 4096 33554432 33554432 >

/proc/sys/net/ipv4/tcp_rmem

echo 4096 33554432 33554432 >

/proc/sys/net/ipv4/tcp_wmem

echo “33554432” > /proc/sys/net/core/wmem_max

echo “33554432” > /proc/sys/net/core/rmem_max

The commands for setting the IP address and routes
will be slightly different. On the receiver, one needs to
enter the following commands:

ifconfig eth1 136.186.229.129 netmask

255.255.255.0 broadcast 136.186.229.255

route add –net default 136.186.229.1 eth1

route add –net 192.168.10.0 gw 10.10.10.21 eth0

route add –net 172.16.10.0 gw 10.10.10.21 eth0

As with the sender, all of these commands must be
executed after each reboot of the machine.

C. FreeBSD Dummynet Bridge
The Dummynet bridge should have the firewall rules

and pipes set up to induce a 50ms delay each way. The
maximum queue size of a Dummynet pipe is 1024Kbyte.
We desired a larger queue size than this, to make sure
that we had an ample amount of buffering, so we
implemented a setup with two pipes connected in serial.
By doing this, we achieved a larger amount of buffering
than was otherwise possible with Dummynet. In order to
have the data traverse both pipes, the sysctl IPFW
variable “one pass” must be set to 0 by issuing the
following command:

sysctl net.inet.ip.fw.one_pass=0.
The Dummynet pipes and IPFW rules were set up as

follows:
ipfw add 1 pipe 1 ip from any to any layer2

ipfw add 2 pipe 2 ip from any to any layer2

ipfw add 65534 allow ip from any to any layer2

ipfw pipe 1 config delay 25ms queue 1024k

ipfw pipe 2 config delay 25ms queue 1024k

These IFPW commands may be put into a script in
/usr/local/etc/rc.d so that they are executed upon boot up.

D. CMTS
The CMTS is where the upstream and downstream

bandwidth, as well as the amount of buffering the CMTS
itself provides is configured. The CMTS contains a file
called a boot file. This boot file contains the maximum
upstream and downstream bandwidth allowed for each
cable modem. When a cable modem boots up and
connects to the CMTS, the CMTS sends this boot file to
the modem, telling it the maximum upstream and
downstream bandwidth.

The CMTS is configured via telnet. This can be done
from either the sender or the receiver, and since the
CMTS has two IP addresses (192.168.10.1 and
172.16.10.1), either one can be used for this. The
following commands show how this can be done:

telnet 192.168.10.1

Password:

BartCMTS>enable

Password:

BartCMTS# show running-configuration

The show running-configuration command will
display the running configuration of the CMTS. The
relevant information regarding the bandwidth and
buffering can be found in here. For brevity, only the
relevant lines are shown below. For complete running
configurations of the CMTS and the cable modem, see
Appendix 1.

…

cable config-file test2.cm

…

 service-class 1 max-upstream 512

 service-class 1 max-downstream 3000

…

!

ip dhcp pool BARTip

 bootfile test2.cm

…

interface Cable1/0

 cable downstream rate-limit token-bucket shaping

max-delay 512

CAIA Technical Report 060119A January 2006 page 4 of 8

The line cable config-file test2.cm means that the

following indented lines apply to the “test2.cm” boot
file. These indented lines show that the file “test2.cm”
contains an upstream bandwidth setting of 512kbps and
a downstream bandwidth setting of 3000kbps. The
following lines indicate that the CMTS is currently using
“test2.cm” as its boot file, or the file that it sends to the
cable modems when they boot up and connect to the
CMTS. And finally, the last two lines displayed show
that on the cable 1/0 interface, the buffer is set to hold
packets for a maximum of 512ms.

The configure-terminal command will activate
configuration mode, shown by the prompt
BartCMTS(config)#. Once in this mode, commands such
as those seen above can be entered. To alter settings that
are indented in the running-config, the first non-indented
command before them must be entered first. The prompt
will then change accordingly.

For example, to configure the buffering capacity to
512ms, the interface Cable1/0 command must be
entered before the cable downstream rate-limit token-
bucket shaping max-delay 512 command.

To configure the bandwidth settings, it is necessary to
make sure that in the running-configuration, it stated that
the bootfile in use was test2.cm. If not, it must be
changed by entering these commands at the prompt:

BartCMTS(config)#ip dhcp pool BARTip

BartCMTS(dhcp-config)#bootfile test2.cm

For another example, to change the upstream
bandwidth to 128kbps and the downstream bandwidth to
1536kbps, the following commands would be issued:

BartCMTS(config)# cable config-file test2.cm

BartCMTS(config-file)# service-class 1 max-

upstream 128

 BartCMTS(config-file)# service-class 1 max-

downstream 1536

If the bandwidth settings such as in this case, or
anything to do with the boot file were modified, the
cable modem must be rebooted. This is done via the
Cisco terminal server, which can be accessed via telnet
from any computer in the lab (not just the sender and
receiver).

To connect to the terminal server and reload the cable
modem, the following commands must be issued:

telnet 136.186.229.89

CommServer2610>connect bartCableModem6

Password:

BartCM6>en

BartCM6#reload

Once the cable modem has reloaded, the DOCSIS
system is now ready to be used again.

There were a number of housekeeping protocols
running on the BART network that produce unnecessary
traffic. Since our experiments were based on realistic
home-user conditions, it was required to have these
(unnecessary) protocols disabled. Routing Information
Protocol (RIP) ran on the CMTS and the cable modem,
and was disabled on these devices. Cisco Discovery
Protocol (CDP) ran on all three Cisco devices and
needed to be disabled on each of them.

We disabled CDP on the CMTS by simply entering
the no cdp run command in configuration mode.

RIP was disabled by typing no router rip in
configuration mode. Doing this meant that the CMTS
required static routes. We set these up by typing ip
route 10.10.10.0 255.255.255.0 Cable1/0 permanent in
configuration mode.

E. Cable Modem
The cable modem we used was a Cisco, just like the

CMTS, so the interface is the same. The configuration of
our cable modem is included in Appendix 1. As in the
CMTS case, we disabled CDP on the cable modem by
entering the no cdp run command.

RIP was also disabled on the cable modem. This was
done by entering the no router rip command. The cable
modem does not require any static routes to be
configured as a result of this.

F. Switch
The Cisco switch that we used also ran CDP, but on

top of that, it also ran Spanning Tree Protocol (STP),
Virtual Trunking Protocol (VTP), and Dynamic
Trunking Protocol (DTP). CDP was disabled on this
device in the same way as on the CMTS and the cable
modem by using the no cdp run command.

The switch was configured with a separate VLAN
specifically for FAST, so that other traffic from

TCP FAST Sender
eth0

192.168.10.130

TCP Receiver
eth0

192.168.10.129

100 Mbps 100 MbpsDS

US
DummyNet

Bridge
WAN Emulator

Ethernet Switch

100 Mbps DS

US

Bottleneck link

Figure 2 – FAST testbed layout with simple low-speed link

CAIA Technical Report 060119A January 2006 page 5 of 8

Swinburne University network would not interfere. The
relevant lines from the configuration are shown below:

...

vlan 123

 name TCPFAST

...

no spanning-tree vlan 123

...

interface FastEthernet0/<port-number (1-24)>

 switchport access vlan 123

 switchport mode access

 switchport nonegotiate

 no ip address

 no keepalive

 no cdp enable

...

interface Vlan123

 no ip address

...

STP runs on a per-VLAN basis. To disable it for the
FAST VLAN, in configuration mode in the switch, we
typed no spanning-tree vlan <vlan ID>. Each port that
is being used for the FAST testbed was assigned to the
FAST VLAN by issuing the switchport access vlan 123
command for each port. For each of these ports, all the
attributes displayed above were applied also. These
ensured that DTP was also disabled, and that keepalives
and CDP messages were not being sent on these ports.

VTP was also disabled on the switch. This was done
by entering the vtp mode transparent command in
configuration mode.

V. BYPASSING DOCSIS
In order to evaluate the impact of DOCSIS on FAST,

we created an equal rate system to the one we had, but
without running DOCSIS. To achieve this, we ran the
same experiments over a simple, rate limited link by
bypassing the DOCSIS system. This was done by
configuring the Dummynet bridge with the same
capacity and buffering as the CMTS. A number of
configuration changes are required in order to do this.

First of all, the receiver must be unplugged from the
cable modem and plugged straight into the same switch
that the bridge is connected to. Since there is no routing
done between the sender and receiver in this
configuration, the receiver must also change its IP
address to be on the 192.168.10.0 subnet. This is done
by using the following command on the receiver:

ifconfig eth0 192.168.10.129 netmask

255.255.255.0 broadcast 192.168.10.255

To swap it back to the DOCSIS system, simply
change the IP address to what it was and add the routes
again by issuing the following commands on the

receiver:
ifconfig eth0 10.10.10.21 netmask 255.255.255.252

broadcast 10.10.10.23

route add –net default gw 10.10.10.22

route add –net 192.168.10.0 gw 10.10.10.21 eth0

route add –net 172.16.10.0 gw 10.10.10.21 eth0

When bypassing the DOCSIS system, it is also
necessary to modify the traffic shaping settings on the
bridge to match the settings of the DOCSIS system. This
is done by issuing the following commands on the
Dummynet bridge:

ipfw flush

ipfw add 1 pipe 1 ip from 192.168.10.130 to

192.168.10.129 layer2

ipfw add 2 pipe 2 ip from 192.168.10.129 to

192.168.10.130 layer2

ipfw add 65534 allow mac-type 2054 layer2

ipfw pipe 1 config bw <downstream bandwidth>

delay 50ms queue <formula for queue size>k

ipfw pipe 2 config bw <upstream bandwidth> delay

50ms queue 1024k

sysctl net.inet.ip.fw.one_pass=1

REFERENCES
[1] L. H. Andrew, I. Atov, D. Kennedy, B. Wydrowski, Evaluation

of FAST TCP in Low-Speed DOCSIS-based Access Networks,
in Proc. of IEEE Tencon’05, pp. 1680-1685, Melbourne,
Australia, November 2005.

[2] M. Allman, V. Paxson, and W. Stevens, TCP Congestion
Control, IETF RFC 2581, April 1999. Available at
http://ietf.org/rfc/rfc2581.txt.

[3] S. Floyd and T. Henderson, The NewReno Modification to
TCP’s Fast Recovery Algorithm, IETF RFC 2582, April 1999,
Available at http://ietf.org/rfc/rfc2582.txt.

[4] C. Jin, D. X. Wei, and S. H. Low, FAST TCP: Motivation,
Architecture, Algorithms, Performance, in Proc. of IEEE
INFOCOM 2004, pp. 2490-2501, Hong Kong, March 2004.

[5] FAST, http://netlab.caltech.edu/FAST/index.html.
[6] CableLabs, Data-Over-Cable Service Interface Specifications

Radio Frequency Interface Specification SP –RFIv1.1-101-
990311,1999.

[7] Broadband Access Research Testbed, Centre for Advanced
Internet Architectures, Swinburne University of Technology,
http://caia.swin.edu.au/bart.

[8] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, K. Gibbs, “Iperf”,
[Online]. Available: http://dast.nlanr.net/Projects/Iperf.

[9] L. Rizzo, “Dummynet”, [Online]. Available:
http://info.iet.unipi.it/~luigi/ip_dummynet/.

[10] Cisco uBR7100 Series Software Configuration giude. [Online].
Available:
http://www.cisco.com/en/US/products/hw/cable/ps2211/product
s_configuration_guide_chapter09186a00801b355a.html#wp102
1916.

[11] The FreeBSD Project, http://www.freebsd.org

CAIA Technical Report 060119A January 2006 page 6 of 8

APPENDIX I

Running configuration for the cable modem:

bartCM6#show running-configuration

Building configuration...

Current configuration : 1013 bytes

!

! NVRAM config last updated at 15:37:11 - Sat Nov

16 2002

!

version 12.2

no parser cache

no service pad

service timestamps debug uptime

service timestamps log uptime

no service password-encryption

service internal

!

hostname BartCableModem1

!

enable secret 5 1V4lI$nsRplYMFdD4QavCpqShNG1

enable password bart

!

clock timezone - 0

ip subnet-zero

ip tftp source-interface cable-modem0

no ip domain-lookup

!

ip audit notify log

ip audit po max-events 100

!

interface Ethernet0

 ip address 10.10.10.21 255.255.255.252

 no ip mroute-cache

 no cdp enable

!

interface cable-modem0

 no ip mroute-cache

 no cable-modem compliant bridge

 cable-modem boot admin 2

 cable-modem boot oper 5

!

router rip

 version 2

 redistribute connected

 network 172.16.0.0

 no auto-summary

!

ip classless

ip pim bidir-enable

no ip http server

no ip http cable-monitor

!

no cdp run

snmp-server manager

call rsvp-sync

!

!

mgcp profile default

!

!

line con 0

line vty 0 4

 login

!

scheduler max-task-time 5000

end

Running configuration for the CMTS:

BartCMTS#show running-configuration

Building configuration...

Current configuration : 2651 bytes

!

version 12.1

no service single-slot-reload-enable

service timestamps debug uptime

service timestamps log uptime

no service password-encryption

service udp-small-servers max-servers no-limit

!

hostname BartCMTS

!

enable secret 5 1VNoT$7CbYtv0URbYYoXLz15I1l1

enable password bart

CAIA Technical Report 060119A January 2006 page 7 of 8

!

no cable qos permission create

no cable qos permission update

cable qos permission modems

cable time-server

!

cable config-file test.cm

 service-class 1 priority 1

 service-class 1 max-upstream 3000

 service-class 1 max-downstream 10000

 service-class 1 max-burst 1600

 cpe max 99

 timestamp

!

cable config-file test2.cm

 service-class 1 priority 1

 service-class 1 max-upstream 512

 service-class 1 max-downstream 3000

 service-class 1 max-burst 1600

 cpe max 99

 timestamp

!

ip subnet-zero

no ip domain-lookup

no ip dhcp conflict logging

ip dhcp excluded-address 172.16.10.1

!

ip dhcp pool BARTip

 network 172.16.10.0 255.255.255.0

 bootfile test2.cm

 next-server 172.16.10.1

 option 4 ip 172.16.10.1

 option 2 hex 0000.0000

 option 7 ip 172.16.10.1

 default-router 172.16.10.1

 dns-server 136.186.1.111

 lease 0 7 30

!

ip ssh time-out 120

ip ssh authentication-retries 3

!

!

!

!

!

!

!

interface FastEthernet0/0

 ip address 136.186.229.80 255.255.255.0

 ip nat outside

 no keepalive

 duplex auto

 speed 100

 no cdp enable

!

interface FastEthernet0/1

 ip address 192.168.10.1 255.255.255.0

 ip nat inside

 no keepalive

 duplex auto

 speed auto

 no cdp enable

!

interface Cable1/0

 ip address 172.16.10.1 255.255.255.0

 ip nat inside

 cable downstream rate-limit token-bucket shaping

max-delay 1024

 cable downstream annex B

 cable downstream modulation 64qam

 cable downstream interleave-depth 32

 cable downstream frequency 550000000

 cable downstream channel-id 0

 no cable downstream rf-shutdown

 cable upstream 0 frequency 38000000

 cable upstream 0 power-level 0

 cable upstream 0 channel-width 200000

 cable upstream 0 minislot-size 32

 no cable upstream 0 concatenation

 no cable upstream 0 shutdown

!

ip default-gateway 136.186.229.1

ip nat inside source static 10.10.10.10

136.186.229.222

ip nat inside source static 10.10.10.6

136.186.229.221

ip nat inside source static 192.168.10.2

136.186.229.83

ip nat inside source static 10.10.10.2

136.186.229.220

CAIA Technical Report 060119A January 2006 page 8 of 8

ip nat inside source static 192.168.10.1

136.186.229.82

ip nat inside source static 10.10.10.30

136.186.229.224

ip classless

ip route 10.10.10.0 255.255.255.0 Cable1/0

permanent

no ip http server

!

no cdp run

snmp-server community caiapublic RO

banner motd ^CCWelcome to Broadband Access

Research Testbed (BART) ^C

!

line con 0

line aux 0

line vty 0 4

 password bart

 login

!

end

