
Measuring the Live Capture Performance of
NetSniff¤

Julie-Anne Bussiere
*
, Jason But

Centre for Advanced Internet Architectures. Technical Report 051004A
Swinburne University of Technology

Melbourne, Australia
julie-anne.bussiere@laposte.net, jbut@swin.edu.au

Abstract- NetSniff is an IP traffic analysis tool currently used
in low traffic scenarios. Before deployment under higher traffic
scenarios, it is important to perform a study into the processing
and live capture performance of NetSniff. We have previously
investigated the processing performance of NetSniff, in this
technical report we subject NetSniff to a performance evaluation
with regard to live capture of network traffic. We show the
impact of increasing the captured traffic rate and in increasing
the number of concurrent flows for NetSniff (release version
v050722) to process on differing hardware configurations. Our
results also indicate that the small PCAP (version 0.9.4) buffer
(32kB) on a FreeBSD (version 5.3) based system limits the
processing performance of NetSniff under high-bandwidth
scenarios, while the Linux (kernel version 2.6) based PCAP
library passes packets to NetSniff in non-chronological order –
posing further problems in correctly determining TCP layer
statistics.

Keywords- NetSniff, live capture, performance.

I. INTRODUCTION

NetSniff is a multi-network-layered real-time traffic
capture and analysis tool developed as part of the ICE

3

project being run out of the Center for Advanced
Internet Architectures (CAIA). The NetSniff tool is
currently deployed in low-bandwidth and low-traffic
scenarios. To gather more useful information, we would
like to deploy it within networks where the number of
aggregate users is higher. Our motivation and goals have
been previously highlighted [1], further we have also
previously investigated the raw packet processing
performance limitations of NetSniff when processing
network traffic from a stored traffic dump file [2]. In this
report we will continue our evaluation of NetSniff in the
context of its performance in live network traffic capture
and analysis.

All evaluation was performed on systems configured
running either a FreeBSD 5.3 or a Linux 2.6 based
kernel. Each system used version 0.9.4 of the PCAP
capture library [4] and version v050722 of the NetSniff
application [5]. All software is configured to run with
default configuration settings to better simulate the
scenario under which a naïve user might operate.

The report is structured as follows: In section two we
discuss the means by which we implement and measure

live capture performance. In section three we present
the results of our live capture performance experiments.
We first focused on how NetSniff handles high packet
rates, then analysed the performance when dealing with
concurrent flows and described hardware or machine
configuration impact on performance. The two final
sections give a global analysis, taking in account
processing performance results obtained in [2], and
suggest improvements for better NetSniff performance.

II. LIVE CAPTURE TESTBED

To perform live capture measurements, the
tcpreplay [3] tool (version 2.2.2) was used to replay
previously recorded traffic across a network. A second
workstation running NetSniff is used to capture the
generated traffic. Tcpreplay allows the user to set the
packet rate at which to replay the traffic. NetSniff live
capture performance was tested on 2 workstations. The
first workstation is a Pentium4 based computer running
at a clock speed of 2.66GHz with 512MB of system
RAM, the NIC on this computer is an Intel Pro Gigabit
Ethernet device. The second workstation is also a
Pentium4 based machine running at 2.66GHz, instead
installed with 2GB of system RAM and a Broadcom
BCM5782 Gigabit Ethernet device. Both machines are
configured with FreeBSD 5.3.

The traffic dumps replayed using tcpreplay were
those generated during processing performance testing
[2]. To analyse the packet rate performance of NetSniff,
we use the dump file consisting of traffic generated by a
single host that was continuously running sequential
http, smtp, ftp, ssh and https sessions. This dump file
consists of an average packet rate of 350 pkts/sec.
Using tcpreplay we can increase this rate to measure
NetSniff's capture performance with higher packet rates,
independent of the number of concurrent flows.

Following this, NetSniff's live capture performance
of concurrent flows will be evaluated using traffic dump
files consisting of traffic generated by multiple hosts.

Of particular interest during testing are the number of
packets dropped (defined as packets that NetSniff has
not parsed and analysed because of a buffer overflow in
the PCAP library) by NetSniff, as well as system metrics
including memory and CPU usage.

¤ NetSniff version release v050722

* Julie-Anne Bussiere performed this work while a visiting research assistant at CAIA in 2005

CAIA Technical Report 051004A October 2005 page 1 of 6

When replaying dump files with a predefined packet
rate, tcpreplay does not respect the timestamps and
packet inter-arrival times stored in the traffic dump file
[3]. Previous issues of several packets with equal
timestamps in duplicated traffic files [2], are no longer
relevant during live capture analysis. The average packet
size for our test dump files is 870 bytes.

Since NetSniff reconstructs complete TCP flows to
parse application layer statistics, it needs to capture and
analyse all packets on the network, a packet dropped
rate of 0% is desired. Missing packets will cause
incorrect statistics to be calculated for the TCP flow
under consideration, if too many packets are dropped
prior to analysis then NetSniff will not be able to
produce meaningful statistics for any TCP flows. The
percentage of dropped packets we are willing to
accommodate depends on the number of individual
flows we are analysing, the average number of packets
that make up these flows, and the number of flows we
are willing to have incorrect statistics for.

III. EXPERIMENTAL RESULTS

All experiments were performed with NetSniff
version 050722, and PCAP capture library version 0.9.4.

A. High traffic impact

We replayed traffic generated by one host at different
packet rates to analyse NetSniff capture and parsing
performance. Figure 1 shows the percentage of packets
dropped by NetSniff as a function of the programmed
packet rate when captured on workstation 2. Similar
results were seen when capturing on workstation 1.

At rates of up to 3000 pps, NetSniff does not drop
any packets. For rates up to 5000pps the percentage of
dropped packets is lower than 0.5%. With these
network conditions, NetSniff is reliably capturing and
analysing the traffic presented on the network card.
Beyond 5000pps, the percentage of dropped packets
increases quickly. The bandwidth usage corresponding
to 5000 pps is 33.4 Mbps.

This leads to a conclusion that on this platform,
NetSniff can be used to capture and analyse traffic at
rates of up to 5000pps.

Fig. 1 Percentage of dropped packets versus packet
rate for 1 host traffic

Fig. 2 Mean and peak memory usage versus packet
rate for 1 host traffic

The dropped packet performance is compared against
tcpdump. Both tcpdump and NetSniff use the PCAP
library to capture traffic and pass it to the application for
processing. Tcpdump was executed in "write-to-disk"
mode, where each captured packet was immediately
saved to a file with no post-processing. The results
allow us to exclude the effect of the PCAP capture
library from our capture performance tests. Under the
same traffic replay scenario described above, the
percentage of dropped packets exhibited by tcpdump
remained under 0.5% for packet rates up to 20,000 pps.

These results imply that for packet rates above 5,000
pps, there is an issue in the implementation of parsing
the captured packets in NetSniff such that a high
proportion of captured packets are dropped, and as a
result, not analysed.

Like tcpdump, NetSniff is implemented as a single
thread - each packet is captured, parsed and analysed in
turn. The PCAP library places incoming packets into a
buffer while it waits for the capture application to
complete processing of the previous packet. If the
application takes too long to process these packets, or a
burst of packets arrive at the network card, then the
buffer fills while processing occurs. If the processing
time is too long, the (fixed size) buffer overflows and
packets are dropped, this can occur regardless of
whether the average packet processing rate can cope
with the number of incoming packets. An increased
packet arrival rate has the side effect of filling the buffer
more quickly, and therefore increasing the probability of
dropping packets. Since tcpdump does little (or no)
post-processing, buffer overflow is minimized.

Figure 2 shows the memory usage of NetSniff while
capturing the replayed traffic stream at different
programmed packet rates. From this, we can see that
memory usage is highly correlated to the percentage of
dropped packets. In all instances where no packets were
dropped, memory usage does not exceed 5MB. As
packets are dropped, NetSniff's memory requirements
increase. This is likely due to NetSniff re-assembling
TCP streams. When a packet from a TCP stream is
dropped, NetSniff buffers all subsequent packets from
that stream while it waits to see if the missing packet
will be retransmitted. As the proportion of dropped

CAIA Technical Report 051004A October 2005 page 2 of 6

0 5000 10000 15000 20000 25000 30000

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

PPS

D
ro

p
p

e
d

 p
a
ck

e
ts

 (
%

)

0 2500 5000 7500 10000 12500 15000 17500

0
5000

10000
15000
20000
25000
30000
35000

40000
45000
50000
55000

60000
65000
70000

Mean

Peak

PPS

M
e
m

o
ry

 u
sa

g
e
 (

K
B

)

packets increase, the number of TCP streams affected
will also increase, therefore increasing NetSniff's
buffering requirements.

This extra memory usage is capped, since NetSniff
will eventually free these resources when it determines
that a TCP stream has timed-out. Also, the peak memory
usage at 16,000 pps (at which rate 60% of incoming
packets are dropped) is only 65 MB. This indicates that
even under extreme packet loss, excess memory usage
is limited and available system RAM does not constitute
a hardware limitation for high rates of traffic generated
by one host. Further, we do not recommend using
NetSniff at packet dropped rates greater than 1%.

Figure 3 shows CPU usage by NetSniff while
capturing the replayed traffic stream at different
programmed packet rates. We note that the CPU
requirements are not correlated to the dropped packet
rate, but instead to the packet arrival rate. These results
were measured on workstation 2, with similar results
gathered on workstation 1 (with the same processor and
clock speed). As previously measured [2], CPU use is
expected to be higher for slower machines. In this
instance, the number of dropped packets (and
subsequent non-parsing of these packets) means that
CPU utilisation remains low.

Fig. 3 Mean and peak CPU use versus packet rate for
1 host traffic

This result signifies that while NetSniff processing
performance can cope with this - and higher – packet
arrival rates, there are other factors limiting the rate at
which NetSniff can properly capture traffic. In particular
it appears that the limited PCAP buffer size (default
32kB) and its subsequent overflow, plays a major part in
limiting NetSniff performance.

While the PCAP capture library is an open source
product that can be freely modified to provide increased
buffer capacity, the experiments performed here are
specifically aimed at measuring the performance of
NetSniff under default system configurations.

B. Impact of Concurrent Flows

We next replayed the traffic dump files consisting of
concurrent flows generated by multiple hosts [2], these
dump files were also replayed at different packet rates.
Importantly, see Figure 4, the percentage of packets

dropped by NetSniff does not significantly increase at a
given packet rate with an increased number of
concurrent flows. There is still PCAP buffer overflow,
and it occurs a slightly lower packet rates as the number
of concurrent flows increase, but this increase in
dropped packets is minimal.

Fig. 4 Percentage of dropped packets for different
numbers of concurrent hosts

On the other hand, increasing the number of
concurrent flows does have an impact on NetSniff's
process size (memory usage) and CPU usage. Figure 5
shows NetSniff's mean and peak memory usage while
capturing the different trace files replayed at a
programmed rate of 1,000 packets per second (12 Mb/s),
a rate at which NetSniff drops minimal packets. Results
show a peak usage of 5MB for 1 host against 70MB for
60 hosts. This increase is not related to the dropped
packets rate (section III.A), but rather to the increased
number of flows being reconstructed in parallel [2].

Fig. 5 Mean and peak memory usage versus number of
concurrent hosts for 1000 pps

Figure 6 shows mean and peak CPU usage for the
same conditions described above. The peak value
reaches 18% for 60 hosts, but on average does not
exceed 10 %. Again NetSniff is limited more by the
PCAP buffer than by its actual packet processing
capabilities [2].

CAIA Technical Report 051004A October 2005 page 3 of 6

0 10 20 30 40 50 60

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

Mean

Peak

Number of concurrent hosts

P
ro

ce
ss

 s
iz

e
 (

K
B

)0 2500 5000 7500 10000 12500 15000 17500

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

Mean

Peak

PPS

C
P
U

 u
se

 (
%

)

1000 2000 3000 4000 5000 6000 7000

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

1 host
10 hosts

20 hosts

30 hosts

Packets/s

D
ro

p
p
e
d
 p

a
ck

e
ts

 (
%

)

Fig. 6 Mean and peak CPU use versus number of
concurrent hosts for 1000 pps

C. NetSniff Application Parser Bugs

During performance testing of live capture with
multiple concurrent streams, we discovered a series of
bugs in one, or more, of the TCP application layer
parsers, which caused NetSniff to crash. The bug has
been isolated as being caused by reading beyond the end
of the reconstructed application data buffers and has
been scheduled to be fixed in the near future.

NetSniff was recompiled minus these application
parsers for further tests. All TCP flows are still
reconstructed, however their statistics are now logged to
a generic TCP stream output rather than to application
specific logfiles. Disabling the application parsers had
no impact on the percentage of dropped packets. The
following figures show CPU and memory usage of
NetSniff running without application parsers, capturing
traffic at a rate of 1000 pps, and comparing with
previous results.

Fig. 7 CPU usage without TCP application parsers

In figures 7 and 8, previous results appear in fine
dashed to compare with newer results (called "No TCP"
on the graph). The CPU usage is on average 2% lower
(due to less processing taking place), but the rate of
increase shows that CPU requirements are still directly
related to the number of concurrent flows. Similarly,

memory usage peak values are slightly lower. In
summary, the TCP application parsers do not greatly
contribute to the system CPU and memory resource
requirements for NetSniff.

Fig. 8 Memory usage without TCP application parsers

In figures 7 and 8, previous results appear in fine
dashed to compare with newer results (called "No TCP"
on the graph). The CPU usage is on average 2% lower
(due to less processing taking place), but the rate of
increase shows that CPU requirements are still directly
related to the number of concurrent flows. Similarly,
memory usage peak values are slightly lower. In
summary, the TCP application parsers do not greatly
contribute to the system CPU and memory resource
requirements for NetSniff.

D. Hardware impact

We witnessed no significant difference in
performance on the two systems with varying system
RAM and NICs. Previous results [2] would indicate that
the processor type (Pentium4 vs Celeron) would have a
major impact on the processing performance with clock
speed contributing a little to performance. We also
previously concluded that the impact of system memory
was minimal.

The two network cards under consideration also
contributed little to the performance of capturing and
analysing data in real-time with NetSniff. Both network
cards are typical consumer level NIC devices and not
specifically designed for high performance traffic
capture, however our results indicate that either NIC
would be suitable for capture of traffic on a FreeBSD
based system at average traffic rates of up to about
30Mb/s.

E. Linux Based Capture Devices

During experimental evaluation of running traffic
capture applications (such as NetSniff and tcpdump)
under Linux (Gentoo and Suse Linux Distributions,
Kernel version 2.6), we have noticed a problem. While
the Linux kernel appears to correctly timestamp the
captured packets, they are not passed up to the capture
application in chronological order. As such, the capture
application will occasionally be provided with packet n
after it is provided with packet (n+1).

CAIA Technical Report 051004A October 2005 page 4 of 6

0 10 20 30 40 50 60

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Mean

Peak

Number of concurrent hosts

C
PU

 u
se

 (
%

)

0 10 20 30 40 50 60

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Mean

Peak

Mean – No tcp

Peak – No tcp

Number of concurrent hosts

C
P
U

 u
se

 (
%

)

0 5 10 15 20 25 30 35 40 45 50 55 60

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

Mean

Peak

Mean – No tcp

Peak – No tcp

Number of concurrent hosts

P
ro

ce
ss

 s
iz

e
 (

K
B

)

This behaviour can be witnessed by simply running
tcpdump and storing the resultant capture to a disk dump
file. Examining the packets stored within the tcpdump
file will show that they have not been stored in
chronological order although the actual packet
timestamps are correct.

This is not a major problem for tcpdump since it
deals with packets as atomic objects, however capture
applications such as NetSniff are reconstructing traffic
application flows. If packets are not presented to
NetSniff in chronological order, some major errors are
made in determining the statistical properties of TCP
streams.

The possible solutions to this problem are:

• Do not use Linux on the traffic capture and analysis
workstation.

• If you must use Linux, capture to a disk file and then
pre-process the data by sorting the packets into
chronological order prior to further analysis with
NetSniff.

IV. SUMMARY OF RESULTS

The key points to come out of our experimental
analysis of NetSniff (v050722) during processing of
both stored capture files [2] and during live capture are:

1. Processing NetSniff directly on tcpdump files has no
performance limitations as real-time processing is not
required.

2. Processing performance is significantly affected by
CPU type, less so by the system clock speed.

3. Performance is adversely affected by an increased
number of concurrent flows as NetSniff must
maintain an active database of each of these flows.

4. A Pentium4 based system can process captured
network traffic at an average rate of about 80Mb/s

5. Anonymisation of data has minimal impact on the
processing performance of NetSniff.

6. NetSniff live capture performance is limited by the
small default buffer used in the PCAP (0.9.4) capture
library (32kB) on FreeBSD (5.3)

7. NetSniff CPU and memory usage increases markedly
when NetSniff performance is such that greater than
1% of packets are dropped during capture. Using the
default configuration, NetSniff is able to capture and
analyse network traffic at an average rate of about
33.4Mb/s

8. There is an error in the implementation of one or
more of the TCP application parsers which can cause
NetSniff to crash under heavy load.

9. Linux is not suitable as a capture platform due to the
PCAP (0.9.4) library implementation not passing
packets to the capture application in chronological
order.

V. POSSIBLE IMPROVEMENTS

There are two areas in which the performance of
NetSniff needs to be improved, they are increasing the
PCAP capture library buffer size and to fix the errors in
the TCP applications parser implementations.

A. PCAP Capture Library Buffer Size

NetSniff uses the underlying PCAP library to capture
packets on a network card and make them available for
processing. On a default configuration (PCAP version
0.9.4 and FreeBSD 5.3), these buffers are only 32kB in
size. At data rates of 100Mb/s, this buffer can
potentially be filled in 0.04ms.

The major issue is that while the average packet
processing rate of NetSniff may indicate that data can be
processed at average rates of about 80Mb/s, it may not
be that each individual packet will be processed in a
fixed amount of time. Further the arrival of a burst of
packets may cause the buffer overflow which we have
witnessed during testing.

To this end we recommend that work be done with
an eye to increasing this buffer size. The aim of doing
so would be to allow NetSniff to run to its full potential
when processing captured packets before resulting in a
buffer overflow and the subsequent loss of data. It is
expected that this will allow to capture and process
traffic in real time at rate beyond our currently measured
maximum of 5000pps (~33.4Mb/s) to a rate closer to
12000pps (~80Mb/s).

B. Errors in TCP Application Parsers

We found that errors exist in the implementation of
one or more of the TCP application layer parsers. These
parsers are passed data from the TCP stream
reconstruction module to parse and extract application
layer statistics. Since the TCP data stream is
reconstructed as the packets are parsed, the application
layer stream is passed to the application parser in small
blocks – the parser is expected to be able to read and
process this data in this fashion. These parsers are
occasionally trying to parse data that does not yet exist
(and as such has not been provided to the parser) and
reading beyond the end of an allocated block of
memory. The resultant access to un-owned memory is
causing a core dump.

This bug has been scheduled for correction in the
next release of NetSniff.

VI. CONCLUSION

This paper provides results characterizing NetSniff
(v050722) live capture performance in high traffic
scenarios. We used previously generated tcpdump traffic
files played back at varying speeds – using tcpreplay –
to generate data for NetSniff to capture and analyse.

Our results show that version v050722 of NetSniff
using the version 0.9.4 of the PCAP packet capture
library on a FreeBSD 5.3 system has a couple of
implementation problems. First we note that a default
system installation uses small (32kB) PCAP buffers,
resulting in buffer overflow and subsequent dropped

CAIA Technical Report 051004A October 2005 page 5 of 6

packets occuring at a data rate that previous results have
shown NetSniff to be able to manage. Further, errors in
the application parser modules of NetSniff v050722
have been identified.

Our results have also indicated that the PCAP (0.9.4)
implementation for Linux (kernel version 2.6) does not
pass packets up to the NetSniff application in
chronological order.

On a default FreeBSD implementation however, it is
possible to reliably capture and process network data
using NetSniff at rates of up to 5000 pps (33.4Mb/s).
We would expect that increasing the PCAP buffer size

should allow NetSniff to process data at the rates
indicated in [2].

REFERENCES

[1] J.Bussiere, J.But, "Measuring the performance of Netsniff: Testbed
design", CAIA Technical Report CAIA-TR-050623A, June 2005

[2] J.Bussiere, J.But, "Measuring the processing performance of NetSniff",
CAIA Technical Report CAIA-TR-050823A, August 2005

[3] TCPReplay, http://tcpreplay.sourceforge.net/man/tcprewrite.html,
accessed June 2005

[4] PCAP Packet Capture Library, http://tcpdump.org, accessed June 2005

[5] NetSniff, http://caia.swin.edu.au/ice/tools/netsniff, accessed August 2005

CAIA Technical Report 051004A October 2005 page 6 of 6

