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Abstract- Although the past few years have seen significant, 

empirically-based activity in modelling First Person Shooter 
(FPS) game traffic, there has been only limited work published 
that explores the underlying reasons for observed FPS traffic 
characteristics. As a result the generality and scalability of these 
empirical models is open to question. In this paper we 
demonstrate how a useful predictive model for FPS traffic 
patterns can be derived from a number of generic multiplayer 
game-play requirements. We begin by describing a possible 
theoretical basis for modelling the message rates and message 
sizes between server and clients in FPS games. Based on this 
model we make predictions as to the characteristics of FPS game 
traffic and then compare the predictions with traffic statistics 
collected from Quake 3 and Unreal Tournament game trials. 
Agreement between the predictions from our theoretical model 
and the statistics from the game trials is very good. 

Keywords- First Person Shooter Games, Teletraffic Analysis, 
Traffic Engineering 

I.    INTRODUCTION 

Modelling traffic generated by Internet based 
multiplayer computer games has attracted a great deal of 
attention in the past few years [4, 5, 7-10, 13-15, 21]. 
This attention is a consequence of the size of the 
computer game industry and its growth. It is little 
appreciated just how large the computer game industry is 
and how quickly it is growing [1]. Although most 
industry revenue is from non-networked console games, 
a significant and rapidly growing part is from online, 
interactive computer games [16]. 

In an online interactive game, multiple players at 
diverse geographical locations interact with each other 
within a virtual space in real time. In First Person 
Shooter (FPS) games (one of the most popular genres), 
the interaction is usually some form of virtual armed 
combat [12]. 

As the number of people playing Internet based 
games increases, it is becoming important that Internet 
service providers, game server operators and game 
software developers understand the teletraffic generated 
by Internet based games. Of particular importance to 
these groups of people are questions as to how the traffic 
generated by these games increases as the number of 
players increases, and how this traffic affects and is 
affected by, other traffic. To answer questions of this 
nature simulation and analysis are typically used to 
model the proposed system before deployment. The 

simulation or analytical model allows questions 
involving server and network capacity, and overall 
system performance, to be answered. However, for this 
to be effective, good traffic models are needed [11]. It is 
necessary to understand how the traffic varies as the 
number of users increases, what happens to delay and 
delay variation when the traffic is multiplexed with other 
types of traffic and what link and server capacities are 
necessary to meet a given grade of service. In the same 
way that web and other traffic has been analysed and 
modeled, and the models used to predict the 
consequences for the Internet, it is necessary to analyse 
game traffic and produce models that can also be used in 
the same way [6]. 

This need has resulted in a great deal of work being 
done in the past few years in modelling game traffic. 
Traffic models have been developed for popular games 
such as Quake 3, HalfLife, Counter-Strike and Unreal 
Tournament [4, 5, 7-10, 13-15]. However, a weakness of 
this work is that it has been entirely empirical. Traffic 
model development has involved constructing 
probability models for the games by examining packet 
traces and identifying the most appropriate statistical 
distribution to describe the trace. There have been only 
the most limited attempts made to understand why the 
traffic has its particular characteristics. While the 
empirical models are useful, they are open to criticism 
regarding their generality and reliability. We may 
reasonably question whether these models can be 
generalised to predict the behaviour of other FPS games 
or scaled to predict the behavior of games with large 
numbers of players. 

In considering the generality of traffic models, it is 
intriguing to note that the traffic generated by Quake 3, 
HalfLife, Counterstrike and Unreal Tournament (all 
popular FPS Internet games) has some interesting 
similarities. In particular the probability density 
functions for packet size and interarrival times have a 
similar shape [5, 10, 14, 15]. The similarity between 
Quake 3, HalfLife and Counterstrike could be explained 
by their common lineage, but there is little published 
evidence to link Unreal Tournament’s network engine 
with that of Quake 3. However, it was possible that 
respective developers implemented similar ideas given 
the design constraints of highly interactive games 
operating over low bandwidth network links. 
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Scalability of the models is the other important issue. 
For FPS games, detailed game statistics are usually 
obtained in controlled trials with only a small number of 
players (typically less than ten) [13-15, 20]. An 
important question is whether these models can be 
extrapolated to much larger numbers of players and if so, 
how? 

In this paper we begin addressing these two issues 
and in the process, develop a general basis for modelling 
game traffic. We begin by proposing some simple 
assumptions of the goals that developers of a FPS 
Internet game would probably build into their game 
protocols, develop a simple model of game traffic based 
on these assumptions, see what traffic profiles the model 
predicts and then compare the predictions with traffic 
statistics collected from real Quake 3 and Unreal 
Tournament game trials. 

In attempting to understand traffic generated by FPS 
games, we need to look at general characteristics of 
game statistics rather than simple statistics such as mean 
and variance. So, in this paper, we are more interested in 
probability distributions of important game traffic 
statistics than in the actual statistics themselves. In 
particular we are interested in the rates and sizes of 
messages transmitted to and from the game server and 
game clients and whether we can predict, in general 
terms, common features of these statistics for FPS 
games, and how these statistics vary as the number of 
players varies. 

We are also interested in broad general characteristics 
of FPS games. Modern FPS games use quite 
sophisticated techniques to minimize undesirable 
network effects [18]. In this paper we make simplifying 
assumptions which are only approximately correct, but 
which make analysis tractable. 

The rest of the paper is structured as follows. In 
Section 2 we outline our assumptions and develop a 
traffic model based on them. In Section 3 we consider 
packet interarrival times both to and from the server. In 
Section 4 we model packet lengths from the client to the 
server. In Section 5 we model packet lengths from the 
server to the client for two, four, six and eight player 
games. We see that there is a simple relation between 
this traffic and the client to server packet length. Section 
6 is our conclusion. 

In Sections 3, 4 and 5 we compare predictions from 
our model with actual traffic statistics of Quake 3 and 
Unreal Tournament from controlled laboratory trials. It 
is worth noting that agreement between our model and 
the traffic statistics is very good. 

II.    MODEL OF FPS GAME TRAFFIC PROTOCOLS 

A. Goals of FPS Protocol Design 

As part of the development of a networked FPS 
game, the designers need to develop a communications 
protocol for the exchange of information between 
players of the game. Its purpose is to specify how 
information about the state of the game (player 
locations, current actions, scores, battles and so on) is to 
be communicated to players. This protocol is distinct 

from the underlying transport protocol (usually UDP) 
and should not be confused with it. In this section we 
attempt to identify the main design objectives of such a 
protocol. 

Most FPS games are server based. An ISP or a game 
enthusiast runs game server software on an Internet 
attached machine and invites other players to participate 
in games running on that server. Players have client 
software which they also run on an Internet attached 
device, typically a personal computer. The client 
software is responsible for reporting the player’s actions 
to the server. The server processes the actions, along 
with that of other players, and propagates the result (the 
game-state) to the clients. The client software then uses 
the result to modify the display seen on the player’s 
computer. So for example, if a player uses a grenade 
launcher to attack another player, the server decides 
what the consequences of the attack are and transmits 
details to the clients. Such details might include the 
trajectory of the grenade, followed by an explosion and 
the possible demise of the other player. For the game to 
operate in real-time and to provide an immersive 
experience, game-state needs to be distributed at a high 
rate. 

Our first assumption is that in designing a protocol to 
support such games, a key goal is to minimize traffic 
across the Internet. Game server operators want as many 
people as possible to play, including people who have 
limited bandwidth in accessing the Internet. By 
minimizing the bandwidth needed for communication 
between the client and the server, a much larger game 
player population can be reached. Also, game server 
operators want to minimize costs. One of their key costs 
is bandwidth. By keeping traffic to a minimum, cost is 
reduced. Finally, it is important that the game is fair to 
all players. If large amounts of data are to be shipped 
between the client and server, then players on high 
bandwidth connections will have a significant advantage 
over players on low bandwidth connections. 

Our second assumption is that the protocol will be 
designed with fairness to all players in mind. To 
maintain fairness it is important to ensure that all clients 
have as accurate and timely a copy of the game-state as 
possible. Since the server contains the definitive copy of 
the game-state, it needs to distribute it frequently to all 
players. Also, it needs to distribute it to all players at 
much the same time interval. To illustrate why this is 
necessary, consider the case of one player who receives 
a copy of the game-state every 500 ms and another 
player who receives it every 50 ms. In 500 ms the 
second player could engage the first in combat, defeat 
them, and retreat to safety before the first player even 
knew they were under attack. The second player has an 
unfair advantage over the first. Consequently, the rate at 
which the game-state is received by each client should 
be frequent and (as much as possible) the same. The 
same issue of fairness requires that clients report their 
state to the server at a frequent rate so that it can be 
propagated to all other players, so that they have an 
accurate picture of the state of the game. 
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B. Consequences of FPS Protocol Assumptions 

The first assumption leads us to expect that game 
traffic will be largely independent of the client. There 
may be different versions of client software but the 
protocol used to communicate between the server and 
client (and vice-versa) should be independent of the 
client system. In particular it should deal in actions 
rather than the detailed delivery of complex, client 
dependent graphics. In general, the client will transmit 
short code-words specifying what the client has done. 
For example a client will transmit a code to the server 
meaning “Player has jumped left” rather than a detailed 
video sequence of the player jumping left. The server 
will then propagate similar short coded messages to 
other players within that player’s field-of-view 
specifying that this client has jumped left, as well as the 
consequences of the action. For example, rather than 
transmitting a video sequence showing the results of a 
player “jumping left” (such as falling off a cliff, or being 
shot by another player) the consequences will be coded 
in as simple a manner as possible and propagated to all 
clients who have that player in their field-of-view. The 
client machines will then interpret the code and generate 
appropriate graphics on the client computer. 

If we consider the consequences for client to server 
teletraffic, we would expect the length of the messages 
from the client to the server to span a small range of 
values. The messages would encode the action of the 
client. Typically, there is a limited number of actions 
that each client can perform. For example in Quake 3 the 
number of actions is less than 20 [12]. These include 
jump left, jump right, turn around, take the object lying 
on the ground and other similar, simple actions. 
Consequently, message length from the client to the 
server will be limited to a small range of values. 

A consequence of the second assumption is that we 
would expect the interarrival time of messages from the 
server to the client to be, as near as possible, fixed. That 
is, we would expect to see the server propagate game-
state information at roughly a constant rate, leading to an 
approximately constant message interarrival time.  

We would also expect the interarrival time of client 
to server packets to be similarly fixed for the same 
reason. 

The game-state transmitted from the server to the 
clients will consist of the state of each player and any 
possible interactions (battles) between them. We would 
expect interactions to occur less often than changes in 
state of individual players. Where there are interactions 
we would expect the server to need to transmit more 
information than if there are no interactions.  

Since the game-state is propagated to all players, and 
since each player’s actions affect the state of the game, 
then we would expect the average message length from 
the server to the client to increase as the number of 
players increase. 

We now use these observations to propose traffic 
models for each of these packet statistics and compare 
them with traffic statistics captured from game trials 
conducted by us in 2003 [15]. The traffic traces are from 
the previously popular Internet game Quake 3. Quake 3 

is a FPS game where players explore a virtual world, 
collect useful objects and engage in combat with other 
players [12]. In the trials we set up a server and clients 
within a laboratory environment. We ran games for set 
lengths of time using the same game environment with a 
number of players of different abilities. We collected 
statistics of packet lengths and interarrival times to and 
from the game server at the game server machine. Full 
details can be found in [15]. 

III.    MESSAGE RATES 

A. Client to Server Message Rate 

The server needs to have as accurate information as 
possible of the location and current action within the 
game space of each player. This will mean frequent 
updates from the client to the server of each player’s 
location. The additional requirement of fairness means 
that updates of client location and activity should be sent 
by each client at some minimum rate. If one client 
reports their player’s position less frequently than other 
clients, then there is a potentially unfair advantage for 
that player. During the time between update messages to 
the server the player might be able to move large 
distances, attack other players and then retreat to safety. 
Fairness dictates that clients should report their location 
and action at a frequent rate with the possible exception 
of when the client is inactive.  

Consequently we would expect the Probability 
Density Function (PDF) of the interarrival time of client 
to server messages to be approximated by an impulse 
function. In Figure 1 we show the statistics of the 
interarrival times from the client to the server for Quake 
3. Clearly this is not an impulse. Nevertheless, it is a 
reasonable approximation to one. Empirical models have 
modeled this distribution with both an impulse and an 
impulse modified by an exponential distribution [15]. 

It is worth noting that client to server packet rate is 
usually configurable by either the client or the server but 
with a minimum interarrival time. In Quake 3 the default 
interarrival time is 20 milliseconds but is configurable to 
a maximum of 50 milliseconds. Generally games will 
allow the client to report the client state more frequently 
than the minimum but will not allow the client to report 
less frequently than some default [12]. 
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Figure 1. Probability Density Function of Client to server interarrival times 
measured at the server for Quake 3 
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Figure 2. Probability Density Function of  Server to client message 
interarrival times measured at the server for Quake3 

B. Server to Client Message Rate 

Again, applying the fairness assumption we would 
expect the interarrival time between messages (and 
hence the message rate) to be close to constant. For the 
game to be fair to all players the game-state needs to be 
propagated to all players frequently and (as nearly as 
possible) at the same rate. Consequently, we would 
expect the PDF of the server to client message 
interarrival time to be approximately an impulse 
function. Figure 2 shows the interarrival time for client 
to server packets for Quake 3. We see that it is quite a 
reasonable approximation to an impulse function. 
Empirical modeling has suggested that this traffic can be 
modeled with either an impulse or a Laplace distribution 
[15]. 

IV.    CLIENT TO SERVER MESSAGE LENGTH  

We can expect that client to server messages will 
usually fall into a few different categories, with a few 
different parameters. The actions that a player can 
perform, and hence the information that needs to be 
transmitted back to the server about those actions, will 
usually be quite limited. It will include information as to 
where the player is in the game world, how fast they are 
moving and what actions they are performing. Actions 
might include “Jump to the left”, “Pick up medical kit”, 
“Use flame-thrower” and similar. Consequently, we 
would expect only a few different message types to be 
sent to the server. Each of these would have a limited 
range of parameters. As a result we would expect a 
limited range of message sizes. A further observation is 
that some of these actions (such as run forward) will 
occur more frequently than others (such as launch 
grenade). 

Using these observations we propose that the PDF of 
the client to server message lengths could be modeled by 
a number of impulse functions spanning a short interval 
where each impulse function represents a commonly 
occurring set of actions. We see that the PDF for Quake 
3 client to server traffic shown in Figure 3 matches this 
very well, with a number of impulse functions 
distributed between 50 and 70 bytes.  
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Figure 3. Probability Density Function of Client to server message length 
measured at the server for Quake 3 

V.SERVER TO CLIENT MESSAGE LENGTH 

A. Two Player Game 
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Figure 4. Empirically obtained PDF of the two-player game message length 
for Quake 3 during active game-play 

We now consider server to client packet lengths. We 
can make a qualitative prediction as to the general shape 
of the PDF for multi-player games. Propagating details 
about game-state where players have interacted (shot at 
each other) will require more data than where players 
have not interacted. Interactions will not occur all the 
time. Consequently, we can expect longer messages to 
occur less frequently than shorter messages, giving rise 
to a negatively skewed distribution. 

In Figure 4 we have plotted the empirically obtained 
PDF for Quake 3 of the two-player game packet-length 
from the server to the client. We see that, as predicted, it 
is a skewed distribution.   

We now construct a theoretical model of packet 
length for two player games. To do so, we need to make 
some assumptions as to player behaviour and how the 
game is constructed.  
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First we assume that each player generates messages 
whose PDF is similar to that shown in Figure 3.  

Second we assume that the traffic generated by each 
player is independent of other players. That is, we are 
assuming a homogeneous player population. Although 
this is obviously open to challenge, we can claim it as a 
starting point for our analysis and modify it in further 
refinements.  

Third, we assume that the server holds the definitive 
copy of the game. That is, a player may attempt to carry 
out an action, but that action (for a variety of reasons) 
may not succeed. Consequently, we would expect the 
server to send back to each client information as to what 
actions the server has recorded the client as having 
carried out since the last update. We assume this can be 
modeled by a s PDF similar to that shown in Figure 3.  

Fourth we assume that information is sent to each 
player about the other player’s most recent action. 
Obviously for players to interact they need to know 
something about the other player’s  location and 
behaviour. However, the rise of so-called “wall hacks” 
has meant that modern FPS games no longer send full 
details of other player’s behaviour to all players. (A “wall 
hack” occurs where a player cheats by using non-
standard client software to interrogate the full game-state 
to identify the location of players who should otherwise 
be invisible. An example is where a player is hiding 
behind a closed door [2]). Consequently, modern FPS 
games analyse each player’s field-of-view and transmit 
only information that the player is legitimately able to 
use.  

Using these assumptions we can construct a model of 
server to client packet length for the two player game. 
We propose that the variable length part of packets from 
the server to the client are made up of three code-words: 
a code-word describing the action of the first player, a 
code-word describing the action of the second player, 
and a code-word generated by the server describing 
consequences of player actions, such as explosions, 
player health points and similar. 

The first code-word describes the success or 
otherwise of the actions the player has transmitted to the 
server since the server last sent it a copy of the game-
state. In modern FPS games there is not necessarily a 
one-to-one correspondence between the number of 
packets sent by the client to the server and the server to 
the client. The default in Quake 3 is for the client to send 
an update every 20 milliseconds and for the server to 
send an update every 50 milliseconds. Consequently, the 
client needs to be informed of whether or not its 
requested actions have succeeded. We propose modeling 
this with the PDF of the client to server traffic. 

The second code-word describes the actions of the 
other player. Again, we assume that an approximation to 
the PDF of length of this code-word is the client to 
server PDF. However, the effect of limiting the field-of-
view of the players will be to negatively skew this PDF. 
Depending on the game map, each player will, at times, 
receive little or no information about the other player. 
Consequently, the code-word describing the other 
player’s action will have an average shorter length than 

the code-word describing the actions sent to the server 
by the other client. In other words, the distribution will 
be skewed. However, as a simplifying assumption we 
ignore this skewing and assume we can model the 
information in the second code-word by the same PDF 
used to model the first code-word. A consequence of this 
assumption is that our model may under-estimate the 
number of small packets and over-estimate the number 
of long packets. 

Finally there is the server generated code-word 
specifying the consequences of player actions. This 
would include such events as explosions, grenade 
trajectories and similar. We would expect the length of 
code-words describing events generated by the server as 
a result of player actions to have a negatively skewed 
distribution for the following reasons. The first is as a 
consequence of efficient coding. If events require the 
same amount of information to describe then, when an 
efficient coding scheme is used, the most commonly 
occurring events are given the shortest code-word, 
naturally causing a skewed distribution [19]. Also, 
events requiring large amounts of information to report 
to the client (such as explosions) occur less frequently 
than events requiring little information to report (such as 
changes in player position). Consequently, we propose 
that the code-word lengths generated by the server as a 
consequence of player actions can be modeled with a 
skewed distribution. In the analysis that follows we will 
model the server generated code-word lengths with an 
exponential distribution.  

Before we begin the analysis we need to note that all 
packets to and from the server have a fixed header length 
of approximately 48 bytes. In the analysis that follows 
we ignore this header.  

We formalize our analysis as follows. Denote the 
random variable describing the length of the variable 
part of the message length from the server to the client 
for a two-person game by X. We propose that X is the 
sum of the lengths of three code-words: C1, C2 and C3. 
C1 is the code-word containing the information as to 
what the server has determined is the client’s action 
since the last update from the server. C2 contains 
information as to what the other client has done since the 
last update. C3 is the code-word describing the server 
generated actions. 

Denote the random variable describing the variable 
part of the client to server message length by V. The 
PDF of V is empirically derived and, for the Quake 3 
trials, is shown in Figure 3. We use V to describe the 
length of both C1 and C2. Denote the random variable 
describing the length of C3 by Z. Using the assumptions 
outlined above, it follows that: 

X = V+V+Z (1) 

The PDF of the sum of continuous random variables 
is given by their convolution [3]. If we denote the PDF 
of X, V and Z by fX, fV  and fZ respectively, then the PDF 
of X is: 
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ZVVX ffff ∗∗=  (2) 

where * denotes convolution.  

We can also identify some other relationships 
between X and Z. In particular, since the expectation of 
the sum of random variables is the sum of expectation of 
each random variable [3], then from equation 1 the 
expected value of X will be related to V and Z by  

ZVX += 2  (3) 

We have proposed modelling the PDF of Z with an 
exponential distribution. The exponential distribution is 
defined by the single parameter λ where 1/λ is the 
expected value of the random variable [3]. That is: 

VXZ 2
1 −==
λ

 (4) 

So, in summary, we propose that the variable part of 
the two player server to client PDF is made up of three 
code-words: C1 comprising the server’s determination of 
what the recipient player has done since the last update, 
C2 comprising information the recipient player is 
allowed to know of the actions of the other player since 
the last update, and C3 generated by the server and 
comprising consequences of actions and interactions 
between the two players. We assume that the length of 
C1 can be modeled by V. We assume that the length of 
C2 can also be modeled by V. But in making this 
assumption we have assumed that field-of-view 
restrictions have a negligible effect on the length of C2. 
Finally we assume that the length of C3 can be 
approximated by a negative exponential of the form: 

t
Z ef λλ −=  (5) 

In the next two sections we compare the predictions 
derived from this analysis with Quake 3 and Unreal 
Tournament statistics. 

In the next two sections we compare the predictions 
derived from this analysis with Quake 3 and Unreal 
Tournament statistics. 

B. Modeling the Quake 3 Two Player Game 

We now use the analysis in the previous section to 
predict the PDF of the Quake 3 two player game.  

We need to specify the value of λ to use in this 
analysis. If we know the mean value of the variable part 
of the packet length for the two player game (that is, X ) 
then we can use it to determine Z  through equation 4. In 
the Quake 3 trials X  is approximately 47 bytes and V   
is approximately 11 bytes. Consequently, using equation 
4, Z  is approximately 25 bytes. So the value of l that we 
will use is 1/25.  

At first glance it might appear that we are assuming 
the result (X) that we are setting out to find. However, 
we are not doing so. Our theoretical model proposes that 

an exponential distribution might be suitable for 
modelling Z. We have made use of equation 1 to attempt 
to determine what exponential distribution might be 
suitable. Also, we have made no assumptions regarding 
the PDF of X, the determination of which is our main 
goal. 

So we propose that: 

25

25/t

Z

e
f

−

=  (6) 

Using equation 2 we can now determine values for fX. 
The results are shown in Figure 5 along with the 
empirically derived PDF (denoted by EPDF).  

The agreement between the PDF derived from our 
theoretical modelling and the captured statistics is very 
good. We have made a number of simplifying 
assumptions in this analysis about player behaviour and 
the consequences of field-of-view restrictions. Even so 
we see good agreement between our model and the 
empirically derived model for Quake 3. This gives us 
some confidence that our assumptions are reasonable. 
However, it is interesting to note that the theoretical 
model predicts more longer packets and fewer shorter 
packets than were observed in the empirical model. As 
noted earlier this is consistent with our approximating 
the PDF of the length of C2 with V. Taking into account 
the field-of-view constraints that modern FPS games 
impose, it might be more accurate to model the length of 
C2 with a skewed version of V. However, the difference 
is also consistent with the Exponential distribution 
overestimating the length of C3. Modeling the length of 
the code-words C1, C2 and C3 is an area for future 
research. 

In the empirically obtained data, there is a large spike 
at 48 bytes. This appears to be caused by a keep-alive 
message transmitted when players become idle. Since 
we are interested in the traffic generated by active 
periods of play, these are not included in the plots. 

We can quantify how good a match fx and EPDF are 
by using the Kolmogorov-Smirnov test (K-S). The K-S 
test is used to test whether two sample data sets come 
from the same distribution, without the distribution 
needing to be specified [17]. The range of packet sizes 
used in the analysis is 1 to 300. 

Table 1. K-S test for two player games 

Maximum 
value of 

|F0(X) - Sn(X)| 

Maximum value of |F0(X) - Sn(X)| for 
level of significance 

 0.20 0.15 

0.0545 0.0617 0.0658 

 

From the test we see that we can accept the 
hypothesis that the predicted and observed statistics are 
from the same distribution to a very high level of 
significance. 
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Figure 5. Predicted (fx) and observed (EPDF) two-player game message 
length PDFs for Quake 3 during active game-play 

C.Modeling the Unreal Tournament Two Player Game 

We now compare the Unreal Tournament statistics 
from our game trials with predictions from the above 
analysis. First we need to know V. From the Unreal 
Tournament game trials, the PDF of V is shown in 
Figure 6. 
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Figure 6. Probability Density Function of Client to server message length 
measured at the server for Unreal Tournament 

 
The next step is to obtain the average packet length   

for the two player game. In this case it is 42. 
Consequently, we model the length of the server 
generated code word by  

42

42/t

Z

e
f

−

=   (7) 

Using the same analysis as before the empirically 
derived (EPDF) and predicted (fx) PDFs are shown in 
Figure 7. 

0

0.005

0.01

0.015

0.02

0.025

0.03

0 100 200 300 400

Packet length (bytes)

EPDF

fx

 

Figure 7. Predicted (fx) and observed (EPDF) two-player game message 
length PDFs for Unreal Tournament during active game-play 

Once again we see good agreement between the 
empirically derived and predicted models. However, 
there is clearly much more complexity in the empirical 
data for Unreal Tournament than there is for Quake 3. 
We can determine how good a match the two 
distributions are by using the K-S test. Details of the test 
are shown in Table 2. For this data set the sample size is 
500.  

From the K-S test we can see that we have excellent 
agreement between the two distributions. 

 

Table 2. K-S test for Unreal Tournament two player games 

Maximum 
value of 

|F0(X) - Sn(X)| 

Maximum value of F0(X) - Sn(X) for 
level of significance 

 0.20 0.15 

0.0333 0.0478 0.05098 

 

D.Games With More Than Two Players 

We now present an analysis of packet length for 
games with more than two players. To carry out this 
analysis we use the same assumptions we made in 
analyzing the two-player game. In particular, we assume 
that player behaviour is homogeneous in that player 
actions can be described by the same random variable V, 
regardless of the number of players.  

Since game-state is made up of the aggregate 
behaviour of players and code-words generated by the 
server as a consequence of player behaviour, we would 
expect the average message length to increase as the 
number of players increases. If we assume players are 
homogenous in their game-play then as the number of 
players increases the information that makes up the 
game-state can also be expected to increase linearly. 
Figure 8 shows the mean packet length for two, four, six 
and eight player games derived from statistics collected 
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from our Quake 3 trials. As predicted we see that the 
mean of the packet length increases linearly. 
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Figure 8. Mean packet length Quake 3 

We can also predict the PDF of packet length for 
larger numbers of players. We know the PDF of a two 
player game. We now use it to predict the PDF of games 
with more than two players. The PDF of a two player 
game gives information about the behavior of each 
player in isolation and of their interactions. If we assume 
that most interactions (battles) remain between two 
players and occur at approximately the same rate for 
each player regardless of the individual player and the 
number of players (our homogeneity assumption), then 
we can construct a probability model of games with 
more than two players in the same way that we 
constructed a probability model for the two player game. 
Again we denote the variable part of the message length 
of a two player game by the random variable X and its 
PDF by fX . As before we assume player behavior 
homogeneity. In particular, we assume that each player 
engages in the same number of battles regardless of the 
number of players, and so contributes at the same rate to 
server generated code-words. Using these assumptions, 
the message length of a four player game will be X + X, 
that of a six player game X + X + X and that of an eight 
player game X + X + X + X and so on. Also, since the 
PDF of the sum of two or more random variables is the 
convolution of their PDFs, the PDF of four, six and eight 
player games is respectively: 

XXXX ffff *gameplayer four == +      (8)
 

XXXXXX fffff **gameplayer six == ++      (9) 

XXXXXXXX ffffff ∗∗∗== +++rgameeightplaye (10) 

where * denotes convolution. 

Figure 9, Figure 10 and Figure 11 show the predicted 
(fx) and empirically derived PDFs (EPDF) of four, six 
and eight player games respectively from the Quake 3 
trials, while Figure 12 shows the same results for the 
four player Unreal Tournament game. Once again we 
see excellent agreement between the predictions of our 
model and the statistics collected from the Quake 3 and 
Unreal Tournament trials. 
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Figure 9. Predicted (fx) and observed (EPDF) four-player game message 
length PDFs for Quake 3 during active game-play 
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Figure 10. Predicted (fx) and observed (EPDF) six-player game message 
length PDFs for Quake 3 during active game-play 
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Figure 11. Predicted (fx) and observed (EPDF) eight-player game message 
length PDFs for Quake 3 during active game-play 
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Figure 12. Predicted (fx) and observed (EPDF) four-player game message 
length PDFs for Unreal Tournament during active game-play 

Again we can use the K-S test to quantify the 
agreement between the predicted and empirically 
derived distributions [17]. The range of the variable 
parts of the packet sizes for the four-player, six-player 
and eight player Quake 3 games are, respectively 250, 
350 and 450 bytes. The details of the test for levels of 
significance at 0.2 and 0.15 are shown in Table 3. From 
the table, we can see that for the four and six player 
games, we can accept the hypothesis that the predicted 
and observed statistics are from the same distribution to 
a very high level of significance. For the eight player 
game, the level of significance is lower, but we can still 
accept that the two data sets come from the same 
distribution. Table 4 shows the same analysis for the 
four player Unreal Tournament game. The K-S test 
shows that we can accept that the two data sets come 
from the same distribution to a high level of 
significance. 

Table 3. K-S test for Quake 3 four, six and eight player 
games 

Number 
of 
Players 

Maximum 
value of 

|F0(X) - Sn(X)| 

Maximum value of F0(X) - 
Sn(X) for level of 
significance 

  0.20 0.15 

4 0.0435 0.0676 0.0721 

6 0.0525 0.0572 0.0609 

8 0.0513 0.0478 0.0537 

Table 4. K-S test for Unreal Tournament four player game 

Number 
of 
Players 

Maximum 
value of 

|F0(X) - Sn(X)| 

Maximum value of F0(X) - 
Sn(X) for level of 
significance 

  0.20 0.15 

4 0.0435 0.0474 0.0505 

 

Our model of server to client message sizes enabled 
us to make a number of predictions about packet length 
distributions. It predicted that the distribution would be 
negatively skewed. It predicted that the mean length of 
the messages would increase linearly as the number of 
players increased. Using simplifying assumptions as to 
player homogeneity and field-of-view restrictions, it 
showed how the PDF of message length for a two player 
game could be derived from the client to server PDF. 
Finally it showed how the PDF of message length for 
games with more players could be derived from the PDF 
of a two player game. All these predictions are well 
supported by the data from both Quake 3 and Unreal 
Tournament trials.  

However, despite the generally excellent agreement 
there is some evidence that the assumptions of player 
homogeneity and field-of-view limitations might be less 
valid for larger numbers of players. Agreement between 
the predicted and observed packet lengths for the eight 
player game, while still very good, is not as good as for 
the games with smaller numbers of players. The 
empirical data has fewer shorter packets and more longer 
packets than our model predicts. This would be 
consistent with one or both of the homogeneity or field-
of-view assumptions breaking down. As the number of 
players increases, proportionally more battles are likely 
to occur. Also as the number of players increases, 
restrictions on field-of-view are likely to occur more 
often. Understanding how the assumptions of player 
homogeneity and field-of-view break down and their 
effect on game traffic are additional areas for future 
research. 

We can make a number of observations about game 
traffic based on this analysis. The first is that the same 
analysis can be successfully applied to two FPS games 
with different development histories.  

The second is that aggregate traffic generated by the 
server will increase according to the square of the 
number of players. In the absence of multicast there is a 
single virtual connection to each player. As shown in 
Figure 8 the length of the packet containing the game 
state increases linearly as the number of players 
increases. So the total traffic delivered by the server 
increases according to the square of the number of 
players.  

The third is that since the packet length for larger 
numbers of players can be described as a multiple of the 
random variable describing the two player game we 
would expect (from the Central Limit Theorem) the 
packet length distribution to trend towards a Normal 
distribution [3].  

Finally, we see no evidence of anything likely to 
produce fractal behaviour in traffic rates, which is in 
agreement with the observations made in [10]. 

VI.    CONCLUSION  

The main contribution of this paper is that it puts the 
large body of empirically derived game traffic models 
onto a firm theoretical foundation. Our theoretical model 
of the Interarrival time and packet size of traffic to and 
from the server has predicted results that agree well with 
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the empirical data from our Quake 3 and Unreal 
Tournament trials. However, it is important to note that 
this paper is not an attempt to explain traffic generated 
by those particular games. Rather we have attempted to 
predict what traffic a generic FPS game is likely to 
produce and used traffic traces of Quake 3 and Unreal 
Tournament to test our predictions. Our concern is with 
understanding the general characteristics of FPS game 
traffic, rather than understanding any particular game. 
Our ultimate goal is to be able to produce game traffic 
models that we can trust for use in network simulations. 
We need to know what can and cannot be generalized 
about the empirical models. The work in this paper has 
given use some insights into how game traffic is 
constructed and so given us some confidence in judging 
what we can and cannot generalize about the empirical 
models. 

At the start of this paper we posed two questions 
about the empirical models of game traffic that have 
been developed over the past few years: “Can they be 
generalized?” and “Are they scalable?” 

We began to answer these questions by proposing a 
number of criteria that Internet-based FPS games would 
probably need to meet. We then made a number of 
predictions as to the characteristics of the traffic such a 
protocol would generate and formulated these as a 
theoretical traffic model. Finally, we compared our 
theoretical model with empirical data captured from 
controlled laboratory-based game trials. We have seen 
excellent agreement between the predictions of the 
theoretical model and the empirically derived model. 

Our analysis began by modeling message interarrival 
time. We then analysed message length PDFs. We 
showed how server to client message lengths for a two 
player game could be modeled, and demonstrated how to 
predict message lengths for games with more than two 
players. Despite having to make some simplifying 
assumptions, our analysis agreed very well with the 
empirical data. It showed that there are some quite 
simple relationships between client to server traffic, 
server to client traffic for two player games, and server 
to client traffic for games with larger numbers of 
players. 

This approach to modelling game traffic opens up a 
number of research areas. We have made a number of 
assumptions regarding protocol design and player 
behaviour. Since predictions based upon them agree very 
well with empirically obtained data this would seem to 
provide strong evidence that they are reasonable. 
However, further work in verifying them or showing in 
what situations they are invalid needs to be done. In 
particular the assumptions of player homogeneity need 
to be investigated. How valid is the assumption of player 
homogeneity and what are the effects of it breaking 
down?  

In our analysis of the two player game we have made 
simplifying assumptions about how field-of-view 
restrictions affect the game-state distributed to players. 
While the simplifying assumptions seem to result in a 
good prediction of the Quake 3 and Unreal Tournament 
traffic profiles there is much work to be done in 

identifying if, how, and in what way the assumptions 
fail. For example, how does a map's virtual geography 
interact with field-of-view restrictions influence the 
information transmitted to each client? 

We have analysed packet interarrival times and 
packet lengths as though the distributions are constant 
throughout periods of game-play. Future work should 
investigate how these network characteristics vary with 
time. 

Single-server first person shooters are not the only 
games becoming prevalent on the Internet. Future work 
should consider whether peer-to-peer and multi-server 
games can be analyzed as we have analyzed single-
server games, and whether similar assumptions can be 
formulated for other game styles. 

In this paper we have made a step towards more 
accurately understanding and predicting online first 
person shooter game traffic. We have shown that it has a 
predictable structure and, as a result, we can judge the 
generality and scalability of some of the empirical 
models that have been developed in the past few years. 
Consequently, we can have more confidence in 
simulation and analytical models used to investigate and 
design game traffic systems than would otherwise be the 
case. 
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