
Measuring the Processing Performance of NetSniff

Julie-Anne Bussiere
*
, Jason But

Centre for Advanced Internet Architectures. Technical Report 050823A
Swinburne University of Technology

Melbourne, Australia
julie-anne.bussiere@laposte.net, jbut@swin.edu.au

Abstract- NetSniff is an IP traffic analysis tool currently used
in low traffic scenarios. Before deployment under higher traffic
scenarios, it is important to perform a study into the processing
and live traffic capture performance of NetSniff. In this
technical report we subject NetSniff to a series of processing
performance evaluations in an attempt to determine the
limitations of NetSniff with regard to packet processing rates on
different hardware platforms and configurations.

Keywords- NetSniff, processing performance, Hardware

I. INTRODUCTION

NetSniff is a multi-network-layered real-time traffic
capture and analysis tool developed as part of the ICE

3

project being run out of the Center for Advanced
Internet Architectures (CAIA). The NetSniff tool is
currently deployed in low-bandwidth and low-traffic
scenarios. To gather more useful information, we would
like to deploy it within networks where the number of
aggregate users is higher. Our motivation and goals have
been previously highlighted [1]. In this report we
investigate the raw processing performance of NetSniff
when analysing traffic from a tcpdump capture file on
disk. This anlaysis excludes the effects of live capture
and produces results which are entirely dependent on the
packet processing and analysis rate that the NetSniff
implementation can maintain.

II. DATA COLLECTION

A RULE based multiple virtual host testbed was
constructed [1] which consisted of three machines
running FreeBSD, see Fig. 1. The configuration of these
machines is also descibed here [1]. Once configured, we
can start generating traffic between the jails hosts and
server, and recording it to a series of tcpdump files. We
created 20 jail hosts, with the at unix command, each
jail host was configured to start a preconfigured series of
TCP applications at a predefined time. Each jail was
launched with a lag of a few seconds. All traffic was
recorded on the bridge machine using tcpdump, since
NetSniff requires the entire packet payload to function,
tcpdump is executed with the -s 0 option.

A series of tcpdump files are made, each with a
different number of jails generating concurrent traffic
flows, using multiple jails enable us to have concurrent
flows generated by different hosts with different IP
addresses. Processing performance is analysed by
running NetSniff using the tcpdump capture files rather
than under a live capture scenario.

Fig.1Virtual hosts testbed

Tcpdump capture files were recorded consisting of
concurrent flows from 1, 5, 10, 15 and 20 different
virtual jailed hosts. From these tcpdump files, we can
create other traffic files using the tcpslice [2],
tcprewrite [3] and mergecap [4] tools. Tcpslice can be
used to select a portions of a tcpdump file (eg. Extract
packets between two specified timestamps). Tcprewrite
is part of the tcpreplay tool, it can modify tcpdump files
by, for example, changing IP addresses. mergecap is
part of ethereal tool and can join several tcpdump files
with concurrent timestamps. We use these tools to
generate tcpdump files consisting of flows from more
than 20 different jailed hosts, in our case capture files
with flows from 30, 40 and 60 different hosts. We also
use these tools to extract three minute segments from
each of the original tcpdump file for analysis.

For example, to generate a tcpdump containing flows
from 40 unique hosts, we can:

• Duplicate the tcpdump file for 20 unique hosts, using
tcprewrite to change the IP addresses.

• Use mergecap to merge the original tcpdump file
with the (modified) duplicated one.

In this way we obtain a file with 40 different IP
addresses. However, in the 40 hosts file, each packet has
its "twin" sent at the exact same timestamp. This does
not represent perfectly realistic traffic behavior, but it
allows us to examine the processing performance of
NetSniff under higher traffic conditions. The following
table lists both the size and the number of packets of
each of the generated 3 minute tcpdump files we used in
the following experiments. The table also indicates the
corresponding average bitrate and packets per second
(PPS) of the tcpdump files (as calculated using the
number of bytes and packets in each file and a three
minute duration). These figures can be used to relate
results back to measurements that are more typical when
referring to network traffic.

* Julie-Anne Bussiere performed this work while a visiting research assistant at CAIA in 2005

CAIA Technical Report 050823A August 2005 page 1 of 5

 ...

...

Single FreeBSD PC

 Server
(http, ftp,

ssh,
email..)

FreeBSD
machine
running
tcpdump

Virtual hosts

Number
of hosts

Size
(MB)

Number
of packets

Capture
rate (Mb/s)

Capture
PPS

1 54.9 64535 2.44 358.53

5 271 318761 12.04 1770.89

10 477.4 560611 21.22 3114.51

15 641 751429 28.49 4174.61

20 853.6 1000054 37.94 5555.86

30 1282.2 1502858 56.99 8349.21

40 1707.2 2000108 75.88 11111.71

60 2564 3005716 113.96 16698.42
Table 1 Traffic files characteristics

III.PROCESSING PERFORMANCE RESULTS

This section contains the results we witnessed when
processing the generated tcpdump traffic capture files.

A. Evaluating the “fake” tcpdump file.

We generated some of our tcpdump files, namely
those consisting of 30, 40 and 60 different hosts, by
duplicating other captured traces. We would like to
determine how much of an affect this duplication will
have on our results as opposed to actually capturing
traffic from a certain number of hosts. We cannot
compare against “real” traffic traces with these number
of hosts since we did not generate these files, we can
however duplicate the tcpdump files consisting of 5 and
10 unique hosts to generate “fake” tcpdump files of 10
and 20 hosts respectively.

When comparing the “real” 10 host tcpdump file
with the “fake” 10 host tcpdump file we notice some
interesting results:

• The duplicated tcpdump file takes more user time
(about 15%) to be processed.

• The observed peak process size for the duplicated
trace was smaller, 4572KB as compared to
11988KB. The original unduplicated file (5 hosts)
recorded a peak process size of 4224KB. Only
slightly smaller than the duplicated file.

Similar results are observed when comparing the two
20 host tcpdump files. In this case the duplicated file
has an increased processing user time of 33% while the
peak process size remains correlated to the peak process
size while processing the unduplicated file.

Most of this increased processing time can be
explained by the increased size of the duplicated trace
file as compared to the captured trace file of the same
size, indeed in both tested cases there is approximately
13% more data to be processed in the duplicated files.
This would indicate that the processing rate (MB/s or
PPS) would be relatively correct since the increased user
time would be offset by the larger tcpdump file size.
Further, we must be careful when considering the issue
of process size with the duplicated files as the results
may not be truly indicative.

B. Test Platforms

Each tcpdump file was processed by NetSniff on four
different machines, each with differing configurations
(CPU clock speed and RAM). All machine were running
the FreeBSD v5.3 Operating System. The following
table outlines the details of each machine.

Machine Processor type CPU (GHz) RAM (MB)

Box 1 Pentium 4 2.66 512

Box 2 Pentium 4 2.8 512

Box 3 Celeron 2.4 256

Box 4 Pentium 4 2.66 2048
Table 2 Machines HW configuration

C. Processing bit rate

We determine NetSniff's processing bit rate by
considering the user time required to process a particular
input file, and combining this result with the size of the
input file. By dividing the size (MB and packets) by the
run time of NetSniff, we can obtain a processing rate in
both Mb/s and PPS(packets per second).

The user processing time is obtained with the time
command, which gives real time, user time and system
time. The user time corresponds to the CPU time spent
executing instructions of the calling process, while the
system time is the CPU time spent in the system while
executing tasks on behalf of the calling process. Both
include time spent for children processes.

The results for all tcpdump files on all test platforms
are shown in figure 2. The immediate result is that the
number of concurrent flows, as indicated by the number
of unique hosts, has a strong impact on the processing
rate. When processing a packet, NetSniff needs to
determine to which flow it belongs, and maintain a
database of all open, concurrent flows. As the number
of concurrent flows increases, this lookup process takes
longer. The decrease in processing rates is asymptotic as
the number of hosts increases. The effect of the
duplicated files is negligable.

Fig.2 Processing bit rate versus number of hosts

 The hardware configuration of the test platforms has
a non negligible impact, particularly the processor type.

CAIA Technical Report 050823A August 2005 page 2 of 5

0 10 20 30 40 50 60

20

40

60

80

100

120

140

160

180

200

220

Box1

Box2

Box3

Box4

Number of hosts

M
b

it
/s

The Pentium4 processor can process packets at more
than twice the rate of the Celeron CPU. This could be
due in part to the larger cache present on the Pentium
processors and also to the better internal design of these
CPUs. The system clock speed has a lesser impact as is
witnessed with the 2.8GHz Pentium4 versus the two
2.66GHz machines.

Finally, the amount of system memory appears to
have little, if no, impact at all – witness the comparison
between the two 2.66GHz Pentium4 computers with
differing memory sizes. This could be due to the small
memory footprint required by NetSniff under the test
conditions, we would expect that if the capture device
was performing other tasks then system memory, and in
particular access to the swap space, would have an
impact on the processing rate of NetSniff.

Similar results are observed when plotting the PPS
versus the number of hosts. The processing packet rate
for the fastest test machines decrease from 30000 pps for
1 host to 8450 pps for 60 hosts. The Celeron test
platform processes data at a packet rate of 11750 pps for
1 host to 3950 pps for 60.

D. Processing speed

We define the processing speed as the ratio of the
real recording time (timespan of the timestamps within
the tcpdump file) and the measured processing user
time. When this ratio is greater than 1, then NetSniff is
processing packets at a rate greater than that at which
the packets nominally arrive at the capture point. The
crossover point indicates the maximum rate at which
NetSniff can be expected to capture and process packets
in real time.

These results are plotted in Figure 3, an extra curve is
plotted with an adjusted ratio based on previously
measured results with the duplicated files. The x-axis
indicates the average bitrate of the tcpdump files under
consideration.

Fig.3 Processing speed ratio versus capture bit rate
(logarithmic scale)

The predominant result is that for the Celeron based
test platform the crossover point occurs at about 45Mb/s
while the Pentium4 based machines experience this
point at about 80Mb/s. These figures indicate the fastest

average bitrate at which these test platforms could
capture and process data in real time.

E. CPU usage

We next consider CPU usage while running NetSniff
with each of the input tcpdump files. We use the top
command to obtain information on the process CPU use
and process size at one second intervals. These results
are collated and averaged for the duration of the
NetSniff run time.

Figure 4 shows the mean value of the WCPU
(weighted CPU) variable on each test platform for each
tcpdump file, where WCPU is a decaying average over
up to a minute of previous (real) time and indicates the
CPU resources used by the process.

Fig.4 Processing mean CPU use versus live capture bit
rate for each box

The mean CPU use increases as the amount of
processing performed by NetSniff increases. It can be
argued that for the smaller tcpdump files that processing
time was so quick as to not require the assignment of
excess CPU cycles to the process. When considering the
processing of data at the processing speed crossover
point (~80Mb/s on the Pentium4 platforms), we not that
CPU usage is in the range 80-90%. While this can be
considered high, we would expect that a purpose built
box deployed to capture and analyse traffic would not be
running other concurrent applications.

It should also be noticed that at lower average
capture rates the CPU usage should be downgraded as
our test conditions are performed with NetSniff
processing all packets as quickly as possible rather than
as they arrive. In these instances NetSniff will spend
more time idle waiting for packets to arrive and thus
lower the CPU usage figures.

Figure 5 shows CPU usage weighted by tcpdump file
duration. It is obtained by dividing the CPU usage
percentage by the speed ratio. These results are more
indicative of NetSniff's CPU requirements during live
capture. The points at which CPU usage nears and
exceeds 100% indicates at which data rate we can expect
NetSniff to not be able to process captured packets in
real time (~80Mb/s on Pentium4, ~45Mb/s on Celeron).

CAIA Technical Report 050823A August 2005 page 3 of 5

0 25 50 75 100 125

0.1

1

10

100

Box1

Box2

Box3

Box4

Expected

Capture rate (Mbps)

0 25 50 75 100 125

40

45

50

55

60

65

70

75

80

85

90

95

100

Box 1

Box 2

Box 3

Box 4

 Capture rate (Mbps)

M
e
a
n
 C

PU
 u

se
 (

%
)

Fig.5 CPU usage weighted by time over capture bit
rate

F. Process Size

Another aspect to consider is the process size, or
system memory resources required by NetSniff to
process the packets. Again we can use the top
command to obtain information on the process size at
one second intervals.

Figure 6 shows the mean and peak process sizes
while processing each tcpdump file. As expected, the
results are equal on all test platforms as the same
application (NetSniff) is processing the same datafile. In
all cases where “real” tcpdump files were used – up to
20 hosts – the process size appears to be increasing.
Where the “fake” tcpdump files are used, memory usage
and process size is significantly lower than expected.

An expected curve is plotted using a polynomial
model for process size however it should be noted that:

• There are not enough data points to properly confirm
the polynomial model.

• As the number of hosts increase the bitrates get
extremely high, since all data was captured on a Fast
Ethernet (100Mb/s) card, these figures may not be
reliable.

Fig.6 Process size versus number of hosts

Even so, the witnessed memory use and process size
falls within the range of the amount of system memory
that most modern computers have installed, and that a
recommendation of 512MB or 1GB on the capture
machine would ensure that enough system memory is
available to minimise the use of system swap space.

G. Anonymisation impact

NetSniff provides three different anonymisation
algorithms [5]. These algorithms are used to protect the
privacy of the network users whose data is being
collected. NetSniff was executed with the default
anonymisation algorithm (tcpdpriv – as implemented by
the NetSniff developers), the cryptopan mode and the
NullIP mode to determine its effect on the processing
rate that NetSniff can achieve.

The results for NullIP and tcpdpriv style
anonymisation indicate that on the Pentium4 test
platforms, processing user time increases by on average
1.3% when anonymising traffic while the Celeron based
platform experienced an increase in the user time of
about 2%. CPU usage and mean process size are not
significantly affected by anonymisation. However, when
considering anonymisation using the cryptopan mode
[5], we noticed a significant increase in the user
processing time.

IV. CONCLUSION AND FUTURE WORK

In this paper we have run NetSniff to process a
number of different tcpdump capture files on a variety of
different hardware platforms. The results can be used as
indicative of the raw packet processing performance of
NetSniff without regard to live packet capture issues.
We generated the tcpdump files by running real
networked applications on a small network testbed
running numerous virtual workstations. The result is that
“real” traffic was generated in a controlled scenario
while using minimal resources.

The resultant files were then trimmed to a certain
size and in some cases duplicated to obtain tcpdump
files containing flows from numerous different hosts.
The summary of our results are:

• Processing performance decreases as the number of
active concurrent flows increases.

• The CPU type has a significant impact on processing
performance with a Pentium4 based system being
able to process data more than twice as quickly as a
Celeron based system.

• CPU clock speed has a minimal impact on processing
performance.

• System memory has a negligable impact on
processing performance.

• The Pentium4 based test platforms were observed to
be able to process captured data at virtual real-time at
average bitrates of up to about 80Mb/s.

• NetSniff data anonymisation has negligable impact
on its processing performance.

CAIA Technical Report 050823A August 2005 page 4 of 5

0 10 20 30 40 50 60

0

20

40

60

80

100

120

140

160

180

200

Peak

Mean

Expected
Mean

Number of hosts

P
ro

ce
ss

 s
iz

e
 (

M
B

)

0 25 50 75 100 125

0
25
50
75

100
125
150
175
200
225
250
275
300
325
350
375
400
425

Box1

Box2

Box3

Box4

Capture bit rate (Mbps)

C
PU

/s
p

e
e
d

 (
%

)

Future research should focus on testing NetSniff
performance in a live capture scenario. Results in this
paper indicate the raw packet processing performance
that NetSniff can achieve without regard to the issues of
live capture. Consideration of this situation will
investigate the performance of packet capture using the
PCAP library that NetSniff employs and, in conjuction
with the results from this paper, would indicate the
expected performance of NetSniff as a tool to capture
and analyse network traffic in real-time.

REFERENCES

[1] J.Bussiere, J.But, "Measuring the performance of Netsniff: Testbed
design".

[2] TCPSlice, http://www.die.net/doc/linux/man/man8/tcpslice.8.html,
accessed June 2005

[3] TCPReplay, http://tcpreplay.sourceforge.net/man/tcprewrite.html,
accessed June 2005

[4] Ethereal, http://www.ethereal.com/docs/man-pages/mergecap.1.html,
accessed June 2005

[5] NetSniff – Anonymisation features and functionality,
http://caia.swin.edu.au/ice/tools/netsniff/anonymisation.html, accessed
June 2005

CAIA Technical Report 050823A August 2005 page 5 of 5

