
CAIA Technical Report 050118A January 2005 page 1 of 5

KUTE – A High Performance Kernel-based UDP
Traffic Engine

Sebastian Zander, David Kennedy, Grenville Armitage
Centre for Advanced Internet Architectures (CAIA). Technical Report 050118A

Swinburne University of Technology
Melbourne, Australia

{szander, dkennedy, garmitage}@swin.edu.au

Abstract—Numerous tools have been developed for

generating artificial traffic flows. These traffic generators are
commonly used for emulating applications, measuring various
network characteristics, or just generating traffic for
performance tests. The performance of many applications, such
as packet measurement tools, heavily depends on the packet rate
of the network traffic under observation. The existing traffic
generators are mostly user space implementations, which limits
their performance, especially in high-speed networks such as
Gigabit Ethernet. In this paper we present and evaluate KUTE, a
UDP packet generator and receiver which runs entirely in the
Linux kernel. We compare KUTE with a similar user space tool
named RUDE/CRUDE and find that KUTE is able to send and
receive much higher packet rates, produces more accurate inter-
packet gaps at the sender, and more accurately measures inter-
arrival times at the receiver.

I. INTRODUCTION
A number of tools have been developed for

generating artificial traffic flows. These tools are mainly
used for the emulation of application traffic, and for
testing and measurement purposes. Some possible usage
scenarios are:

� Emulating the traffic of real applications when it is
too difficult or infeasible to use real applications

� Measuring network characteristics such as delay,
loss and jitter

� Testing and evaluating the performance of
applications such as servers, traffic monitors and
meters

The existing tools are mostly implemented in user
space, which limits their performance. We focus on the
following two performance aspects: packet throughput,
and inter-packet time accuracy (jitter). We refer to the
inter-packet time as inter-packet gaps (sender) and inter-
arrival times (receiver).

For any kind of performance tests it is desirable to
maximize the number of packets that can be sent and
received. User space programs can only send and receive
a small fraction of the theoretical possible packet rate
achievable with small packets, especially if high-speed
interfaces such as Gigabit Ethernet are used. For
measuring network characteristics such as jitter, it is
important that the generator sends with highly accurate
inter-packet gaps, and the receiver measures the inter-

arrival times as precisely as possible. Very accurate
inter-packet gaps are also important for all applications
attempting to emulate real application traffic
(aggregates), something that requires that the inter-
packet times be precisely chosen from the model
distribution.

 To improve the performance of user space tools, we
have implemented a Kernel-based UDP Traffic Engine
(KUTE, pronounced like “cute”) that runs entirely
within the Linux 2.6 kernel. We evaluate the
performance of KUTE using a Netcom Systems
Smartbits 2000 and compare it with the performance of
similar user space tool, Real-time UDP Data Emitter
(RUDE) and Collector for RUDE (CRUDE) [1], and
tcpdump [2]. RUDE/CRUDE is a well-known tool for
sending UDP test traffic across a network. It uses
arbitrary packet rates and can perform delay, loss and
jitter measurements. Our work is focused on UDP
because the maximum achievable packet rate is higher
than that of TCP, and the packet rate can be more
precisely controlled. Furthermore the sending of TCP
streams from within the kernel is far more complicated.

The rest of the paper is organized as follows. Section
II presents related work. Section III describes the
implementation of KUTE. Section IV evaluates the
performance and compares the results with the two other
tools. Section V concludes and outlines future work.

II. RELATED WORK
Many tools for traffic generation exist and it is not

possible to give a comprehensive overview in this paper.
There are a number of places that provide a taxonomy
and information about existing tools e.g. [3], [4] and [5].
We compare the performance of our tool against a
similar user space application called RUDE/CRUDE [1].
We also compare the KUTE receiver against the popular
network monitoring tool tcpdump [2].

To our best knowledge there are few tools that
perform kernel-based traffic generation. The pktgen
module in the Linux kernel [6] can be used to send
multiple UDP flows over Ethernet. The click project
developed a kernel-based UDP sender (udpgen) and
receiver (udpcount) for Linux 2.2 [7] that can be used to
send multiple UDP flows and measure packet inter-
arrival times.

CAIA Technical Report 050118A January 2005 page 2 of 5

III. IMPLEMENTATION
KUTE [8] was initially based on the work of the click

project. However, we have introduced substantial
improvements in the sender and receiver routines, ported
the code to Linux 2.6 and added more features. KUTE
consists of two separate kernel modules for Linux 2.6 –
the sender and the receiver. This section provides an
overview of their functionality and implementation.

A.Sender
The KUTE sender is activated by loading the kernel

module (e.g. insmod or modprobe). It sends packets for a
specified duration. The sender computes the inter-packet
gap based on the specified sending rate (packets per
second), and actively waits for the right time to send a
packet. The timing is based on the CPU cycle counter
[9], therefore the implementation may not work on other
than Intel or AMD CPUs. The advantage of using the
cycle counter over the gettimeofday function is a higher
resolution (nanoseconds on 1+GHz machines whereas
gettimeofday is limited to microseconds) and a higher
performance when reading the current time. (An older
version of KUTE uses the gettimeofday instead of the
cycle counter and is therefore platform independent.) To
avoid other processes from interfering with the sender, it
basically blocks the kernel for the duration of the traffic
flow. After the sending is complete, the kernel module
has to be removed (e.g. rmmod).

In contrast to pktgen [6], KUTE can run on any link
layer and the user does not need to specifiy link layer
(L2) header information. This is achieved by
constructing a UDP packet with an empty L2 header.
The packet is then sent by injecting it into the kernel’s
output function that will properly set the L2 header. A
copy of the packet with the L2 header generated by the
kernel is kept and all subsequent packets are directly
injected into the network interface driver to achieve
maximum performance.

The following parameters can be specified: source
and destination IP address, source and destination ports,
packet rate, packet length, duration of the flow, packet
payload, Time To Live (TTL), Type of Service (ToS),
and whether UDP checksums and IP idenfication field
should be used. The sender can create a number of
different flows at the same time (up to four). The
different flows can have different packet rates, but must
have the same duration. At the moment, the sender can
not be controlled from userspace while it is running.

B.Receiver
The KUTE receiver is activated by loading the kernel

module (e.g. insmod or modprobe). It creates a packet
inter-arrival histogram that can be accessed via the
Linux proc file system. Furthermore, when the module is
unloaded, it outputs the necessary information to
compute the mean and standard deviation of the
distribution into the kernel log file (/var/log/messages).
Because the Linux kernel does not provide floting point
arithmetic and we have not implemented floating point
functions in our module it cannot compute the statistics
directly.

The KUTE receiver can filter the traffic based on
source IP address and port number, or it can simply
measure all incoming UDP traffic. There are two
different receiver routines and one must be selected at
compile time. The first routine hooks into the Linux
kernel UDP packet handler and can be used without any
kernel modifications. After receiving a packet KUTE
passes it on to the kernel’s default UDP handler. The
second alternative is faster but requires the kernel to be
modified with a patch. A small code fragment has been
written, that when inserted into the Linux kernel,
immeditaly passes the packet to KUTE after it is
received from the network interface driver (this is fast
mode). In this mode, all packets received by KUTE are
not passed to the usual kernel receive functions.
Therefore it is essential to setup a proper filter, otherwise
all UDP packets destined for some process on the
receiver will never arrive. KUTE can receive packets
destined to other machines if the network interface is
switched into promiscuous mode (e.g. using ifconfig).

For the inter-arrival time measurement, KUTE uses
the timestamps already present in the socket kernel
buffer (skb) of each packet. The accuracy of this
timestamp depends on whether it was generated in
hardware or by the Linux kernel (the latter is the usual
case with standard network interface cards). In addition
to the filter, the following parameters can be specified:
the number of histogram bins, and the size of the bins in
micro seconds. At the moment the receiver can not be
controlled from userspace while it is running and must
be restarted in order to change parameters.

IV.EXPERIMENTAL RESULTS
This section describes our testbed and the

experiments we have done.

A.Tesbed Setup
We use two test setups. In the first setup a Linux PC

is directly connected to a Smartbits via Fast Ethernet. In
this setup we measure the maxmium sender and receiver
packet rates over Fast Ethernet, and the accuraccy of the
receiver inter-arrival time measurements, as we know
the Smartbits inter-packet gap is very precise.
Unfortunately we cannot use the Smartbits to measure
the sender inter-packet gap accuraccy because our
Smartbits model can only measure the inter-arrival times
of 2048 consecutive packets, which is not enough for a
meaningful analysis. At high packet rates 2048 packets
represent only a very short time period (e.g. about 20ms
at 100kpps) and we would risk overlooking any effects
that may occur on larger timescales. Also measuring
only a small number of packets would potentially
increase the risk of biased results (e.g. RUDE generates
some strange inter-packet gaps shortly after starting it).

In the second setup we connect two Linux PCs via
Gigabit Ethernet. We measure the maximum sender and
receiver packet rates over Gigabit Ethernet, and the
inter-gap accuraccy using KUTE as the receiver.

CAIA Technical Report 050118A January 2005 page 3 of 5

Smartbits

Traffic generator PC Traffic capture PC

Traffic capture PC

Fast Ethernet
(100Mbps)

Gigabit
Ethernet

a)

b)

Figure 1: Testbed setup a) with one PC and Smartbits (Fast Ethernet)

and b) with two PCs (Gigabit Ethernet)

Our Linux PCs are 2.4GHz machines with 256MB of
RAM running Linux 2.6.4. Both have Intel 82540EM
Gigabit Ethernet Controllers. Because Gigabit Ethernet
cards perform interrupt bundling (also called interrupt
batching or mitigation), which greatly influences the
sender and receiver performance, we perform different
measurements with different bundling parameters,
including bundling turned off. For the tcpdump tests we
have installed the MMAP version of libpcap [10] and
tuned it, setting the number of ring buffer frames to
8000.

In all tests we send UDP packets of 64byte size
including the Ethernet header. The packets are destined
for the receiver because CRUDE can not operate in
promiscuous mode (although tcpdump and KUTE can).
A packet flow duration of 30 seconds is used. This
duration seems to be very short but we performed a
number of experiments using a duration of 5 minutes
and found no significant difference. Therefore we use
the shorter time interval because it makes the
measurements faster and reduces the disk space needed
for the CRUDE and tcpdump result files. We also
compared multiple 30 second measurements made with
the same settings and found the resulting differences to
be very small e.g. different measurements for the
standard deviation of the inter-packet times differ less
than 0.1us.

B.Maximum Sender Packet Rate
To test the maximum sender rate on Fast Ethernet,

we gradually increase the sending rate for RUDE and
KUTE, measure the time needed for the sending, and
count the packets received by the Smartbits. When
evaluating KUTE with Gigabit Ethernet, we
unfortunately have no receiver that is fast enough to
receive all packets. In this case we can only ‘verify’ the
sending rate by measuring the sending time and
checking the network interface transmit counter on the
sender (e.g. using ifconfig). Table 1 shows the
approximate maximum packet rates that can be sent.

Table 1: Maximum sender packet rates

Sender Max Packet Rate [kpps]
 No bundling Max 10,000 I/s
RUDE ~48 ~85
KUTE ~122 ~122

(Fast Ethernet)
KUTE
(Gig Ethernet)

~415 ~415

The results show that KUTE clearly outperforms

RUDE. KUTE is able to send with a much higher packet
rate, especially when interrupt bundling is disabled.
KUTE is not affected by the interrupt bundling setting.

C.Maximum Receiver Packet Rate
To test the maximum receiver rate, we use the

Smartbits (Fast Ethernet) or KUTE (Gigabit Ethernet) as
sender. We gradually increase the sender packet rate
until the receiver does not receive all packets anymore.
The rate at this point is the approximate maximum
packet rate. We measure the maximum rate with
different settings for the interrupt bundling (no bundling,
and a limit of 10,000 interrrupts per second). CRUDE is
run with per-packet output (timestamps) disabled and all
tcpdump output is redirected to /dev/null to maximize
their performance. The KUTE receiver is run in fast
mode mode, which means the packets are received via
the hook patched into the kernel. Table 2 shows the
approximate maximum packet rates that can be received.

Table 2: Maximum receiver packet rates

Receiver Max Packet Rate [kpps]
 No bundling Max 10,000 I/s
CRUDE ~46 ~90
tcpdump ~50 ~110
KUTE
(Fast Ethernet)

~148
(max line rate)

~148
(max line rate)

KUTE
(Gig Ethernet)

~220 ~220

The table shows that KUTE can receive much more

packets than CRUDE or tcpdump, especially when
interrupt bundling is disabled. For Fast Ethernet, KUTE
is able to receive the maximum rate the Smartbits can
send, while for Gigabit Ethernet it is still far away from
the maximum theoretical packet rate but much better
than CRUDE or tcpdump. KUTE is unaffected by the
interrupt bundling setting. (The maximum packet rates
for CRUDE and tcpdump are very similar when the
interface is switched to Gigabit Ethernet.)

D.Receiver Inter-arrivalTime Accuracy
Now we evaluate how accurate the different receivers

can measure inter-arrival times. We use the Smartbits to
send a packet flow with very precise inter-packet gaps.
We disable interrrupt bundling. We measure the inter-
arrival time mean and standard deviation (standard error)
depending on the packet rate. The maxmimum packet
rate used for CRUDE is much lower than the rate in
Table 2 because in this experiment we need per-packet
information (timestamps).

CAIA Technical Report 050118A January 2005 page 4 of 5

Figure 2 presents the standard deviation of the inter-
arrival times. The mean of the inter-arrival times always
had the expected value (e.g. 40us for 25kpps). The
standard deviation for CRUDE is much higher than for
tcpdump or KUTE because CRUDE timestamps the
packets in user space, whereas both other tools use the
same timestamp generated in the Linux kernel shortly
after the packet has been received from the device
driver. KUTE is slightly better than tcpdump, probably
because it uses less CPU time and therefore creates less
jitter on the receiver. We conclude that at low packet
rates no kernel-based receiver is required but tcpdump
cannot handle high packet rates (see section IV.C).
When interrupt bundling is enabled, the standard
deviation is much higher because the inter-arrival time
distribution is completely different. Instead of one peak
at the mean value (e.g. 40us for 25kpps), there are two
peaks: one close to 0us, and one at 100us (the time
between interrupts). Therefore we do not provide these
results here.

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160

Packet Rate [kpps]

S
td

d
ev

 [
u

s]

Smartbits->tcpdump

Smartbits->KUTE rcv

Smartbits->CRUDE

Figure 2: Receiver inter-arrival time accuracy using the Smartbits as
sender

Figure 3 shows the inter-arrival time distributions of
packets generated by the Smartbits with a rate of 25kpps
and measured by the different receivers (25kpps is the
maximum CRUDE can handle on our test machine). The
distribution of tcpdump and KUTE are very similar (on
top of each other) whereas the distribution measured
with CRUDE is much wider and hence the standard
deviation is much larger.

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80

Inter-arrival time [us]

C
ou

n
t

[k
p

ac
ke

ts
]

tcpdump

CRUDE

KUTE rcv

Figure 3: Inter-arrival time distributions for Smartbits sending with
25kpps as measured by KUTE, tcpdump and CRUDE

E.Sender Inter-packet Gap Accuracy
Finally we test the sending inter-packet gap

accuraccy of RUDE and the KUTE sender with a KUTE

receiver. We cannot use the Smartbits as the receiver,
because our particular unit can only measure the inter-
arrival times of 2048 packets (which is not enough for a
meaningful analysis). This means we cannot effectively
measure the sender accuraccy and can only compare the
accuraccy achieved by RUDE and KUTE at particular
packet rates, presuming that the accuraccy of the KUTE
receiver is constant over time. We also estimate the
standard error of the sender ssender using the following
equation:

2 2
sender total receivers s s= − (1)

where stotal is the standard error using the sender and
KUTE as receiver and sreceiver is the standard error of the
KUTE receiver assuming the standard error of the
Smartbits is very small. We also assume that the sender
and receiver process are completely independent. In all
experiments the mean value of the inter-arrival times
always had the expected value.

Figure 4 shows that the accuraccy of KUTE is higher,
even at much higher packet rates. Taking into account
the inaccuraccy of the receiver (see section IV.D), the
KUTE sender is reasonably accurate, as the standard
deviation increases only slightly when using the KUTE
sender instead of the Smartbits. The standard error
estimate for the KUTE sender is about 2us.

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250

Packet Rate [kpps]

S
td

d
ev

 [
us

]

KUTE snd->KUTE rcv
RUDE->KUTE rcv
KUTE snd (est.)
RUDE (est.)

Figure 4: Sender inter-packet gap accuraccy using KUTE as receiver

Figure 5 shows the inter-arrival time distributions
measured by the KUTE receiver at 25kpps for all
senders. The distribution generated by the KUTE sender
is very close to that from the Smartbits. Again RUDE
has a much wider distribution indicating a higher
standard deviation.

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80

Inter-arrival time [us]

C
o

u
n

t
[k

p
ac

ke
ts

]

Smartbits

KUTE snd

RUDE

Figure 5: Inter-arrival distributions measured with KUTE for the
different senders at 25kpps: Smartbits, KUTE and RUDE

CAIA Technical Report 050118A January 2005 page 5 of 5

Figure 6 shows the quotient of standard deviation and
mean (relative error) for KUTE used as sender and
receiver. The relative error increases with increasing
packet rate and the difference between the Smartbits and
the KUTE sender is fairly small. The estimated relative
standard error of the KUTE sender has a similar value as
the KUTE receiver until 70kpps. Then the sender
relative error stays almost constant while the receiver
relative error increases.

0
0.1

0.2
0.3

0.4
0.5
0.6

0.7
0.8

0.9
1

0 50 100 150 200 250
Packet Rate [kpps]

S
td

d
ev

 /
M

ea
n

KUTE snd->KUTE rcv

Smartbits->KUTE rcv

KUTE snd (est.)

Figure 6: Standard deviation divided by mean using KUTE as
receiver and Smartbits and KUTE as sender

V.CONCLUSIONS AND FUTURE WORK
In this paper we presented a performance

analysis of KUTE, a kernel-based tool for sending and
receiving UDP packets. KUTE has been implemented to
send and receive higher packet rates, especially when
using high-speed network interfaces (e.g. Gigabit
Ethernet), and to handle inter-packet times more
accurately than traditional user space tools. Our
evaluation shows that KUTE clearly outperforms a

similar user space tool in all measurements.
In the future we plan to extend the KUTE

implementation with a better interface towards user
space, allowing runtime control. We also plan to extend
the functionality of the sender by supporting more
complex flow definitions and different inter-arrival time
distributions. The sender should also optionally keep
track of its accuracy, producing a histogram of the
packet departure times. This would allow for better
accuracy measurements without a Smartbits, but would
also decrease the performance of the sender. It would be
interesting to perform similar measurements running
user space applications on real-time Linux (RTLinux).
This combination could be an alternative to using kernel-
based tools.

REFERENCES
[1] RUDE/CRUDE: http://rude.sourceforge.net/ (as of November 2004)
[2] tcpdump: http://www.tcpdump.org (as of November 2004)
[3] CAIDA: http://www.caida.org/tools (as of November 2004)
[4] IP measurement: http://www.ip-measurement.org (as of November

2004)
[5] Traffic Generator Overview:

http://www.grid.unina.it/software/ITG/link.php (as of November 2004)
[6] pktgen: http://www.kernel.org (as of November 2004)
[7] click project: http://www.pdos.lcs.mit.edu/click/ (as of November 2004)
[8] KUTE: http://caia.swin.edu.au/genius/tools/kute-1.0.tar.gz
[9] CPU cycle counter: e.g. http://www.scl.ameslab.gov/Projects/Rabbit/ (as

of November 2004)
[10] MMAP libpcap: http://public.lanl.gov/cpw/ (as of November 2004)

