
Limitations of Existing MPEG-1 Ciphers for
Streaming Video

Jason But
Centre for Advanced Internet Architectures. Technical Report 040429A

Swinburne University of Technology
Melbourne, Australia

jbut@swin.edu.au

Abstract-Copyright protection is one of the many aspects of
implementing a commercially successful video streaming service
and encryption of content is one means through which
Copyright can be protected. MPEG-1 is one of the many video
compression techniques used in streaming video and a number
of MPEG-1 ciphers have been proposed in the past. These
ciphers were primarily designed with the idea of public storage
of MPEG-1 content. In this paper I consider the suitability of
these ciphers in a streaming video context. The conclusion is
that none of the existing ciphers are suitable for use in streaming
MPEG-1 video and that a new cipher is required for this
purpose.

Keywords- MPEG Encryption, Streaming Video, Video-on-
Demand, Copyright Protection

I. INTRODUCTION

Protection of digital content delivered by a streaming
video service is one of numerous issues that must be
addressed for such a service to be a commercial success.
In a previous paper I considered the requirements of a
cipher to function in a distributed streaming server
environment.

A distributed server design involves the use of
distributed streaming servers acting as a cache providing
video streaming services to the local area. These
services will include advanced functionality such as
indexed and high-speed playback modes [1, 2].

In this paper I examine a number of techniques that
could be used to protect streaming MPEG-1 video and
apply them to the required criteria. The meeting of these
criteria by an existing cipher allows the use of that
cipher in an existing streaming server environment.

This paper shows that none of the existing ciphers
and encryption techniques meet all of the criteria of a
cipher for use in streaming video. As such, the
conclusion is that another cipher that does meet this
criteria needs to be developed.

II. CIPHER REQUIREMENTS

Ideally, the cipher should function separately from
the streaming server implementation [1, 3]. This would
provide the following benefits:

� The server platform can be chosen based on cost,
features provided and implementation rather than on
the security features. This allows competition
between server manufacturers.

� We are not tied to one server implementation, further
encouraging competition.

� Security is not implemented by streaming server
developers but rather programmers who understand
encryption.

� Future streaming video products should be supported.
� Existing streaming server products can be utilised

without making any changes.
� Encrypted video can be cached and ultimately

delivered by untrusted parties as long as the key
exchange is secure.
For a cipher to function within all streaming server

environments, it must possess the following properties:
� Successful installation onto a range of existing

streaming video servers. The encrypted bitstream
must appear to be a valid MPEG-1 bitstream to the
implementation of the streaming server [3].

� The encrypted bitstream must be able to be streamed
from the server in all playback modes (eg. pause,
indexed, high-speed playback) provided in a
streaming video environment [3].

� Resynchronise such that decryption and playback is
successful in all supported playback modes [3].

� Is secure against attack [3].
� The solution must be scalable and must not limit the

maximum number of concurrent streams that a server
can deliver.
The key points are twofold. First, that the encrypted

bitstream should appear as a valid MPEG-1 bitstream
such that existing streaming server implementations will
accept and deliver the content in all supported playback
modes. Second, that the received bitstream be able to be
correctly decrypted prior to playback, regardless of the
playback mode in which the data was delivered [1, 3].

III. EXISTING MPEG-1 CIPHERS

A range of different existing approaches are
considered and found to be not suitable for protection of
streaming video. These include using existing secure
network protocols, encrypting the entire bitstream at the
application layer, and a range of existing MPEG-1
Partial Encryption Ciphers. Partial Encryption involves
the protection of segments of the original bitstream
while other portions are left as plaintext.

CAIA Technical Report 040429A April 2004 page 1 of 6

The deficiencies of these ciphers are summarised in
Table 1. The obvious conclusion being that a suitable
cipher for encryption of streaming MPEG-1 video does
not exist.

A. Network and Transport Layer Encryption
One approach uses existing network protocols such

as IPSec or Secure Sockets Layer (SSL) to encrypt the
video stream. This minimises any system design
requirements as encryption is handled separately to
streaming server infrastructure.

IPSec is a Network Layer protocol [4, 5] that
provides secure communications between any two IP
enabled stations, typically used to provide Virtual
Private Networks over a public network infrastructure.

In a streaming video, IPSec would be installed either
on the streaming server or its gateway router. All traffic
is encrypted as it leaves the site and decrypted at the
client computer. IPSec is an extension of the IP
Protocol and IPSec datagrams can be routed by any IP
Router on the network.

While IPSec is compatibile with all existing IP based
software [4, 6], it is unsuitable for use with streaming
video. IPSec is processor intensive, leading to
scalability problems and limiting the maximum number
of concurrent streams that can be supported [7].

Also, the original video must be stored as plaintext
on the server as the server does not know about the
encryption. This makes the server a larger target for
attack to steal the content. The same problem exists at
the client where decrypted packets are easily captured
from the IP Stack.

This is typically not an issue since IPSec was
designed for secure communications between trusted
parties. However, a streaming video service requires
distribution of content from one trusted party (the
central server) to an untrusted party (the client),
potentially via a second untrusted party (the streaming
server operator).

SSL is a Transport Layer protocol [8] that provides
secure communications between two applications
running on IP enabled stations. As a TCP Protocol

extension, SSL datagrams can be routed by any IP
Router on the network. SSL is typically used to provide
secure web services such as Internet banking.

SSL is also unsuitable for streaming video. Like
IPSec, SSL suffers the same scalability and security
problems. Further, SSL is usually implemented as part
of the application, requiring existing streaming video
applications to be modified. Also, SSL provides secure
TCP-like communications, while many streaming
servers use UDP – or related protocols like RTP. This
requires the further modification of existing systems to
support TCP based streaming [6, 8].

B. Full Encryption
Another approach is to encrypt the entire bitstream

[7]. This can be performed in two ways. The first is
similar in scope to IPSec and SSL based systems. Video
is stored as plaintext on the streaming server, which then
encrypts the entire bitstream during delivery. The
drawbacks are similar to IPSec and SSL based systems –
processing requirements for real-time encryption of
multiple streams and potential for server attack. Further,
it requires modifications to existing streaming servers to
ensure that the video is streamed in encrypted form [7,
9].

The second approach encrypts all video prior to
installation on streaming servers. This minimises both
processing requirements on the server and guards
against theft from the server. However, the encrypted
bitstreams do not conform to the MPEG-1 bitstream
specifications and cannot be streamed by existing
streaming servers. Also, these servers could not provide
different playback modes unless further modifications
were made to store information about specific index
points within the bitstream. This is required as some
decoding of the bitstream must be performed by the
server in order to provide this functionality [10-12].

C. SECMPEG
The SECMPEG cipher was designed by Meyer and

Gadegast [13]. The cipher applies one of four
algorithms (Encrypt all headers; Encrypt all headers and
DC co-efficients of I-Macroblocks; Encrypt all I-Frames
and I-Macroblocks in P and B Frames; Encrypt entire

CAIA Technical Report 040429A April 2004 page 2 of 6

Table 1: Summary of Suitability of MPEG-1 Encryption Techniques with Streaming Video

Cipher

IPSec N/A
� �

N/A N/A N/A N/A N/A N/A

SSL N/A
� �

N/A N/A N/A N/A N/A N/A

Full Encryption N/A
� �

N/A N/A N/A N/A N/A N/A

SECMPEG
� � � � � � � � �

Zig-Zag Permutation Algorithm
� � � � � � � � �

Video Encryption Algorithm
� � � � �

Unknown Unknown
� �

� � � � � � � � �

� � � � �
Unknown Unknown

� �

A Unique Cipher
� � � � � � � � �

Multi-Layer Encryption
� � � � �

Unknown Unknown
� �

Selective Macroblock Encryption
� � � � � � � � �

AEGIS
� � � � �

Unknown Unknown
� �

Encrypted
bitstream can
be stored on

Server

Scalable to
support multiple

concurrent
streams

No changes
required to

Server
implementation

Encrypted
bitstream can
be served in

Indexed
Playback modes

Encrypted
bitstream can
be served in
High-Speed

Playback modes

Cipher can be
resynchronised
at client during

Indexed
Playback

Cipher can be
resynchronised
at client during

High-Speed
Playback

Cipher can be
efficiently

implemented
externally to the

MPEG-1
decoder

implementation

Cipher is secure
against attack

Video Encryption Algorithm –
Number 2
Frequency Domain Scrambling
Algorithm

bitstream). The selected data is encrypted using either
the DES or RSA ciphers. The headers are then modified
to include extra information to allow correct decryption
at a later stage.

SECMPEG is not suitable for streaming video. For
all four algorithms, the changes made to the headers [13]
make them non-compliant to the MPEG-1 bitstream
format and as such they cannot be streamed by existing
Streaming Server products.

Even if the encrypted bitstream could be delivered by
existing streaming server products, there is also the
inability to index into the bitstream due to the non-
resynchronisation of the cipher employed. SECMPEG
encrypted video can only be decrypted from beginning
to end at normal playback speed. This further precludes
the implementation of indexed or high-speed playback
modes [10].

D. Zig-Zag Permutation Algorithm
In an MPEG-1 video stream, each block of 8x8

pixels in a Macroblock is encoded using a Discrete
Cosine Transform (DCT) and processed in a zig-zag
pattern. Tang [14] proposed a cipher which uses a
random permutation list to map the 8x8 block rather
than the fixed zig-zag pattern. The algorithm also splits
the DC co-efficient to hide its relatively large value
amongst smaller AC co-efficients. The same
permutation list is applied to all Macroblocks.

Some modifications are suggested by the authors,
one involves the pseudo-random selection of one of two
permutation lists via a cryptographically secure random
bit generator, the other groups blocks of 8 DC co-
efficients and applies the DES cipher [14].

Since the cipher only modifies the Macroblock
contents, the bitstream can be processed by a streaming
server and all playback modes are supported. During
the decryption process, resynchronisation of the cipher
in the indexed and high-speed playback modes is not
required because each frame is encrypted with the same
permutation list. Resynchronisation becomes an issue if
the permutation list is pseudo-randomly selected – the
random bit generator must be resynchronised.

This cipher is not secure against a known plaintext
attack. By comparing the decoded DCT co-efficients,
they can be re-ordered and the permutation list retrieved.
The list can then be applied to the remainder of the
sequence to retrieve all data. The same procedure is also
valid if two permutation lists are used – apply both
patterns and select the most likely of the two
Macroblocks – typically the Macroblock with larger DC
and low order AC co-efficients. The cipher is also
vulnerable to a ciphertext only attack as described by
Qiao [7, 15].

Tang [14] proposes a decoder with a built-in cipher
module. This allows the random permutation list to be
applied after the co-efficients have been extracted from
the bitstream, but before they are decoded into
individual pixel values. CPU resource requirements are
low as re-organising DCT co-efficients is a simple task.
However, incorporating the cipher into the decoder

precludes the use of third-party MPEG-1 decoders and
requires continuous maintenance of the software base to
implement both the decoder and the cipher together.

E. Video Encryption Algorithm
Qiao and Nahrstedt [16] propose the Video

Encryption Algorithm (VEA). VEA encrypts individual
frames – all data at the Picture Layer within the Video
Stream is selected for encryption.

The Picture Layer is encrypted by:
� First sub-dividing data into blocks of an even number

of bytes. Each block is randomly divided into two
lists of equal length.

� The two lists are XORed to form a third list.
� The encrypted block is constructed from the third list

and the second list encrypted using a cipher such as
DES.
Decryption involves the decryption of the second list

which is then XORed with the third list to retrieve the
original first list. The original plaintext stream is then
reconstructed.

The Picture Layer bitstream format is modified by
VEA, replaced with a new header block that contains
information about the number and length of Slices
encoded within the Picture. This procedure shortens
rather than lengthens the bitstream [16].

VEA is secure, a statistical analysis shows that the
second list can be considered as a unique one-time pad
that is used to encrypt the first list. The ciphertext data
consists of the one-time pad ciphertext and an encrypted
copy of the one-time pad. VEA is as secure as the
cipher used to protect the second list [16].

VEA is not suitable for streaming video, the format
of the Picture Layer has been modified. High-speed
playback modes cannot be implemented since individual
I-Frames cannot be extracted from the bitstream.

Real-time decryption is also a problem. As the
bitstream will be longer in length following decryption.
Extra processor and memory requirements during
decryption complicate software implementation.

F. Video Encryption Algorithm – Number 2
Shi and Bhargava [17] propose a different algorithm,

also called Video Encryption Algorithm (VEA). In its
initial incarnation [17], the cipher encrypts the sign bits
of all AC and DC co-efficients within the bitstream.
Each bit of a binary key is XORed with the sign bits.
When the key bits are exhausted, the key is reused. The
authors suggest regular resynchronisation at the
beginning of each Group Of Pictures (GOP) by re-
starting encryption from the beginning of the key. The
cipher was later modified [18, 19] to also encrypt the
sign bits of motion vectors.

Since the encrypted bitstream does not modify the
contents of the MPEG-1 headers, the encrypted
bitstream can be successfully streamed in all playback
modes on existing servers.

CAIA Technical Report 040429A April 2004 page 3 of 6

In both algorithms the key is used directly in the
XOR operation, although it is possible to use a random
bit generator. Regardless of the cryptographic strength
of the random bit generator, the cipher is not secure and
is susceptible to a known plaintext attack. The attack
extracts the corresponding sign bits from the encrypted
and plaintext streams, and determines the pseudo-
random bit sequence. Since the same sequence is reused
for each GOP, it can be used to decrypt the entire
bitstream.

As for the Zig-Zag Permutation Cipher [14], it is
imperative that the decryption of a VEA encrypted
bitstream is performed within the MPEG-1 decoder.
CPU utilisation is efficient as decryption involves only a
simple XOR for each coefficient. This precludes using a
third-party MPEG-1 decoder.

G. Frequency Domain Scrambling Algorithm
The Frequency Domain Scrambling Cipher proposed

by Zeng and Lei [20, 21] operates on information
encoded within the Macroblock layer, in particular the
DCT co-efficients of the Macroblocks. This cipher is
similar to the VEA cipher proposed by Shi and
Bhargava [19], where sign bits of co-efficients are
encrypted. The cipher is strengthened by also
considering the following measures:

� Encrypting refinement bits within coefficients –
The refinement, or least significant bits of the
coefficients tend to have an even distribution and can
be encrypted without impacting on the compression
rate.

� Block Shuffling – Divide the bitstream into a series
of blocks which are shuffled using a changing table.
As only the positions of Macroblocks within the
stream are changed, compression remains high.

� Block Rotation – Macroblocks are rotated pseudo-
randomly. The actual pixel values are unchanged
and the compression ratio is not affected.
The cipher is secure [20, 21]. Also, as modifications

to the bitstream are performed on Macroblock data,
header information used by streaming servers to provide
indexed and high-speed streaming remains present and
therefore the encrypted bitstream can be streamed.

The Frequency Domain Scrambling Cipher is more
reliant on being implemented as part of the decoder than
other ciphers [20, 21]. The cipher complexity means
that CPU efficiency is only obtained if decryption
occurs within the decoding cycle. This precludes the
use of third-party MPEG-1 decoders.

H. A Unique Cipher
Griwodz et al [22] propose a unique algorithm with

regard to protection of distributed video. A Poisson
process is used to select bytes from the original plaintext
stream at pseudo-random intervals. These bytes are
extracted to form a new bitstream which is then
encrypted. The corresponding bytes from the original
bitstream are then corrupted, using nearby bytes from
the bitstream to calculate a statistically similar value.
This corrupted bitstream can then be freely distributed.

Decryption is performed through the purchase of the
new bitstream containing the un-corrupted bytes, which
are then inserted back into the corrupted bitstream.

Experimentation by the authors show that only 1% of
the original bitstream need be corrupted to render the
file unplayable. They envisage the corrupted bitstream
being freely available on local caches while the smaller,
encrypted bitstream is delivered from a central server.

This system functions well in a download now and
play later scenario, but will not function in a streaming
video implementation. There is no telling which bytes
will be corrupted and there is the potential that the
corrupted bitstream cannot be successfully installed or
streamed from existing streaming servers.

There is also the issue of indexed and high-speed
playback. To insert the un-corrupted bytes back into the
bitstream, the current bitstream position must be known.
This position, while readily available when decoding
from disk, is usually not available during streaming.
Indexed and high-speed playback modes ensure that the
bitstream position does not change incrementally and
thus makes it a unknown value. Locating the corrupted
bytes in the bitstream, and therefore decryption and
playback, becomes impossible.

I. Multi-Layer Encryption
Tosun and Feng [23, 24] propose a modification on

the VEA cipher developed by Qiao and Narhstedt. This
cipher looks at the 64 DCT co-efficients and breaks
them into three separate layers. The Base Layer consists
of the lowest frequency (most significant) co-efficients,
the Middle Layer consists of the mid-range frequency
co-efficients, and the Enhancement Layer consists of the
highest frequency co-efficients.

The cipher assumes separate transmission of each
layer using different transport characteristics, with
guaranteed delivery of the Base Layer, high probability
of delivery of the Middle Layer, while the Enhancement
Layer gets the lowest priority. The three streams are
recombined at the client prior to decoding and display.

The VEA Cipher is applied to the Base and Middle
Layers only, the Enhancement Layer (containing
minimal information on the actual content) is delivered
as plaintext. The concept enables secure delivery of
content over a network that potentially cannot cope with
the required throughput – lower layers can be decrypted
and displayed independently of higher layers, resulting
in poorer quality video rather than discontinuities in
playback.

The Multi-Layered Cipher is also not suitable for
streaming video. It suffers from the same issues as the
original VEA algorithm. Also, not all streaming server
products offer Layered Streaming and those that do will
not necessarily use the same approach to do so.

J. Selective Macroblock Encryption
Alattar, Al-Regib and Al-Semari [25, 26] propose a

set of four ciphers which operate on the Macroblocks
within the MPEG-1 video stream:

CAIA Technical Report 040429A April 2004 page 4 of 6

1. Encrypt I-Macroblocks and headers for predicted
Macroblocks

2. Encrypt every nth I-Macroblock
3. Encrypt every nth I-Macroblock and headers for

predicted Macroblocks
4. Encrypt every nth I-Macroblock and every nth header

for predicted Macroblocks
For each method, selected data is encrypted using

DES. The authors recommend resetting the count for
determining the nth block at the start of each slice as well
as periodically changing the DES key. The first option
ensures correct selection of Macroblocks within a slice,
important if data is lost. A dropped Macroblock results
in incorrect decryption until the count is reset. The
second recommendation makes attacking the cipher
more complex as the DES key is constantly changed.

The authors show that the encrypted video content is
not viewable. Given that the DES Cipher is provably
secure against all but a Brute Force Attack [9], coupled
with regular changing of the DES key, makes attacking
this cipher computationally infeasible.

The Selective Macroblock Cipher is not suitable for
streaming video. While servers could stream the
encrypted bitstream in indexed and high-speed playback
modes, resynchronisation of the DES cipher in these
playback modes is not possible as we cannot determine
which frame is currently being played back.

K. AEGIS Algorithm
Spanos and Maples [27] propose an algorithm in

which the entire contents of the I-Frame and the Video
Sequence Headers are encrypted. This algorithm
employs major changes to the format of the bitstream as
extra information is inserted to locate start and end
points. The resultant bitstream cannot be streamed from
existing Streaming Server products due to the non-
conformance to the MPEG-1 bitstream format. Also,
while the authors suggest the encryption of I-Frames
only will secure the entire video, others [7] have shown
that it is also necessary to consider encryption of P and
B-Frames. AEGIS is not suitable for streaming video –
it is not compatible with existing streaming server
products and does not totally protect the encoded
content.

IV. CONCLUSIONS

The protection is streaming video is an important
aspect of a streaming video implementation. Encryption
is one means through which this could be achieved,
another is watermarking of content. When considering
encryption of streaming video, it is important that it be
compatible with existing streaming video
implementations [1, 3].

This paper explores the range of existing MPEG-1
encryption techniques and examines their suitability for
use with a range of existing streaming video servers.
The conclusion drawn is that none of the existing
approaches are suitable for use in streaming video and
that a new MPEG-1 cipher that meets the requirements
outlined in [3] is required.

ACKNOWLEDGMENTS

The work in this paper has been developed as part of
my PhD studies at Monash University, Melbourne,
Australia.

REFERENCES

[1] But, J., "Implementing Encrypted Streaming Video in a Distributed
Server Environment", Submitted to IEEE Multimedia, April 2004

[2] But, J. and Egan, G., "Designing a Scalable Video On Demand System",
International Conference on Communications, Circuits and Systems
(ICCCAS'02), pp. 559-565

[3] But, J., "Requirements for a Generic MPEG-1 Cipher to Function in an
Existing Streaming Server Emvironment", CAIA Technical Report
040426A, CAIA Swinburne University, Australia, April 2004,
http://caia.swin.edu.au/reports/040426A/CAIA-TR-040426A.pdf

[4] IETF, "Security Architecture for IP", http://www.ietf.org/internet-
drafts/draft-ietf-ipsecrfc2401bis- 01.txt, 1998

[5] IETF, "IP Encapsulating Security Payload (ESP)",
http://www.ietf.org/internet-drafts/draft-ietfipsec- esp-v3-06.txt, 1998

[6] Bozoki, E., "IP Security Protocols", Dr. Dobb's Journal, December,
1999, pp. 42-55.

[7] Qiao, L. and Nahrstedt, K., "Comparison of MPEG Encryption
Algorithms", Computers and Graphics, Vol. 22, 1998, pp. 437-448.

[8] Freier, A. O., Karlton, P., and Kocher, P. C., "The SSL Protocol, Version
3.0 - Internet Draft", http://wp.netscape.com/eng/ssl3/ssl-toc.html, 1996

[9] Schneier, B., Applied Cryptography: Protocols, Algorithms, and Source
Code in C, John Wiley & Sons ISBN 0-471-11709-9.

[10] Lin, C.-W., Zhou, J., Youn, J. and Sun, M.-T., "MPEG Video Streaming
with VCR Functionality", IEEE Transactions on Circuits and Systems for
Video Technology, vol. 11 no. 3, 2001, pp. 415-425.

[11] Gemmell, J., Vin, H. M., Kandlur, D. D., Rangan, P. V. and Rowe, L. A.,
"Multimedia Storage Servers: A Tutorial", Computer, May 1995, pp. 40-
49.

[12] Anderson, D. B., "A Proposed Method for Creating VCR Functions
using MPEG Streams", IEEE 12th International Conference on Data
Engineering, 1996, pp. 380-382

[13] Meyer, J. and Gadegast, F., "Security Mechanisms for Multimedia with
Example MPEG-1 Video", Tech. Uni. of Berlin, 1995

[14] Tang, L., "Methods for Encrypting and Decrypting MPEG Video Data
Efficiently", ACM International Multimedia Conference 96, November
1996, pp. 219-222

[15] Qiao, L., Nahrstedt, K. and Tam, M.-C., "Is MPEG Encryption by using
Random List instead of Zig-Zag order secure?" IEEE International
Symposium on Consumer Electronics, 1997

[16] Qiao, L. and Nahrstedt, K., "A New Algorithm for MPEG Video
Encryption", 1st International Conference on Imaging Science, Systems
and Technology (CISST97), 1997, pp. 21-29

[17] Shi, C. and Bhargava, B., "Light-weight MPEG Video Encryption
Algorithm", Multimedia98, 1998, pp. 55-61

[18] Shi, C. and Bhargava, B., "An Efficient MPEG Video Encryption
Algorithm", 17th IEEE Symposium on Reliable Distributed Systems,
October 1998, pp. 381-386

[19] Shi, C. and Bhargava, B., "A Fast MPEG Video Encryption Algorithm",
ACM Multimedia '98, 1998, pp. 81-88

[20] Zeng, W. and Lei, S., "Efficient Frequency Domain Video Scrambling
for Content Access Control", ACM Multimedia99, 1999, pp. 285-294

[21] Zeng, W., Wen, J. and Severa, M., "Fast Self-Synchronous Content
Scrambling by Spatially Shuffling Codewords of Compressed
Bitstreams", IEEE International Conference on Image Processing, 2002,
pp. 169-172

[22] Griwodz, C., Merkel, O., Dittmann, J. and Steinmetz, R., "Protecting
VoD the Easier Way", ACM Multimedia98, 1998, pp. 21-28

[23] Tosun, A. S. and Feng, W.-C., "Efficient Multi-layer Coding and
Encryption of MPEG Video Streams", IEEE International Computing
Expo, 2000, pp. 119-122

[24] Tosun, A. S. and Feng, W.-C., "A Light-weight Mechanism for Securing
Multi-Layer Video Streams", IEEE International Conference on
Information Technology: Coding and Computing, 2001, pp. 157-161

CAIA Technical Report 040429A April 2004 page 5 of 6

[25] Alattar, A. M. and Al-Regib, G. I., "Evaluation of Selective Encryption
Techniques for Secure Transmission of MPEG Video Bit-Streams", IEEE
Symposium on Circuits and Systems, 1999, pp. 340-343

[26] Alattar, A. M., Al-Regib, G. I. and Al-Semari, S. A., "Improved Selective
Encryption Techniques for Secure Transmission of MPEG Video Bit-

Streams", International Conference on Image Processing, 1999, pp. 256-
260.

[27] Spanos, G. A. and Maples, T. B., "Security for Real-Time MPEG
Compressed Video in Distributed Multimedia Applications", IEEE 15th
Annual International Conference on Computers and Communications,
1996, pp. 72-78

CAIA Technical Report 040429A April 2004 page 6 of 6

