
Inverted Capacity Extended Engineering Experiment

CFTStat: A tool for passive TCP analysis,
statistics and user's web experience gathering.

Claudio Favi1

Centre for Advanced Internet Architectures, Technical Report 040227C
Swinburne University of Technology

Melbourne, Australia

Abstract-This paper documents CFTStat, a passive TCP
analysistool basedon an existing software called Tstat [1]. The
aim of this work is to assessthe current user's web experience
and network characteristics.The global scopeis set by the ICE 3

[2] project in which the data provided by CFTStat will be
simulated in an inverted capacity network.

Keywords- Networks, Traffic Characterization

I. INTRODUCTION

TStat was started as an evolution of tcptrace [3]
created by Shawn Ostermann at Ohio University.
Tcptracewascreatedto analysenetworktracefiles and
outputs information on each TCP connections seen.

TStataddsa few morestatisticsto Tcptracealready
impressiveset of statistics.Insteadof simply recording
values,meansand standarddeviationsof the measured
quantities,TStat also records histogramsrepresenting
the distribution of thesequantitiesduring a specified
period of time. A total of 79 different histogramtypes
are available, comprising both IP and TCP statistics.
They range from classic measuresdirectly available
from packetheaders(e.g., percentageof TCP or UDP
packets, packet length distribution, TCP port
distribution, ...), to advancedmeasures,relatedto TCP
(e.g.,averagecongestionwindow, RTT estimates,out-
of-sequencedata,duplicateddata, ...). A completelog
also keepstrack of all the TCP flow analyzed,and is
useful for post-processingpurpose. This TCP flow
analysisallowsthederivationof novelstatistics,suchas,
for example, the congestion window size, out-of-
sequence segments, duplicated segments, etc.

Our contribution is presentin two areas.First, we
addeda per connectionpacketloss estimatorbasedon
Benko and Veres algorithm [4]. Secondly we added
functionality to analysethe HTTP protocol and parse
“on-the-fly” HTML documents.This was done to be
able extract information on how the users use the
Internet(which pages,how often) andassesshow long
they are waiting for the pages to load.

TStat development is maintained by the
telecommunicationnetworkgroupof the Politecnicodi
Torino.

II. HOW TO USE:

A. Installation

CFTStatis distributedas a patch to TStat and both
canbe found on the ice tools web page[5]. Download
TStat and CFTStat archives from there.

Extract the contents of the CFTStat archive with 

tar zxvf cftstat_v0.93.tgz

A new folder called cftstat_v0.93 is automatically
createdin thecurrentdirectory.CopyTStatarchiveinto
the newly created directory.

mv tstat_v0.92.tgz cftstat_v0.93/

cd cftstat_v0.93

make

cd cftstat

./configure

check the Makefile, then do:

make

make install

You canalsospecifya different installationlocation
by running configure with the –prefix=/new/path option.

B. Measurement scenario

The measurementscenario in which CFTStat is
expectingto work in is presentedin this section.We
define an edgenode to be a point in the network that
“see” all the exchanged packets between one
subnetworkandtherestof thenetwork.Figure2 present
an example of edge node. CFTStat supposesit is
processing traces from an edge node.

An edgenodecanbe setup in at leasttwo different
ways. First this can be achievedby using a bridge
machinewhich is transparentat thenetworklayer level.
Secondlywe canuseport redirectionof someswitching
equipment to redirect the traffic to the analyser machine.

1This work was performed while working for Swinburne University of Technology. Claudio can be contacted at claudio.favi@epfl.ch

CAIA Technical Report 040227C February 2004 page 1 of 4



Notethat tstatdoesNOT do packetcapturefrom the
NIC (Network Interface Card). You'll have to use
tcpdump or some other capturing tool for this. Tstat
supportsseveraldump file formats (tcpdump, snoop,
etherpeek, netmetrix, ns, Dag).

Statisticare collecteddistinguishingbetweenclients
and servers, i.e., host that actively open a connection and
host that replay to the connectionrequest.Also Tstat
identifies internal and externalhosts,i.e., hostslocated
inside or outside the edgenode usedas measurement
point. Thus incoming and outgoing packets/flowsare
identified.

Insteadof dumping single measureddata, for each
measured quantity CFTStat builds a histogram,
collectingthe distribution of that given quantity.Every
15 minutes,it producesa dumpof all the histogramsit
collected.

C. Running CFTStat

First we must create a file that contains the
definitionsof the internalnetworks.The file describing
the internal networks(let's call it intnet.txt) must have
pairsof lines wherethe first line containsan IP address
and the second a netmask. 

For example:

136.186.229.0

255.255.255.0

This describesone internal network. Severalother
similar pair of lines can also be added.

We now havethe choiceto do eithera live analysis
or analyse an already captured traffic trace.

To do a live capturewe mustpipetcpdumpoutputto
CFTStat in the following way:

tcpdump -s0 -w - tcp | tstat -Nintnet.txt -slivetrace stdin

To process an existing trace file:

tstat -Nintnet.txt tracefile.dmp

We create trace files for later analysis with tcpdump:

tcpdump -s0 -w tracefile.dmp tcp

The tracefile canbecompressed,if so CFTStatwill
decompressit on the fly. Note that the -s0 (captureof
theentirepackets)is requiredif we want to analysethe
HTTP web objects interdependencies.Also, with this
option, the dump file size grows particularly fast.

III.THE OUTPUT

In this sectionwe mainly describethe modification
madeto theoriginal TStat.Thoughwe describesomeof
theunmodifiedoutputtheoriginal documentationis still
the reference.

CFTStatcreatesa directory with the namespecified
from the -s switch or if the switch wasnot specifiedit
will usethe tracefile nameextendedwith ".out". In this
new directory it createsanotherdirectory with a name
representingthe dateand time when the first packetof
the trace file has been captured.Example of output
hierarchy:

tracefile.dmp.out/ 

tracefile.dmp.out/15_45_12_Jan_2004.dump.gz.out/

tracefile.dmp.out/15_45_12_Jan_2004.dump.gz.out/log_complete

tracefile.dmp.out/15_45_12_Jan_2004.dump.gz.out/log_nocomplete

tracefile.dmp.out/15_45_1 ... 04.dump.gz.out/log_complete_seglist

tracefile.dmp.out/15_45_12_Jan_2004.dump.gz.out/001/

tracefile.dmp.out/15_45_12_Jan_2004.dump.gz.out/LAST/

tracefile.dmp.out/15_45_12_Jan_2004.dump.gz.out/html_dl

tracefile.dmp.out/15_45_12_Jan_2004.dump.gz.out/html_dep.db

In each of the subdirectories(LAST or 001-999)
many files are created.They representhistogramsof
gathereddata(for each15mintime window). As already
presented,CFTStatmakesa differencebetweeninternal
and external hosts, but also statistics are aggregated
according which host started the connection. Four
different suffixes in the statistics files are used:

a2b: statsaboutpacketsflowing from the initiator of
the connection

b2a: statsaboutpacketsflowing back to the initiator
of the connection

usc: stats about packets going out of the internal
network (Italian: uscente)

ent: statsaboutpacketsenteringthe internalnetwork
(Italian: entrante)

Table 1: File suffixes used in CFTStat and TStat.

ForeachmeasuredquantityTStatbuildsa histogram.
Table 2 describesthe files containing the different
histograms generated.

File Name Description

IP Level:

protocol_* Protocol Used

ip_tos_* Type Of Service

ip_ttl_* Time To Live value

ip_len_* Packet Length 

TCP Level:

tot_time Flow duration

tcp_cl_p_* Flow length Packets

tcp_cl_b_l_* Flow length Bytes [Large bins]

tcp_cl_b_s_* Flow length Bytes [Small bins]

CAIA Technical Report 040227C February 2004 page 2 of 4

Figure 1: Measurement scenario

Network A

Client C

data flow

Point M
Measurement

Network B

Server S



File Name Description

tcp_port_* Port used

tcp_port_syn_* Port used for pure SYN segments only

tcp_opts TCP negotiated options

tcp_mss_* Maximum Segment Size

tcp_cwnd "In flight" number of bytes

tcp_rwnd_* Advertised congestion window estimate

dupb_* Duplicated bytes ["normal" data transfer]

dupb_sf_* Duplicated bytes after closing sequence
[FIN+ACK or RST]

dupb_rwndz_* Duplicated bytes when receiver windows was
announced zero

ooob_* Out Of Order Bursts

ooob_zm_* Out of Order Bursts small bins

ooob_sf_* Out of Order Bursts when closing sequence
already started

ooob_rwndz_* Out of Order Bursts when receiver windows
announced zero

rtt_* Round Trip Time

Other:

addresses IP addresses seen

flow_number Number of flows seen

not_id_p Number of non identified packets

Table 2: CFTStat statistics files

The logcomplete file contains the statistics for all the
individual completed TCP connections. It is at TAB

separated file with a header explaining the meaning of
each column.

The lognocomplete contains the same information as
logcomplete but for the non completed TCP
connections. That is those connections that CFTStat
recorded the beginning of but for some reason weren't
terminated by a normal FIN or a RST (typically
connections ending after the trace finishes).

The logcomplete_seglist contains for each TCP
connection two lines (one for each flow direction) with
some information about the segments (=packets) in the
TCP flow (time when a segment arrived, sequence
number, ip_id value, packet_length). This file also
contains all the data used by the packet loss estimator
algorithm.

We also gather HTTP protocol related statistics.
These are closely related to the web users' perception.
We keep track of the objects transferred from the servers
to the clients. Their size and download time are stored in
plain text in the html_dl file. Dependencies between
objects are computed by parsing the HTML objects and
the resulting list of dependencies is store in hashed
format in the html_dep.db file.

IV.POST PROCESSING TOOLS

This section presents the scripts we wrote to process
CFTStat output. All the post processing scripts are
located in the scripts directory in tstat main folder. You
need Python 2.3[6]to run them.

� aggregate_pktloss: This script computes the
“aggregated” packet loss rate for all the connections
in a specified trace file.

� dltime: This script computes the cumulative download
time of web object that approximates the real user

CAIA Technical Report 040227C February 2004 page 3 of 4

Figure 2: pytstat



wait time. It uses the data stored in the files html_dl
and html_dep.db.

� view_depdb: This script can be used to visualize the
contents of the html_dep.db file described above.

A. Pytstat

Not a post-processing tool per se pytstat is
visualization tool on top of CFTStat. It isn't a full
interface to CFTStat statistic gathering measurements
but rather a tool to visualize when a TCP connection is
made and where the different packets in the connection
are. It also supports creating time-sequence graphs of the
connections. PyTStat is included in CFTStat archive
distribution. It requires Python [6], py-gtk [7],
matplotlib [10] modules and gtk2 [8] libraries installed2.
Figure 2 shows a screenshot of pytstat running the
rectangular boxes represent tcp connections. When
double clicking on a connection a graph representing the
cumulative exchanged data is displayed.

V.HACKING THE CODE

All our modifications to the original TStat have been
confined to a few files. Table 3 presents the main files in
question with their description.

tstat.h This is the main header file containing the
definitions of the different structures used
by CFTStat. Of particular importance is the
struct tcb.

http.c Contains all the HTTP protocol handling
routines and html parsing code

pktloss.c Contains all the packet loss estimation
functions. Includes naive and advanced
packet loss estimator algorithm.

Table 3: Main files added or modified and their
description

Two other two important files are described in table
4.

trace.c Where the tracing for each packet is done and
hooks to the rests of the functionality are
coded (particularly http and pktloss functions
are called from here)

tstat.c Contains the main procedure and declaration
of global variables.

Table 4: Main CFTStat files

VI.FURTHER WORK

We discuss here some of many improvements that
can be added to our code.

On the HTTP protocol handling procedures, a better
html parsing function (using an existing library
possibly)can be implemented. Being able to reorder out
of order segments that are likely to create problems with
the parsing can be useful.

2 On FreeBSD 4.9 install the py-gtk2 package dependencies
should take care of installing the rest.

To be able to extract the information gathered by
CFTStat in a very flexible way, it would be good to be
able to insert that data into a database. This database
would could then be queried in different ways.

A visualization tool such as pytstat can be very
useful when analysing network traces. A more complete
interface to CFTStat output statistics would be the next
step into the development of pytstat. An interesting
project called nprobe [9] seems to lead the way in this
area. Unfortunately the source code for it is not available
at the time of this writing.

VII.CONCLUSION

We presented here CFTStat our modified version of
Tstat. Its prerequisites and output have been explained in
some detail. We showed the main enhancements
implemented and identified some directions in which
this work can continue.

REFERENCES

[1] [tstat] Tstat, "TCP Statistics and analysis Tool" (http://tstat.tlc.polito.it/)
(as of February 2004)

[2] [ice] "Inverted Capacity Extended Engineering Experiment (ICE3)",
Centre for Advanced Internet Architectures, 

[3] [tcptrace] S. Osterman, "TCPTrace, TCP traces analyser"
(http://jarok.cs.ohiou.edu/software/tcptrace/tcptrace.html) (as of February
2004)

[4] [benko]P. Benko and A. Veres, "A Passive Method for Estimation End-
to-End TCP Packet Loss", Proc. IEEE Globecom 2002, Taipei, Taiwan

[5] [ice-tools]http://caia.swin.edu.au/ice/ice-tools.html (as of February 2004)

[6] [Python]Python, "Python Programming Language",
(http://www.python.org) 

[7] [pygtk]PyGTK, "Python bindings for the GTK widget set",
(http://www.daa.com.au/~james/software/pygtk/) (as of February 2004)

[8] [gtk2]GTK 2.x, "The Gimp Toolkit", (http://www.gtk.org/) (as of
February 2004)

[9] [nprobe] A. Moore, J. Hall, C. Kreibich, E. Harris and I. Pratt.
"Architecture of a Network Monitor", In Passive & Active Measurement
Workshop 2003 (PAM2003), Apr. 2003

[10] Matplotlib, "Matlab style python plotting",
http://matplotlib.sourceforge.net/ (as of February 2004)

CAIA Technical Report 040227C February 2004 page 4 of 4


