
Maximising Student Exposure to Unix
Networking using FreeBSD Virtual Hosts

Grenville J. Armitage
Centre for Advanced Internet Architectures. Technical Report 030320A

Swinburne University of Technology
Melbourne, Australia

garmitage@swin.edu.au

Abstract- A RemoteUnix Lab Environment (RULE) is being
developed at Swinburne University of Technology, allowing
students accessto networked unix hosts for their coursework
and researchprojects. This paper describesour first generation
solution using FreeBSD's “jail” functionality to emulate many
FreeBSD hosts on a small handful of physical machines in a
rack. Our primary constraint is to minimise the incremental
infrastructure cost.The student front-end to the unix hostswill
leveragepre-existing Windows-basedPC labs scattered around
campusand inter-connected by a 100Mbit/sec IP network. The
FreeBSD hosts themselvesare mini-ITX motherboards on a
rack in a small room or closet, minimising their impact on
scarce University lab space. This paper will describe our
requirements, trade-offs, available tools, and how specific
FreeBSD features are being utilized to create multiple virtual
hostson eachphysical machine.Our current implementation is
based on FreeBSD 4.7.

Keywords- Teaching, IP, Networking, FreeBSD, Unix, Virtual
Hosts, Students

I. INTRODUCTION

Towardsthe end of 2002 our Telecommunications
andNetworkinggroupfacedthechallengeof providing
more hands-on IP networking experience for our
studentswhile working within the confines of a pre-
existing, strongly Windows-centric environment.We
alreadyhad speciallabs establishedfor componentsof
CCNA, CCNP, and MCSE certifications(a substantial
investmentin CiscoequipmentandMicrosoft Windows-
basedPClabs).Unfortunatelythis providedour students
with a fairly specificexperiencein IP networkingandIP
client/server environments.

We alsowantedour studentsto get their 'handsdirty'
installing and using free, unix-basedserver,client, and
middlebox applications.For example, we wanted to
exposethem to open-sourceweb serverslike Apache
[1], alternativeWindows file serversuchasSamba[2],
DNS servers such as named, web crawlers/indexers, web
proxies,...the list goeson. Not only would our students
learnhow to usetheseapplications,they would be able
to modify and rebuild the applications they were
learning about.

In commonwith many small universitieswe work
with less-than-idealfacilities and funding constraints.
OurexistingPClabsrun Microsoft'sWindowsoperating
system,andare frequentlybookedsolid for classesrun
by a variety of departments.Our plan was to avoid the

additional cost (in time and salary) of re-
imaging/rebootingmachinesbetweenWindows and a
unix systemjust for our IP networkingclasses.Building
adedicatedunix lab (machines,deskspace,seating)was
considered an expensive last-resort.

Our solution is the RemoteUnix Lab Environment
(RULE). RULE providesmultiple networkedunix hosts,
but doesnot requireadditionaldedicatedunix lab space.
The existing campusPC labs are used as terminals
through which studentsaccesstheir assignedRULE
hosts.Becauseaccessis via the campusIP network,
studentscanalso engagein projectwork from homeor
from their laptops via our campus 802.11 network.
RULE itself is housedin a regular 19 inch rack and
tuckedaway in a cornerof a small room, meetingour
goal of minimal additional infrastructure cost (Figure 1).

Themostinterestingandcritical partof RULE is our
use of FreeBSD[3]. It is a robust, well-support and
freely available implentationof unix (making it quite
attractive from a recurring costs perspective).Most
importantly, FreeBSDhas kernel support,through the
“jail” functionality, for instantiating multiple virtual
unix hostson a single PC motherboard.This multiples
thenumberof studentswe cansupportwith a limited set
of physicalhardware(or conversely,FreeBSDallowsus
to keep RULE small and hidden in the corner of a
room). Our first generation of RULE is based on
FreeBSD 4.7 (the version current in late 2002).

The rest of this paper describesthe technological
tradeoffsand solutions we are pursuing to implement
our vision for RULE.

II. THE REMOTE UNIX LAB ENVIRONMENT

RULE needsto simultaneouslymeet the following
goals:

CAIA Technical Report 030320A March 2003 garmitage@swin.edu.au page 1 of 6

Figure 1 Remote Unix Lab Environment accessible from
Windows machines around the campus network

Windows
PC Labs

dial-up users,
other OSes

� Provide studentswith self-directedaccessto open-
source internet applications (e.g. clients, servers,
and/or proxies) that they can compile, install, trial,
and modify/recompile with minial supervision.

� Allows studentsto accessRULE from anywhereon
the campus intranet.

� Protect the rest of the university from student
activities inside the RULE.

� Utilize off-the-shelf componentsand free software
and minimise reliance on closed, commercial
solutions.

We choseanopen-sourceunix platform souserscan
build, run,modify, andrebuildmanypopularanduseful
networked applications without necessarily needing
'administrator'rights and/or commercialcompilersand
debuggers.A Microsoft Windowsenvironmentdoesnot
meetthis goal.Any of theLinux distributions,FreeBSD,
OpenBSD,or NetBSDwould besuitable.We'vechosen
FreeBSD for two reasons. First, FreeBSD's clean
'packages' and 'ports' mechanisms (for installing
applications in pre-compiledand compiled-as-needed
forms) provides studentswith a number of ways to
experiment with hundreds of common networked-
applications.Second,FreeBSD'sfacilities for creating
virtual hosts. (As a small bonus, many application
binariescompiledunder Linux also run directly under
FreeBSD,andmostsuchapplicationscanberecompiled
under FreeBSD if needed.)

Not surprisingly,RULE security is aboutprotecting
the campusnetwork from RULE, ratherthan the other
way around (Figure 2). The RULE firewall (another
FreeBSD machine) allows external clients to initiate
contactwith applications(servers)insideRULE but not
the other way around. For example,a studentmight
deployan Apacheweb serverinside RULE and access
it from their desktopor laptop.For specialprojectsthe
firewall can be re-configured to allow out traffic
originating from within RULE, but only if the
destination is a host within the campus LAN (and
excluding things like our campusweb proxy to the
outsideworld). The last thing we want are 'interesting'
projects on RULE reachingout and annoying people
around the Internet in an uncontrolled manner.

SecureShell (ssh) is the remoteaccessprotocol for
RULE hostsso that student'scommunicationwith their
RULE host(s) are encrypted (including their initial
username/passwordexchange).Most unixes have their
own server and client implementations, and the

OpenSSH consortium [4] has pointers to free and
commercial implementations, including those for
Microsoft Windows. PuTTY [5] is our preferred
Windows SSH client, becauseit works well and the
licensing conditions allow free use in our sort of
environment.We alsousePscp,a companionto PuTTY,
for securefile transfersbetweenhostsusingssh.PuTTY
requiresminimal changesto thedefaultsoftwarecontext
of our Windows-basedcampusPC labs, and is easily
installed by studentswho chooseto use our campus
802.11b network from their personal laptops.

Ssh provides a security wrinkle known as 'port
forwarding'.An ssh login from desktopor laptop to a
RULE host can also be configured to provide one or
moreTCP-over-sshtunnelsfrom the RULE host to the
rest of the campusnetwork. Whether or not this is
tolerabledependson onesgoals.For now we imposeon
students the requirement of responsible use - port
forwardingis a consciousact,andthey will be tracedif
things go hay-wire. Port forwarding is also extermely
useful for supportingX11 clients running on jail hosts.
If the studentruns an X11 serveron their desktopor
laptop, they can use ssh to automaticallytunnel X11
sessionsout from their RULE host to their local X11
server/display.

Givenour limited budget,it is alsoimportantto build
RULE outof commonyet smallcomponents.We cannot
afford to be 'bleedingedge'in our choiceof hardware.
Although RULE beginswith a homogenouscollection
of hardware,over time the initial motherboardswill
becomeunavailableand incrementalrepairswill result
in a heterogenouscollectionof hardware.FreeBSDruns
on a rangeof x86-basedhardware,from old 486-based
machinesup to the latest Pentium 4s, ensuring that
RULE will survive motherboard upgrades and changes.

We havebuilt the first versionof RULE aroundVIA
Technologies'EDEN embeddedsystemprocessor(ESP)
series,specifically the ESP5000 releasedin 2002 [6].
This low-powermotherboardcomesin a mini-ITX form
factor (170mm x 170mm), has an embeddedfanless
500MHz Celeron-equivalentprocessor,can supportup
to 1GB of PC133SDRAM, onboard10/100 Mbit/sec
ethernetinterface,onboardCOM, PS/2, USB, Printer,
VGA, and soundports, two ATA100/66 IDE sockets,
and takes standardATX power. They are also quite
cheap(around$200AUD at theendof 2002).Adding a
power supply, RAM, and hard-drivewas enoughfor a
running system. A CDROM drive is temporarily
attached to the second IDE port when installing
FreeBSD.

Thesmall form factorallowsusto packa numberof
thesedevicesinto limited rack space.While the video,
audio, printer and PS/2 interfacesare unnecessaryfor
RULE applications,we makeuseof the serialports for
consoleserveraccessto eachmotherboard,andtheUSB
portsareusedto powersmall “Alloy NC-05c” Ethernet
hubs[7] that form part of the RULE's internalnetwork
(minimising the wiring and power supply complexity
within therack,Figure3). Our first RULE implemention
usesoneATX supplyper ESP5000,but we hopeto run
two or moremotherboardsfrom a singleATX supplyin
the future to further minimise space requirements.

CAIA Technical Report 030320A March 2003 garmitage@swin.edu.au page 2 of 6

Figure 2 RULE hosts are clustered behind a firewall to
protect the outside world

Host 1 Host 2 Host 3

The RULE firewall protects the outside
network from RULE hosts

Firewall

Campus
LAN

RULE
LAN

Host 4Host 5

III.VIRTUAL HOSTS USING FREEBSD “JAIL”
Virtual FreeBSDhostsare a centralpart of RULE.

We aredevelopinga Jail HostToolkit (JHT) to simplify
the establishmentand managementof multiple virtual
hosts on a single physical motherboard running
FreeBSD4.7. Eachvirtual host hasits own IP address
and can run separateinstancesof most user-space
applications.Each JHT virtual host can have its own
useraccountsandpasswords.If needed,userscaneven
be given 'root' (administrativeuser)accessinside their
ownvirtual hostwithout compromisinganyothervirtual
host.Oncea JHT virtual hosthasbeenconfiguredand
booted, it appearsjust like a regular, IP-accessible
FreeBSD host.

BecauseJHT virtual hostsareimplementedusingthe
FreeBSDkernel'sjail(8) functionality, we refer to
them as jail hosts and the machinein which jail hosts
resideasthe primary host. Jail hostsarereplicasof the
FreeBSD user space environment. Each VIA
Technologies ESP 5000 motherboard is a primary host.

Students are only given access to jail hosts.

What does a jail host look like?

Figure4 attemptsto conveythenotion that, from the
perspectiveof otherpeopleon an IP network, jail hosts
look very similar to regular FreeBSD hosts. If there
existedthreehostson the 192.168.1networkthat could
be ping'ed and otherwiseaccessedover the network,

three jail hostson a single FreeBSD-basedPC would
approximate the same behavior.

A jail host runs its own instancesof ssh and other
remotelogin daemons,hasits own passwordfiles, and
hasits own copyof theFreeBSDfilesystemindependent
of the other jail hostssharingthe underlyingPC.A jail
hostsupportsall conventional,kernel-mediatedTCPand
UDPbasedcommunication.User-spaceapplicationsyou
can run on a regular FreeBSDmachinewill generally
run unchanged inside an equivalent jail host.

However,a jail host doesnot completely replicate
the environment of a regular FreeBSD host. The
limitations primarily relateto the jail host'snetworking
and kernel functionality.
� Networking

� A jail hosthasa singlenetwork interfaceanda
singleIP address(no multi-homing,andno local
routing table access)

� The localhost addressof 127.0.0.1 is silently
mapped to the jail's real IP address

� Socketsboundto a wildcardaddressareactually
bound to the jail's real IP address

� A jail hostcannotget raw accessto thenetwork
interface (e.g. for network sniffing with
tcpdump, building custom UDP frames for
traceroute,sending/receivingICMP packetsfor
ping, etc....)

� Socketscannotbe boundto non-IPv4protocols
(up to andincludingFreeBSD4.7 thereis no jail
support for IPv6)

� Kernel
� File systemscannotbe mountedor unmounted

from within the jail host
� Specialdevicesand/or loadablekernel modules

cannot be added from within a jail host
� Kernel system variables cannot be modified

from within a jail host
� Access to physical devices is seriously

constrained
� Accessto SystemV IPC primitivesareblocked

by default(becausetheir namespaceis common
to all processes,potentially allowing jail host
processesto interfere with each other and
primary host processes).

A jail host provides the usual files and directory
structures(/, /etc, /usr,) andwill happilysupport
applicationsthat can live within the constraintslisted
above. For things like software development (e.g.
compilers,IDEs, etc..) or servers(e.g. web, ftp, DNS,
Samba,etc...) theseconstraintsshouldn'tgenerallybe a
problem. Some applications(e.g. X11 authentication)
need tweaking to handle the fact that localhost
(traditionally 127.0.0.1)is silently mappedto the jail
host's actual IP address.

CAIA Technical Report 030320A March 2003 garmitage@swin.edu.au page 3 of 6

Figure 4 Jail hosts appear like independent hosts on the
network

Figure 3 Powering the ethernet hubs from the USB
ports of RULE hosts simplifies wiring

ATX Supply ATX Supply ATX Supply

ESP5000

Firewall

Alloy 5 port switch

Alloy 5 port switch

ATX Supply ATX Supply

ESP5000 ESP5000

ESP5000 ESP5000

DC power from USB
ports on ESP5000

cat5
ethernet

Host A Host B Host C

Host A Host B Host C
192.168.1.10 192.168.1.11 192.168.1.20

Single FreeBSD PC

A network
with three

hosts

A network
with three
jail hosts

192.168.1.10 192.168.1.11 192.168.1.20

The primary host and its jail hosts

It is important to recognize that jail hosts are not
virtual machines. All jail hosts and their processes run in
a common process space of a single FreeBSD kernel.
This single instance of a FreeBSD kernel mediates
access to shared resources- primarily disk, network, and
general I/O ports.

Figure 5 shows the relationship between jail hosts
and their primary host. The primary host is the FreeBSD
kernel and user space that governs and controls the
environment within which each jail host operates.

Jail host processes are regular processes inside the
primary host's process space, additionally marked as
'jails' defined by the jail's assigned IP address and the
path to the jail's private file space. Processes belonging
to a particular jail host (i.e. forked from another process
inside the jail host) inherit the jail's restricted context (IP
address and private file space). Filesystem accesses by
jail host processes are silently re-interpreted by the
kernel relative to the jail's private file space. Network
access is limited by the kernel to connections relating to
the jail host's specific IP address.

The primary host is assigned multiple IP addresses,
one for itself and an aliases for each jail host. Jail host IP
addresses must belong to one of the subnets to which the
primary host's IP address(es) belong.

Consider Figure 5. The primary host's IP address is
192.168.1.5, and it has aliases on the underlying
network interface for 192.168.1.10, 192.168.1.11, and
192.168.1.20. The latter three IP addreses are assigned
to jail hosts A, B, and C. The primary host has also
allocated three directories as the root of each jail host's
filesystems, /jailrootA, /jailrootB, and
/jailrootC. Each jail host's own FreeBSD
filesystem is replicated under their assigned root
directory.

For example, when a process inside jail host A tries
to access /etc/hosts it will actually be accessing
/jailrootA/etc/hosts. Likewise, a process in
jail host C accessing /usr/local/etc/ will actually
be accessing /jailrootC/usr/local/etc. The
jail host processes are totally unaware of the deception.

Another example, if a process in jail host A tries to
bind() a UDP socket to listen on the wildcard IP
address '*' at port 9000 (*:9000) the actual socket will be

bound to listen on 192.168.1.10:9000. A similar
wildcard bind() on jail host B would have its socket
bound to listen on 192.168.1.11:9000.

These restrictions are enforced by the primary host's
kernel to ensure jail host processes never see (and
cannot access) processes and files outside their
constrained context.

Primary host processes have no such restrictions
(aside from the usual restrictions pertaining to user and
group ID). They can access the entire file system
(including the sub-directories assigned to each jail host),
bind to TCP and UDP sockets with any valid IP address
associated with the primary host (including those
assigned to jail hosts), and are allowed raw socket
access to the underlying network interface(s). Kernel
run-time modifications (loading/unloading modules),
creation of special devices, mounting/unmounting
filesystems, etc, are all performed while logged into the
primary host.

Resource management between jail hosts is not
entirely complete. The kernel does not provide any
specific mechanisms for preventing one jail from
starving other jails of shared diskspace, CPU time, or
network bandwidth. In RULE we enforce disk sharing
by placing each jail host's file system within its own disk
partition. However, CPU time cannot (currently) be
similarly protected. Jail host processes compete for CPU
time with each other, just like any other process inside
the primary host. Network resources can be managed by
using ipfw and dummynet to mediate link bandwidth
consumption to each jail host's IP address.

IV.JAIL HOST TOOLKIT

Jail Host Toolkit (JHT) is a set of scripts for building
a jail host (makejail), preconfiguring a jail host with
various software packages (newjail), booting/killing a
jail host (bootjail and killjail), and re-starting
jail hosts whenever the primary host is rebooted.

Each of our ESP5000 primary hosts has 512MB of
RAM and an 80GB IDE drive, and supports four jail
hosts (in this configuration Figure 3 instantiates 20
distinct FreeBSD hosts for student use). We allocate
16GB of disk space for each jail host and the primary
host. Because JHT assigns each jail host to its own
FreeBSD partition a typical disk layout would look like:
� ad0s1 16GB primary host
� ad0s2a 16GB jail host 1
� ad0s2e 16GB jail host 2
� ad0s2f 16GB jail host 3
� ad0s2g 16GB jail host 4

Slice 1 (the first BIOS partition) is used for the
primary host's own FreeBSD installation. Slice 2 is
given the majority of the disk and further subdivided
into four FreeBSD partitions, one for each jail host.

JHT's makejail looks after compiling and
installing a clean, user-space FreeBSD tree onto each
jail host's disk partition, and mounting this partition into
the primary hosts filesystem. (A default FreeBSD

CAIA Technical Report 030320A March 2003 garmitage@swin.edu.au page 4 of 6

Figure 5 Jail hosts share the Primary host's kernel and
resources

Jail Host A

192.168.1.10 192.168.1.11 192.168.1.20

Primary Host Jail Host B Jail Host C

IP access mediated by kernel

File system access mediated by kernel

192.168.1.5

/, /etc, /usr, /var,
/jailrootA/.. /jailrootB/.. /jailrootC/..

/, /etc, /usr,
/var,

/, /etc, /usr,
/var,

/, /etc, /usr,
/var,

installation takes up around 130MB of the 16GB
available to each jail host.)

In practicemost interestingstudentprojectscan be
achievedinsidejail hostswith 4GBor lessof disk space,
making it quite feasibleto build primary hostsout of
machines having 20GB or smaller drives.

Jail hostsare 'booted'from within the primary host
by causing the jail(8) command to execute an
instanceof /etc/rc andassociatingthis instancewith
the jail host's IP addressand allocated part of the
primary host's filesystem.

For example,to start a jail host whose filesystem
ad0s2ais mountedon /home/jail1,give it the hostname
'jail1' and IP address 192.168.50.1, we would use:
� /usr/sbin/jail /home/jail1 jail1

192.168.50.1 /bin/sh /etc/rc

JHT's bootjail makes sure the jail host's disk
partition is mounted,andthat an appropriateIP address
is aliasedto the primary host'sethernetinterfacebefore
the jail host's/etc/rc is started./etc/rc then spawnsthe
usualFreeBSDdaemonsandstartupprocesses,unaware
that they are confined to the jail's context (in this
example,the file systemunder /home/jail1 and an IP
identity of 192.168.50.1).JHT'skilljail handlesthe
reversetask, running the /etc/shutdownscript inside a
jail host before killing the jail host's processes.

V.DISK-FRIENDLY ACCESS TO FREEBSD PACKAGES

Oncea jail host is running peoplecan login into it
(using ssh) from anywhere on the campus network. They
canpull in newsoftwarepackagesusingftp, fetch,wget
or similar commands.FreeBSD's“pkg_add -r” can be
used to download and install precompiled FreeBSD
packagesover the Internet.However,there'sno way for
users(even the root accounts)to mount CDROMs (or
anyotherfile systems)from insidetheir jail host.On the
face of it this makes it hard for us to give students access
to local copiesof the5000+packagesfreely availableon
the FreeBSD CDROM set.

Our solutionhastwo parts.We NFS-exportcopiesof
theFreeBSDCDROMsfrom theprimaryhost,andthen
NFS mount the exportedCDROM filesystemsmultiple
times back into the primary host'sfile spacesuch that
onecopyappearsin eachjail host'sfilesystem.The nett
effect of theseloop-backmountsis that eachjail host
seestheentireFreeBSDCDROM setin their filesystem,
but no additional hard disk space is consumed.By
exportingthe filesystems“read-only” not eventhe root
userin eachjail canmodify the files in what appearsto
be 'their' copy of the FreeBSD CDROMs.

For example,assumewe have two jail hosts(jail1
and jail2) on the primary host,and the primary host is
exporting the first FreeBSD 4.7 CDROM as
/mnt/freebsd47.The primary host is runningasboth an
NFS serverand NFS client. We want eachjail host to
see this CDROM at /mnt/freebsd47 in their own
filesystems. The solution is:
� NFS Export /mnt/freebsd47 read-only

� mount localhost:/mnt/freebsd47
/home/jail1/mnt/freebsd47

� mount localhost:/mnt/freebsd47
/home/jail2/mnt/freebsd47

Users can now accessFreeBSD packagesunder
/mnt/freebsd47/packages/All in their own jail
host's context.

This techniqueallows RULE to be completelyself-
contained,enabling students to accessthe packages
collections without needing to mount or unmount
physicalCDROMs.(Note that theprimaryhostdoesnot
needphysicalCDROMs either - we usethe 'vn' vnode
driver to createexportablefilesystemsfrom binary ISO
images of the CDROMs.)

JHT'snewjail usestheseloop-backmountsto pre-
install a range of useful tools (e.g. X11 clients and
libraries,acrobatreader,) from the FreeBSDpackages
collection when initializing a jail host recentlycreated
with makejail.

VI.WHAT CAN STUDENTS ACTUALLY DO?

Jail hostsdo imposepracticallimitationson students,
both in what they can do and what they can damage.

Studentscan compile and run any program that
accessesthe network using unix socket() facilities
for conventional TCP or UDP communication.This
includesalmostall client/serverscenarios(suchashttp,
ftp, DNS, X11, andsimilar). Studentscanrun graphical
codedevelopmentenvironments(suchasKdevelop[8])
on their jail hosts if your RULE firewall allows X11
clients to access external X11 servers.

However,studentscannotrun programsthat require
raw accessto the underlyingIP or Ethernetlayers.This
precludesthe useof somecommoncommandssuchas
ping and traceroute. Studentscannot accessor
modify theroutingtablesof theunderlyingprimaryhost,
nor can they rebuild the kernel,or modify the running
kernel'sstate(evenwhen loggedin as root within their
jail host). For course and project work focusing on
network applicationsthese limitations can usually be
tolerated

On theupside,studentscannotirretrievablymanglea
jail host.RULE administratorscan makeregulartar-
file backups of each jail host's disk partition, and
restorationof a jail hostbecomesassimpleasun-tarring
the tar-file back onto the jail host's disk partition.
Studentscan be given hands-onexperienceof having
root accesswithin their jail host (managinggroup and
user accounts,accesslevels, systemdaemonssuch as
inetd, etc) and yet suffer only minor inconvenienceif
theyaccidentallymangletheir jail host'sfilesystem.The
primary host remainsisolated - root processeswithin
eachjail cannotreachout andmodify the primary host
environment.

Being able to tar/un-tar entire jail hosts also
simplifies the administrative task of sharing RULE
betweenclassesat different times of the week. Each
primary host can automaticallyswitch aroundjail host
filesystemsaccording to class schedules,rather than

CAIA Technical Report 030320A March 2003 garmitage@swin.edu.au page 5 of 6

requiring a staff member to manually re-image physical
machines.

VII.OPEN ISSUES AND FUTURE DIRECTIONS

RULE is in its early days, and we still have a lot to
learn and try. Resource management within primary
hosts is still somewhat crude and jail hosts do not allow
students full control of the host's networking
functionality.

Resource management schemes must be resilient
against attacks from students who have root access
inside their jail hosts. Assigning distinct primary host
disk partitions allows us to insulate each jail host from
disk-hungry (or buggy) applications running on other
jail hosts. However, CPU time, memory space, swap
space and network interface bandwidth is still shared
across jail hosts. CPU time is not considered a critical
factor - jail host processes share the CPU just like
regular primary host processes, and any student projects
that need high performance computing probably
shouldn't be on the RULE anyway.

JHT will use ipfw (a FreeBSD firewall module) and
dummynet (FreeBSD's network bandwidth controller) in
the primary host's kernel to enforce bandwidth limits on
the IP traffic flowing in and out of specific jail hosts.
(For example, we might limit each jail host to 1Mbit/sec
in each direction - sufficient for most student projects
while ensuring no one jail host can starve the others of
network access.)

FreeBSD allows per-user resource consumption
limits to be specified through an /etc/login.conf
file in each jail host, but there's the challenge of making
this file unalterable by root users inside each jail.
FreeBSD's concept of four 'secure levels' may help here.
We can write the /etc/login.conf files from the primary
host level, mark them as immutable, and run the kernel
at securelevel 1 (which disallows subsequent attempts to
modify immutable files, even by root). Another
approach would be to NFS mount read-only copies of
/etc into each jail host (although this would make it
impossible for the student's to modify other useful files
such as /etc/inetd.conf, etc). This is still an open
question.

We also plan to increase the number of primary hosts
so that students can have their own dedicated FreeBSD
machines in RULE (enabling raw packet access to the
network interface and the ability to control or rebuild the
kernels they run).. Small clusters of three primary hosts
per student project group will enable quite flexible IP
networking (routing and traffic analysis) experiments.
We are evaluating solutions for remote power-
cycling/cold-rebooting of individual primary hosts (for
those times when students completely jam their
machines) and a FreeBSD-based console server so that
students can watch their machines rebooting after
making kernel modifications. Unfortunately, giving
students complete access to a primary host guarantees
that they will (whether by accident or design) scribble
all over the hard drive at some point. We are still
considering options for remotely restoring a primary
host to pristine, pre-student condition. Ideally the

solution will not require staff to physically access the
RULE rack space (so as not to limit the times of day or
week that RULE can be made available to students).

JHT and RULE is also being used as the basis for an
802.11b/IP mobility testbed. FreeBSD jail hosts can be
instantiated over any of the primary host's IP interfaces,
including wireless devices, IP-IP tunnels, and VLAN
devices. We have already created jail hosts over an
802.11b-enabled primary host (using a Ricoh PCMCIA-
PCI bridge and Lucent 802.11b card on an ESP5000
motherboard) and hope to publish a description of this
testbed later in 2003.

Finally, there are always going to be quirks in mating
the operating system and compact motherboards,
especially as RULE evolves and becomes heterogenous.
For example, the VIA ESP5000's in-built ethernet
device relies on FreeBSD's 'vr' driver. We have already
discovered a bug in the vr driver triggered by repeated
“ifconfig alias” commands. The bug-fix is being
folded back into FreeBSD 4.7's source tree. Aside from
this, the ESP5000s are proving quite useful and
convenient.

VIII.CONCLUSIONS

In order to provide increased student access to unix
development environments at our Windows-centric
university we have developed a FreeBSD-based Remote
Unix Lab Environment (RULE). RULE hosts are
remotely accessed using secure shell (ssh) from existing
Windows-based PC labs around campus, leveraging an
existing institutional investment in physical
infrastructure and minimising our group's incremental
costs. Students are also able to access RULE hosts from
wirelessly equipped laptops and dial-up hosts (whether
running Windows or some other operating system),
which provides flexible opportunities for them to do
their work.

To further reduce costs, we utilize FreeBSD's jail
functionality to implement jail hosts - virtual RULE
hosts that provide each student their own FreeBSD user-
space environment to manage and explore. A set of
scripts, our Jail Host Toolkit (JHT), is being developed
to automate many aspects of jail host creation and
management. Our initial implementation of RULE uses
5 mini-ITX ESP5000 motherboards from VIA
Technologies to create 20 RULE hosts. RULE and JHT
will evolve to include more physical hosts, better
resource management between jail hosts, and the ability
for students to control entire physical hosts for certain
classes of educational IP networking experiments.

REFERENCES

[1] "The Apache Software Foundation," http://www.apache.org, Dec 2002

[2] "Samba," http://www.samba.org, Dec 2002

[3] "FreeBSD," http://www.freebsd.org, Dec 2002

[4] "OpenSSH," http://www.openssh.org, Dec 2002

[5] Simon Tatham, "PuTTY: A Free Win32 Telnet/SSH Client,"
http://www.chiark.greenend.org.uk/~sgtatham/putty/, December 2002

[6] "VIA Technologies, Inc.," http://www.viavpsd.com

[7] "NS-05c 5 port NWAY 10/100Mbps mini switch,"
http://www.alloy.com.au/products/ns05c.htm, Dec 2002

[8] "KDevelop," http://www.kdevelop.org

CAIA Technical Report 030320A March 2003 garmitage@swin.edu.au page 6 of 6

