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Abstract 

Literature on the use of machine learning (ML) 

algorithms for classifying IP traffic has relied on full-

flows or the first few packets of flows. In contrast, 

many real-world scenarios require a classification 

decision well before a flow has finished even if the 

flow’s beginning is lost. This implies classification 

must be achieved using statistics derived from the most 

recent N packets taken at any arbitrary point in a 

flow’s lifetime. We propose training the classifier on a 

combination of short sub-flows (extracted from full-

flow examples of the target application’s traffic). We 

demonstrate this optimisation using the Naïve Bayes 

ML algorithm, and show that our approach results in 

excellent performance even when classification is 

initiated mid-way through a flow with windows as 

small as 25 packets long. We suggest future use of 

unsupervised ML algorithms to identify optimal sub-

flows for training. 

1. Introduction 

Real-time traffic classification has potential to solve 

difficult network management problems for Internet 

service providers (ISPs) and their equipment vendors. 

Network operators need to know what is flowing over 

their networks promptly so they can react quickly in 

support of their various business goals. Traffic 

classification may be a core part of automated intrusion 

detection systems [4][5][6], used to detect patterns 

indicative of denial of service attacks, trigger 

automated re-allocation of network resources for 

priority customers [1], or identify customer use of 

network resources that in some way contravenes the 

operator’s terms of service. More recently, 

governments are also clarifying ISP obligations with 

respect to ‘lawful interception’ (LI) of IP data traffic 

[3]. Just as telephone companies must support 

interception of telephone usage, ISPs are increasingly 

subject to government requests for information on 

network use by particular individuals at particular 

points in time. IP traffic classification is an integral part 

of ISP-based LI solutions. 

Commonly deployed IP traffic classification 

techniques have been based around direct inspection of 

each packet’s contents at some point on the network. 

Simple classification infers application type by 

assuming that most applications consistently use ‘well 

known’ TCP or UDP port numbers. Packets seen with 

the same source <address,port>, destination 

<address,port> and protocol type (TCP or UDP) within 

a finite period of time are considered to belong to a 

‘flow’, and the flow is associated with a particular 

application. However, many applications now use 

random (or at least obscure) port numbers [2]. 

Consequently, more sophisticated classification 

techniques infer application type by looking for 

application-specific data, or well-known protocol 

behaviour, within the TCP or UDP payloads [7]. 

Unfortunately, the effectiveness of such ‘deep 

packet inspection’ techniques is diminishing. Packet 

inspection uses two assumptions: third parties 

unaffiliated with either source or recipient can easily 

parse each IP packet’s payload, and the classifier 

knows the precise syntax of each application’s packet 

payloads. Two issues undermine the first assumption – 

customers may use encryption to obfuscate packet 

contents (including TCP/UDP port numbers), and 

governments may impose privacy regulations 

constraining the ability of third parties to lawfully 

inspect payloads at all. The second assumption imposes 

a heavy operational load - commercial devices will 

need repeated updates to stay ahead of regular (or 

simply gratuitous) changes in every application’s 

packet payload formats. 

The research community has responded by 

investigating classification schemes capable of 

inferring application-level usage patterns without deep 

inspection of packet payloads. Newer approaches 

classify traffic by recognising statistical patterns in 

Training on multiple sub-flows to optimise the use of Machine Learning 

classifiers in real-world IP networks
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y externally observable attributes of the traffic (such as 

typical packet lengths and inter-packet arrival times). 

Their ultimate goal is either clustering IP traffic flows 

into groups that have similar traffic patterns, or 

classifying one or more applications of interest. 

A number of researchers are looking particularly 

closely at the application of machine learning (ML) 

techniques to IP traffic classification [8][9][10][11]. 

Attributes of flows calculated over multiple packets 

(such as maximum or minimum packet lengths in each 

direction, flow durations or inter-packet arrival times) 

are known as ‘features’. Classification involves two 

stages – training the ML algorithm to associate sets of 

features with known traffic classes (creating rules), and 

applying the ML algorithm to classify unknown traffic 

using previously learned rules. Every ML algorithm has 

a different approach to sorting and prioritising sets of 

features, which leads to different dynamic behaviours 

during training and classification. 

Our research focuses on the practical application of 

ML algorithms to traffic classifiers deployed in 

operational IP networks. Most published research has 

focussed on the efficacy of different ML algorithms 

when applied to entire datasets of IP traffic – trained 

and tested over full flows consisting of thousands of 

packets and hundreds or thousands of flows. Some 

newer work has tried classification using the first few 

packets of a flow. Yet in real networks traffic 

classifiers must reach decisions well before a flow has 

finished, they may not see the actual start of a flow, and 

the application’s statistical behaviour may change over 

the lifetime of each flow. In addition there may be 

thousands of concurrent flows, and the classifier will 

operate with finite CPU and memory resources.  

In this paper we present a novel modification to 

traditional ML training and classification techniques 

that optimises the classification of flows within finite 

periods of time and with limited physical resources. We 

propose that realistic ML-based traffic classification 

tools should: 

• Operate the ML classifier using a sliding-

window over each flow – the classifier can see 

(or must use) no more than N packets of a flow 

at any given time. 

• Train the ML classifier using sets of features 

calculated from multiple sub-flows – each sub-

flow is a fragment of N consecutive packets 

taken from different points within the original 

application flow’s lifetime. 

N is chosen to reflect memory limitations in the 

classifier implementation or the upper bound on the 

time allowed for classifying a flow. Training on 

multiple sub-flows allows the sliding window classifier 

to properly identify an application regardless of where 

within a flow the classifier begins capturing packets. 

We illustrate our proposal’s broader benefits by 

considering an ISP that wishes to automatically and 

quickly detect online interactive game traffic mingled 

in amongst regular consumer IP traffic. We apply our 

modifications to the well-known Naïve Bayes ML 

algorithm and demonstrate distinct improvements in 

classification accuracy and timeliness. 

Our paper is organised as following. Part II briefly 

summaries key ML concepts and related work. We 

describe our problem and proposed approach in part 

III. Part IV illustrates our proposal and experimental 

method. We analyse the results in Part V and discuss 

conclusions and future work in Part VI. 

2. Machine learning and related work 

First we summarise the basic concepts of ML and 

review related work applying ML to IP traffic 

classification. 

2.1. Concepts and Terminology 

ML classification algorithms all assume that a 

‘class’ of traffic can be identified using statistical 

analysis of traffic features. A feature may be any 

numerical attribute calculated over multiple packets – 

examples include mean packet lengths, standard 

deviations of inter-packet arrival times, total flow 

lengths (in bytes and/or packets), and so on. Features 

calculated over individual flows result in ‘feature 

values’ unique to that flow. Not all features are equally 

useful, so practical classifiers chose the smallest set of 

features that result in efficient differentiation between 

members of a class and other traffic outside the class. 

ML algorithms can utilise either unsupervised or 

supervised learning. Unsupervised ML algorithms 

allocate flows to classes based on clustering of similar 

feature values. Supervised ML algorithms use 

examples of IP traffic matching the class of traffic that 

are later to be identified in the network. The supervised 

ML algorithm then seeks out traffic flows whose 

feature values are similar to the traffic on which it was 

trained [15][16]. A supervised-learning algorithm 

typically also benefits from being provided with 

examples of traffic outside the class it is being trained 

to recognise. 

Two metrics often used to evaluate ML 

classification algorithms are Recall and Precision. If a 

classifier is trained to identify members of class X: 
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which are correctly classified as belonging to 

class X. 

• Precision is the proportion of the instances 

which truly have class X among all those 

classified as class X. 

Both metrics range from 0 (poor) to 100% 

(optimal). In this paper we utilise both metrics but it is 

important to note that high Precision only is meaningful 

when the classifier achieves good Recall. 

2.2. Previous related work 

McGregor et al. [8] used the Expectation 

Maximization (EM) algorithm to cluster traffic with 

similar observable properties into different application 

types using a fixed set of attributes. The algorithm was 

found to separate traffic into a small number of basic 

classes. In [10] we proposed an ML-based approach for 

identifying different applications using the Autoclass 

algorithm, which is based on Bayesian classification 

and the EM algorithm. We studied a wide range of 

applications and shown that some separation between 

the different applications can be achieved. In [13]

Roughan et al use ML nearest neighbours and linear 

discriminate analysis approaches to map different 

network applications to different QoS classes. The flow 

features used were the average packet size, flow 

duration, number of bytes per flow, number of packets 

per flow, interarrival variability and Root Mean Square 

packet size. Flow features used for the training process 

are the mean value of all flows per particular 

applications over a 24-hour period. Moore and Zuev in 

[9] used the supervised ML Naïve Bayes technique to 

categorise Internet traffic by application.  A large 

number of flow features (up to 248) had been used to 

train the classifier. Among those features were flow 

duration, server port, packet interarrival time, payload 

size, effective bandwidth based upon entropy and 

Fourier Transform of the packet interarrival time. The 

work of Karagiannis et al [26] developed an 

application classification method based on the 

behaviours of the source host at the transport layer, 

which are divided into three different levels. The social 

level captures and analyses the interactions of the 

examined host with others hosts in terms of the number 

of hosts it communicates with. The host’s popularity 

and other hosts in its community’s circle are 

considered. The role of the host in which it acts as a 

provider or the consumer of a service is classified in 

the functional level. And finally, transport layer 

information, such as the 4-tuple of the traffic (including 

source and destination IP addresses, and source and 

destination ports), flow characteristics such as the 

transport protocol and average packet size are used. 

Bernaille et al [25] recently proposed a technique 

using unsupervised ML (Simple K-Means) algorithm 

that classifies different types of TCP-based applications 

using the first few packets of the traffic flow. With a 

small dataset of one-hour trace, their result showed that 

more than 80% of total flows are correctly identified 

for a number of applications by using the first five 

packets of each TCP flow.  

3. Problem statement and proposal 

Until recently most published work has relied on 

features calculated over the full lifetime of flows – both 

for training and for subsequent classification. The 

efficacy and timeliness of ML classifiers has not been 

explored under conditions where the flow’s beginning 

is missed and the classifier only sees a subset of a 

flow’s packets. Yet even [25] assumes the initial 

packets of every flow are captured and available for 

classification.  

In contrast to the previous work, we consider not 

only the timeliness of a ML traffic classifier, but also 

its sustainability in performance when monitoring the 

traffic flows over their lifetime with the constraints of 

limited physical resources, and when it misses the start 

of the traffic flows. 

Our goal - classification based on only the most 

recent N packets of a flow (for some small value of N) 

- is driven by two primary considerations. First, an ML 

classifier is likely part of a larger system (for example, 

automated QoS control) that must react swiftly once it 

identifies a new flow as belonging to a class of interest. 

Reducing the time taken to detect traffic of interest 

implies reducing the number of packets that must pass 

the monitoring point before classification can be 

achieved. Second, re-calculating features over a sliding 

window of N packets requires us to buffer the most 

recent N packets (so we can remove the effect of the 

Nth most recent packet when we receive a new packet 

on the same flow). Particularly on high-speed networks 

a classifier may be observing (tens of) thousands of 

concurrent flows. Minimising the number of buffered 

packets per flow provides a beneficial reduction of

physical memory requirements. 

A classifier also cannot assume it will see the 

beginning of all flows. For example, classification may 

be initiated at a point in time when many thousands of 

flows are already in progress. A classifier should thus 

be capable of recognising flows using N packets 

starting from anywhere in a flow. 
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another potential problem. Application flow statistics 

often change during the lifetime of a flow (for example, 

the initial handshake of a new SMTP connection may 

look quite different to the traffic while transferring the 

body of each email). A classifier trained on feature 

values calculated over entire flows (as done in most 

previous research) may not recognise members of the 

class when presented with feature values calculated 

over subsets of an unknown flow. 

The preceding considerations give rise to our novel 

proposal for training ML classifiers. First extract two 

or more sub-flows (of N packets) from every flow that 

represents the class of traffic we wish to identify in the 

future. Each sub-flow should be taken from places in 

the original flow having noticeably different statistical 

properties (for example, the start and middle of the 

flow). Each sub-flow would result in a set of instances 

with feature values derived from its N packets. Then 

train the ML classifier with the combination of these 

sub-flows rather than the original full flows. 

4. Illustrating our proposal 

To illustrate our proposal we construct the following 

scenario: a real-time Naïve Bayes classifier must 

accurately identify Wolfenstein Enemy Territory (ET) 

[12] traffic mixed in amongst thousands of unrelated, 

interfering traffic flows. ET is a highly interactive 

online game representative of applications whose 

traffic characteristics can change significantly over the 

lifetime of each flow. We compare classification 

accuracy using full-flows and sub-flows for various 

values of N, and show that training with multiple sub-

flows allows us to achieve high Recall and Precision 

even for N as small as 25 packets. We show that 

classification performance can be maintained even 

when packets are missed at the beginning of a flow.

4.1. The Naïve Bayes algorithm 

Naïve Bayes is a well-understood supervised-

learning algorithm whose classification approach is 

based on probabilistic knowledge [15][16]. In this 

paper we use the Naïve Bayes implementation in 

WEKA tools [17] with the use of supervised 

discretisation to process numeric attributes option. 

(Evaluation of our proposal with other ML algorithms 

is the subject of current, ongoing work.) 

4.2. Flows and features 

Traffic flows are bidirectional streams of packets 

between a given pair of hosts. A flow is defined using 

the 5-tuple of source and destination IP addresses, 

protocol (TCP & UDP) and the source and destination 

ports. The first packet seen by the classifier determines 

the ‘forward’ direction. For UDP traffic a flow is 

considered to have stopped when no more packets are 

seen for 60 seconds. For TCP traffic, a flow is stopped 

when the connection is explicitly torn down or no 

packets are seen for 60 seconds (which ever comes 

first) [14]. 

We trained and classified using the following 

features, calculated separately in the forward and 

backward directions: 

• Inter-packet arrival interval (minimum, 

maximum, mean and standard deviation) 

• Inter-packet length variation (minimum, 

maximum, mean and standard deviation) 

• IP packet length (minimum, maximum, mean 

and standard deviation) 

These features are simple to calculate over a sliding 

window, are independent of flow length (thus allowing 

timely calculation before an application has finished) 

and require no knowledge of packet contents (thus 

minimizing privacy intrusion or dependency on 

particular packet payload encoding). We modified 

Netmate tool [24] to calculate feature values for our 

analysis. 

4.3. Constructing training and testing datasets 

To show the effectiveness of our proposed 

approach we used completely different datasets for 

training and testing our classifiers. Each dataset 

consisted of both ET and non-ET traffic because 

supervised learning algorithms work best when trained 

with examples of traffic in the class of interest and 

traffic known to be outside the class of interest (

‘interfering’ traffic). 

The ET traffic consisted of two separate month-

long traces collected during May and September 2005 

at a public ET server in Australia [18]. The distribution 

of domestic and international traffic on this server was 

consistent with previously published work [22]. For our 

interfering (non-ET) traffic we utilised public traces: 

two 24-hour periods collected by the University of 

Twente, Germany, on February 6
th

 and 7
th

 2004 [20]. 

We will refer to the interfering traffic sources as T1 

and T2 respectively. 

Raw ET traffic traces taken at an ET server 

typically contain far more short flows (clients probing 

the server, usually less than 10 packets in total) than 

actual game-play flows [22]. Balanced ET datasets for 
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and then sampling an equal number of non-game play 

(probe) flows from the raw monthly traces. Table 1 

summarises the resulting balanced ET datasets we then 

used for training and testing. 

Table 1. ET datasets  

Data Traces 
Total 

Flows 

Total 

Packets 
Total Bytes 

May 8688 107M 14G 

Sep 6888 187M 26G 

Table 2. Sampled interfering application flows 

Our interfering traffic datasets were built by 

extracting flows from T1 and T2 belonging to a range 

of common applications. As payloads were missing we 

inferred application type from the port numbers 

(judged an acceptable approach because our primary 

criteria for interfering traffic is that it was not ET). For 

each application’s default port(s) we sampled a 

maximum of 10000 flows per raw tracefile. Table 2 

summarises the overall mix of traffic in our resulting 

interfering datasets. 

For each experiment we trained our classifiers using 

a mix of ET traffic from the May dataset and 

interfering traffic from T2 (total of 8,688 flows for ET 

traffic mixed with 82,957 flows in the interference 

class. Subsequent testing of each classifier scenario 

was performed using a mix of ET traffic (6,888 flows) 

from September and interfering traffic from T1 (a 

mixture of 73,672 flows). 

4.4. Some statistical properties of ET traffic 

Consistent with many other online first-person 

shooter games, ET traffic seen at a server can exhibit 

three different phases: clients probing the server, 

clients connecting to the server and clients actually 

playing a game on the server [23]. 

Figure 1 partially illustrates this variation of an ET 

flow’s characteristics as a scatter plot of two features - 

Standard Deviation versus Mean of packet length - 

calculated with N = 25 across 1000 samples of the May 

dataset. Full flow and In-game feature values are shown 

on the left, client probing and client connecting feature 

values are shown on the right. With only two features 

the regions are partially overlapping and partially 

disjoint. A similar mix of overlapping and disjoint 

regions also occurs with other features (such as Inter-

packet arrival time and Inter-packet length variation). 

Figure 1 tells us that a classifier trained on full flow 

feature values may have trouble recognising the 

clusters of feature values calculated over small 

windows of packets. 

5. Results and analysis 

First we look at the effectiveness of classifying data 

using a sliding window across the test dataset and an 

ML classifier trained on full-flow training sets. Then 

we show how Recall and Precision improve 

significantly when each ML classifier is trained using 

multiple sub-flows instead. We use windows of size N 

= 10, 25, 50, 100, 500 and 1000 packets. (During ET 

game-play we see 20 pps from server to client and 

roughly 28 pps from client to server, so these windows 

correspond to 0.2, 0.5, 1.0, 2.1, 10.4 and 20.8 seconds 

of actual time). Recall and Precision results are 

averaged across 6,888 ET flows and 73,672 interfering 

flows in the test dataset. 

5.1. Training on full-flows, classifying with a 

sliding window 

Figure 2 shows Recall and Precision for Naïve 

Bayes as each sliding window moves across the test 

dataset. M is the number of packets ‘missed’ from the 

beginning of each flow in the test dataset. The graphs 

covers two periods – early client contact with the game 

server (0 <= M <= 90) and during active game-play 

(1000 <= M <= 9000). The classifier has been trained 

Application Total flows 

(T1, T2) 

Total flows 

(T1, T2) 

HTTP, HTTPS 13.8K 13.3K 

DNS, NTP 2.4K 2.7K 

SMTP, IMAP, POP3, 

Telnet, SSH 

0.6K  0.5K 

HalfLife 8.7K 10K 

Kazaa, Bittorrent, 

Gnutella, eDonkey 

48K 56K 
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Figure 1. Packet Length from Client to Server 
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training datasets.  

The classifier’s Recall degrades rapidly as we move 

further from the start of each flow. Recall with small 

windows (N = 10 or 25) is poor (65% and 40%) at the 

flow’s beginning and drops off rapidly if we miss the 

start of the flow. Recall with N = 1000 is decent (85%) 

when the flow is captured from the beginning, but 

rapidly drops below 10% if classifier misses more than 

the first 30 packets. The Precision is 100% for all 

window sizes and M values when Recall > 0. 

Classifying in the middle of game-play (M > 1000) 

gives Recall close to 0%, making the high achieved 

Precision somewhat meaningless. 

5.2. Training with individual sub-flows 

Figure 3 shows the impact on Recall when the 

Naïve Bayes classifier is trained using features from 25 

packet sub-flows rather than full flows. Five separate 

variants of the classifier are trained, using sub-flows 

that cover packets 1-25, 21-45, 41-65, 61-85 and 2001-

2025 respectively of the original full flows in the 

training datasets. In each case the classifier is tested 

using a sliding window of 25 packets. 

Recall drops off quickly if we miss more than the 

first 10 packets of a flow when trained on packets 1-25. 

On the other hand, Recall stays low until the sliding 

window has moved beyond the early period of each 

flow (M >>= 90) when trained on packets 2001-2025. 

When trained on packets 21-45 the classifier’s Recall is 

quite good even if we miss 30 or 40 packets, but 

eventually becomes quite poor. Only by training on 

packet 41 onwards (e.g. Model 41-65, and so on) can 

the classifier exhibit good Recall when exposed to 

game-play traffic (M > 90). Precision remained from 

97.5% to 99.5% for Recall above 50% for each model.

Compared to Figure 2 training on a sub-flow picked 

from within each original training flow significantly 

improves our classification performance for M > 0 (i.e. 

real-world scenarios where the classifier cannot be sure 

it sees the start of every flow). 

5.3. Training with multiple sub-flows 

A logical next step is to train the classifier on a 

combination of multiple sub-flows instances 

representing different time periods within the original 

full-flows. The classifier will then recognise new flows 

if they have statistical properties similar to any of the 

sub-flows on which the classifier was trained. 

To illustrate this idea we trained a classifier using 

the combination of different sub-flows at the same 

time. From several tests with combinations of two, 

three, four different sub-flows, we found the 

combination of Model 1-25, 21-45, 41-65 and Model 

2001-2025 from Figure 3 produces excellent 

classification results. 

Figure 4 shows this new classifier’s Recall as a 

function of M (‘Multi Sub-Flow Model N=25’), along 

with Recall for a classifier trained on Model 61-85 

(best performed model in Figure 3) (‘ Best Single Sub-

Flow Model N=25’) and a classifier trained on full-

flows (using sliding windows of N=1000 and N=25). 

The multiple sub-flows curve shows excellent 

Recall early in a flow’s life (M < 40) (97.7-99% 

compared to 77.1-93.4% for single sub-flow model). 

For M > 40 the Recall is much the same as training on 

the single sub-flow (95.1-99.6% vs. 93.4-99.7% 

respectively). Training the classifier on full flows leads 

to substantially degraded Recall relative to training on 

sub-flows. Precision held steady at 98% when trained 

on the multiple sub-flows (similar to the single sub-

flow model). 
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Figure 2. ET Recall: Classifier trained with full 

flows, tested with four different sliding windows 
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Figure 3. ET Recall: Classifier trained on 25-

packet sub-flows, N = 25 for classification  
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The key point of Figure 3 and Figure 4 is that for 

applications with time-varying traffic characteristics 

there are significant benefits to training ML classifiers 

using features calculated over one (or more) sub-flows 

rather than full-flows. 

It is worth noting that we performed similar 

comparisons using N=10, but the absolute Recall and 

Precision rates were lower than for N=25. Depending 

on the particular application you are trying to classify, 

there will be a trade-off between keeping N low (for 

timely classification and reduced memory 

consumption) and keeping N high (for acceptable 

Recall and Precision). Characterising this trade-off is a 

subject of further research. 

5.4. Future work: Selecting sub-flows using 

unsupervised ML algorithms 

Our preceding analysis depended on manual 

inspection of ET’s particular traffic characteristics. 

Training a classifier for optimal recognition of another 

application may require entirely different choice of 

sub-flows. Ideally we would like to avoid having to 

manually inspect and identify the optimal set of sub-

flows for each application of interest. 

There is a potentially fruitful area of future work 

along these lines. We propose utilising unsupervised 

classification ML algorithms to automatically identify 

key sub-flows within examples of an application’s full 

flows. Intuitively this seems reasonable – unsupervised 

learning algorithms identify ‘natural’ clustering of sub-

flows [16], from which we may identify a set sub-flows 

representing key statistical characteristics of the full 

flow. (The existence of natural clustering of feature 

values in ET was hinted at in Figure 1.) 

We ran a preliminary version of this idea on our ET 

traces (using the Simple Expectation Maximisation 

(EM) Clustering ML algorithm [27] implemented in 

WEKA [17]) and found eight natural clusters of 25-

packet sub-flows during a game’s full flow. From this 

we obtained eight sub-flows and trained and tested our 

Naïve Bayes classifier. Compared against the use of 

four sub-flows in Figure 4 the eight sub-flows achieved 

slightly better Recall and basically identical Precision. 

This brief analysis suggests that manual selection of 

sub-flows for training is not necessary in the general 

case. However, there are trade-offs. Initial investigation 

suggests that whilst Recall increases with additional 

sub-flows the Precision degrades somewhat. We intend 

to further develop this line of research, identifying rules 

and unsupervised learning algorithms that are best 

suited for the automatic generation of multiple sub-

flows with which to train supervised ML classifiers. 

(Nevertheless, practical classifiers can still be trained 

using manually identified sub-flows in the absence of a 

well developed method of automatic sub-flow 

identification.) 

6. Conclusions 

Practical real-time traffic classifiers must accurately 

classify traffic in the face of a number of constraints: 

• The classifier should use statistical methods (such 

as ML algorithms) as TCP/UDP port numbers 

may be misleading, and packet payloads may be 

opaque against direct interpretation 

• ML classification should be done over a small 

sliding window of the last N packets (to keep 

memory requirements down and perform 

classification in a timely manner) 

• The classifier must recognise flows already in 

progress (the flow’s beginning may be missed) 

• Application’s can change their network traffic 

patterns over time. 

However, most previous research has focused on 

training ML classifiers using statistical features 

calculated across entire flows. This leads to poor 

performance of the classifier when a flow’s early 

packets are missed or the classifier is using a restricted 

sliding window. Some recent literature discusses 

classification on only the first few packets of every 

flow, but they are also unable to cope when those early 

packets are missed. 

We propose a novel solution: The ML classifier 

should be trained using statistical features calculated 

over multiple short sub-flows extracted from full flows 

generated by the target application. The sub-flows are 

picked from regions of the application’s full flows that 

have noticeably different statistical characteristics. 

We show that this can significantly improve a 

classifier’s performance when using a small sliding 
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from each flow’s beginning. Our proposal is illustrated 

by constructing, training and testing a Naïve Bayes 

classifier for the detection of Wolfenstein Enemy 

Territory online game traffic. With this particular 

scenario we saw excellent results when trained on four 

to eight sub-flows and using a sliding window of only 

25 packets. 

A number of future research directions open up.  

These include: 

• The use of unsupervised ML algorithms to 

automatically identify optimal sets of sub-flows to 

use when training the main classifier 

• Characterising the optimal sliding classification 

window size (N) for a wider range of applications 

•  Identifying how varying N trades classification 

performance (Recall and Precision) against 

resource consumption (memory consumption in 

the classifier and timeliness of classification) 

• Demonstrating the utility of our proposal for other 

ML algorithms (not just Naïve Bayes) 

• Evaluating the impact on classification accuracy 

of packet loss in real networks (no literature has 

explored this aspect to date) 

• Exploring further reduction in the number of 

features that must be calculated in real-time to 

still achieve acceptable performance 

• Testing our proposal in the presence of a larger 

and more diverse collection of interfering traffic.

Overall we believe this small proposal significantly 

assists the use of ML algorithms inside practical and 

deployable IP traffic classifiers. 
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