
A
cc

ep
te

d
31

Ju
ly

06
 to

 b
e

pr
es

en
te

d
at

 I
E

E
E

 L
C

N
 2

00
6,

 N
ov

em
be

r
20

06
. P

ap
er

 m
ad

e
po

ss
ib

le
 in

 p
ar

t b
y

a
gr

an
t f

ro
m

 th
e

C
is

co
 U

ni
ve

rs
ity

 R
es

ea
rc

h
Pr

og
ra

m
 F

un
d

at
 C

om
m

un
ity

 F
ou

nd
at

io
n

Si
lic

on
 V

al
le

y

Thuy T.T. Nguyen, Grenville Armitage

Centre for Advanced Internet Architectures

Swinburne University of Technology, Melbourne, Australia

{tnguyen, garmitage}@swin.edu.au

Abstract

Literature on the use of machine learning (ML)

algorithms for classifying IP traffic has relied on full-

flows or the first few packets of flows. In contrast,

many real-world scenarios require a classification

decision well before a flow has finished even if the

flow’s beginning is lost. This implies classification

must be achieved using statistics derived from the most

recent N packets taken at any arbitrary point in a

flow’s lifetime. We propose training the classifier on a

combination of short sub-flows (extracted from full-

flow examples of the target application’s traffic). We

demonstrate this optimisation using the Naïve Bayes

ML algorithm, and show that our approach results in

excellent performance even when classification is

initiated mid-way through a flow with windows as

small as 25 packets long. We suggest future use of

unsupervised ML algorithms to identify optimal sub-

flows for training.

1. Introduction

Real-time traffic classification has potential to solve

difficult network management problems for Internet

service providers (ISPs) and their equipment vendors.

Network operators need to know what is flowing over

their networks promptly so they can react quickly in

support of their various business goals. Traffic

classification may be a core part of automated intrusion

detection systems [4][5][6], used to detect patterns

indicative of denial of service attacks, trigger

automated re-allocation of network resources for

priority customers [1], or identify customer use of

network resources that in some way contravenes the

operator’s terms of service. More recently,

governments are also clarifying ISP obligations with

respect to ‘lawful interception’ (LI) of IP data traffic

[3]. Just as telephone companies must support

interception of telephone usage, ISPs are increasingly

subject to government requests for information on

network use by particular individuals at particular

points in time. IP traffic classification is an integral part

of ISP-based LI solutions.

Commonly deployed IP traffic classification

techniques have been based around direct inspection of

each packet’s contents at some point on the network.

Simple classification infers application type by

assuming that most applications consistently use ‘well

known’ TCP or UDP port numbers. Packets seen with

the same source <address,port>, destination

<address,port> and protocol type (TCP or UDP) within

a finite period of time are considered to belong to a

‘flow’, and the flow is associated with a particular

application. However, many applications now use

random (or at least obscure) port numbers [2].

Consequently, more sophisticated classification

techniques infer application type by looking for

application-specific data, or well-known protocol

behaviour, within the TCP or UDP payloads [7].

Unfortunately, the effectiveness of such ‘deep

packet inspection’ techniques is diminishing. Packet

inspection uses two assumptions: third parties

unaffiliated with either source or recipient can easily

parse each IP packet’s payload, and the classifier

knows the precise syntax of each application’s packet

payloads. Two issues undermine the first assumption –

customers may use encryption to obfuscate packet

contents (including TCP/UDP port numbers), and

governments may impose privacy regulations

constraining the ability of third parties to lawfully

inspect payloads at all. The second assumption imposes

a heavy operational load - commercial devices will

need repeated updates to stay ahead of regular (or

simply gratuitous) changes in every application’s

packet payload formats.

The research community has responded by

investigating classification schemes capable of

inferring application-level usage patterns without deep

inspection of packet payloads. Newer approaches

classify traffic by recognising statistical patterns in

Training on multiple sub-flows to optimise the use of Machine Learning

classifiers in real-world IP networks

A
cc

ep
te

d
31

Ju
ly

06
 to

 b
e

pr
es

en
te

d
at

 I
E

E
E

 L
C

N
 2

00
6,

 N
ov

em
be

r
20

06
. P

ap
er

 m
ad

e
po

ss
ib

le
 in

 p
ar

t b
y

a
gr

an
t f

ro
m

 th
e

C
is

co
 U

ni
ve

rs
ity

 R
es

ea
rc

h
Pr

og
ra

m
 F

un
d

at
 C

om
m

un
ity

 F
ou

nd
at

io
n

Si
lic

on
 V

al
le

y externally observable attributes of the traffic (such as

typical packet lengths and inter-packet arrival times).

Their ultimate goal is either clustering IP traffic flows

into groups that have similar traffic patterns, or

classifying one or more applications of interest.

A number of researchers are looking particularly

closely at the application of machine learning (ML)

techniques to IP traffic classification [8][9][10][11].

Attributes of flows calculated over multiple packets

(such as maximum or minimum packet lengths in each

direction, flow durations or inter-packet arrival times)

are known as ‘features’. Classification involves two

stages – training the ML algorithm to associate sets of

features with known traffic classes (creating rules), and

applying the ML algorithm to classify unknown traffic

using previously learned rules. Every ML algorithm has

a different approach to sorting and prioritising sets of

features, which leads to different dynamic behaviours

during training and classification.

Our research focuses on the practical application of

ML algorithms to traffic classifiers deployed in

operational IP networks. Most published research has

focussed on the efficacy of different ML algorithms

when applied to entire datasets of IP traffic – trained

and tested over full flows consisting of thousands of

packets and hundreds or thousands of flows. Some

newer work has tried classification using the first few

packets of a flow. Yet in real networks traffic

classifiers must reach decisions well before a flow has

finished, they may not see the actual start of a flow, and

the application’s statistical behaviour may change over

the lifetime of each flow. In addition there may be

thousands of concurrent flows, and the classifier will

operate with finite CPU and memory resources.

In this paper we present a novel modification to

traditional ML training and classification techniques

that optimises the classification of flows within finite

periods of time and with limited physical resources. We

propose that realistic ML-based traffic classification

tools should:

• Operate the ML classifier using a sliding-

window over each flow – the classifier can see

(or must use) no more than N packets of a flow

at any given time.

• Train the ML classifier using sets of features

calculated from multiple sub-flows – each sub-

flow is a fragment of N consecutive packets

taken from different points within the original

application flow’s lifetime.

N is chosen to reflect memory limitations in the

classifier implementation or the upper bound on the

time allowed for classifying a flow. Training on

multiple sub-flows allows the sliding window classifier

to properly identify an application regardless of where

within a flow the classifier begins capturing packets.

We illustrate our proposal’s broader benefits by

considering an ISP that wishes to automatically and

quickly detect online interactive game traffic mingled

in amongst regular consumer IP traffic. We apply our

modifications to the well-known Naïve Bayes ML

algorithm and demonstrate distinct improvements in

classification accuracy and timeliness.

Our paper is organised as following. Part II briefly

summaries key ML concepts and related work. We

describe our problem and proposed approach in part

III. Part IV illustrates our proposal and experimental

method. We analyse the results in Part V and discuss

conclusions and future work in Part VI.

2. Machine learning and related work

First we summarise the basic concepts of ML and

review related work applying ML to IP traffic

classification.

2.1. Concepts and Terminology

ML classification algorithms all assume that a

‘class’ of traffic can be identified using statistical

analysis of traffic features. A feature may be any

numerical attribute calculated over multiple packets –

examples include mean packet lengths, standard

deviations of inter-packet arrival times, total flow

lengths (in bytes and/or packets), and so on. Features

calculated over individual flows result in ‘feature

values’ unique to that flow. Not all features are equally

useful, so practical classifiers chose the smallest set of

features that result in efficient differentiation between

members of a class and other traffic outside the class.

ML algorithms can utilise either unsupervised or

supervised learning. Unsupervised ML algorithms

allocate flows to classes based on clustering of similar

feature values. Supervised ML algorithms use

examples of IP traffic matching the class of traffic that

are later to be identified in the network. The supervised

ML algorithm then seeks out traffic flows whose

feature values are similar to the traffic on which it was

trained [15][16]. A supervised-learning algorithm

typically also benefits from being provided with

examples of traffic outside the class it is being trained

to recognise.

Two metrics often used to evaluate ML

classification algorithms are Recall and Precision. If a

classifier is trained to identify members of class X:

A
cc

ep
te

d
31

Ju
ly

06
 to

 b
e

pr
es

en
te

d
at

 I
E

E
E

 L
C

N
 2

00
6,

 N
ov

em
be

r
20

06
. P

ap
er

 m
ad

e
po

ss
ib

le
 in

 p
ar

t b
y

a
gr

an
t f

ro
m

 th
e

C
is

co
 U

ni
ve

rs
ity

 R
es

ea
rc

h
Pr

og
ra

m
 F

un
d

at
 C

om
m

un
ity

 F
ou

nd
at

io
n

Si
lic

on
 V

al
le

y • Recall is the proportion of class X’s instances

which are correctly classified as belonging to

class X.

• Precision is the proportion of the instances

which truly have class X among all those

classified as class X.

Both metrics range from 0 (poor) to 100%

(optimal). In this paper we utilise both metrics but it is

important to note that high Precision only is meaningful

when the classifier achieves good Recall.

2.2. Previous related work

McGregor et al. [8] used the Expectation

Maximization (EM) algorithm to cluster traffic with

similar observable properties into different application

types using a fixed set of attributes. The algorithm was

found to separate traffic into a small number of basic

classes. In [10] we proposed an ML-based approach for

identifying different applications using the Autoclass

algorithm, which is based on Bayesian classification

and the EM algorithm. We studied a wide range of

applications and shown that some separation between

the different applications can be achieved. In [13]

Roughan et al use ML nearest neighbours and linear

discriminate analysis approaches to map different

network applications to different QoS classes. The flow

features used were the average packet size, flow

duration, number of bytes per flow, number of packets

per flow, interarrival variability and Root Mean Square

packet size. Flow features used for the training process

are the mean value of all flows per particular

applications over a 24-hour period. Moore and Zuev in

[9] used the supervised ML Naïve Bayes technique to

categorise Internet traffic by application. A large

number of flow features (up to 248) had been used to

train the classifier. Among those features were flow

duration, server port, packet interarrival time, payload

size, effective bandwidth based upon entropy and

Fourier Transform of the packet interarrival time. The

work of Karagiannis et al [26] developed an

application classification method based on the

behaviours of the source host at the transport layer,

which are divided into three different levels. The social

level captures and analyses the interactions of the

examined host with others hosts in terms of the number

of hosts it communicates with. The host’s popularity

and other hosts in its community’s circle are

considered. The role of the host in which it acts as a

provider or the consumer of a service is classified in

the functional level. And finally, transport layer

information, such as the 4-tuple of the traffic (including

source and destination IP addresses, and source and

destination ports), flow characteristics such as the

transport protocol and average packet size are used.

Bernaille et al [25] recently proposed a technique

using unsupervised ML (Simple K-Means) algorithm

that classifies different types of TCP-based applications

using the first few packets of the traffic flow. With a

small dataset of one-hour trace, their result showed that

more than 80% of total flows are correctly identified

for a number of applications by using the first five

packets of each TCP flow.

3. Problem statement and proposal

Until recently most published work has relied on

features calculated over the full lifetime of flows – both

for training and for subsequent classification. The

efficacy and timeliness of ML classifiers has not been

explored under conditions where the flow’s beginning

is missed and the classifier only sees a subset of a

flow’s packets. Yet even [25] assumes the initial

packets of every flow are captured and available for

classification.

In contrast to the previous work, we consider not

only the timeliness of a ML traffic classifier, but also

its sustainability in performance when monitoring the

traffic flows over their lifetime with the constraints of

limited physical resources, and when it misses the start

of the traffic flows.

Our goal - classification based on only the most

recent N packets of a flow (for some small value of N)

- is driven by two primary considerations. First, an ML

classifier is likely part of a larger system (for example,

automated QoS control) that must react swiftly once it

identifies a new flow as belonging to a class of interest.

Reducing the time taken to detect traffic of interest

implies reducing the number of packets that must pass

the monitoring point before classification can be

achieved. Second, re-calculating features over a sliding

window of N packets requires us to buffer the most

recent N packets (so we can remove the effect of the

Nth most recent packet when we receive a new packet

on the same flow). Particularly on high-speed networks

a classifier may be observing (tens of) thousands of

concurrent flows. Minimising the number of buffered

packets per flow provides a beneficial reduction of

physical memory requirements.

A classifier also cannot assume it will see the

beginning of all flows. For example, classification may

be initiated at a point in time when many thousands of

flows are already in progress. A classifier should thus

be capable of recognising flows using N packets

starting from anywhere in a flow.

A
cc

ep
te

d
31

Ju
ly

06
 to

 b
e

pr
es

en
te

d
at

 I
E

E
E

 L
C

N
 2

00
6,

 N
ov

em
be

r
20

06
. P

ap
er

 m
ad

e
po

ss
ib

le
 in

 p
ar

t b
y

a
gr

an
t f

ro
m

 th
e

C
is

co
 U

ni
ve

rs
ity

 R
es

ea
rc

h
Pr

og
ra

m
 F

un
d

at
 C

om
m

un
ity

 F
ou

nd
at

io
n

Si
lic

on
 V

al
le

y Using a sliding window of N packets exposes

another potential problem. Application flow statistics

often change during the lifetime of a flow (for example,

the initial handshake of a new SMTP connection may

look quite different to the traffic while transferring the

body of each email). A classifier trained on feature

values calculated over entire flows (as done in most

previous research) may not recognise members of the

class when presented with feature values calculated

over subsets of an unknown flow.

The preceding considerations give rise to our novel

proposal for training ML classifiers. First extract two

or more sub-flows (of N packets) from every flow that

represents the class of traffic we wish to identify in the

future. Each sub-flow should be taken from places in

the original flow having noticeably different statistical

properties (for example, the start and middle of the

flow). Each sub-flow would result in a set of instances

with feature values derived from its N packets. Then

train the ML classifier with the combination of these

sub-flows rather than the original full flows.

4. Illustrating our proposal

To illustrate our proposal we construct the following

scenario: a real-time Naïve Bayes classifier must

accurately identify Wolfenstein Enemy Territory (ET)

[12] traffic mixed in amongst thousands of unrelated,

interfering traffic flows. ET is a highly interactive

online game representative of applications whose

traffic characteristics can change significantly over the

lifetime of each flow. We compare classification

accuracy using full-flows and sub-flows for various

values of N, and show that training with multiple sub-

flows allows us to achieve high Recall and Precision

even for N as small as 25 packets. We show that

classification performance can be maintained even

when packets are missed at the beginning of a flow.

4.1. The Naïve Bayes algorithm

Naïve Bayes is a well-understood supervised-

learning algorithm whose classification approach is

based on probabilistic knowledge [15][16]. In this

paper we use the Naïve Bayes implementation in

WEKA tools [17] with the use of supervised

discretisation to process numeric attributes option.

(Evaluation of our proposal with other ML algorithms

is the subject of current, ongoing work.)

4.2. Flows and features

Traffic flows are bidirectional streams of packets

between a given pair of hosts. A flow is defined using

the 5-tuple of source and destination IP addresses,

protocol (TCP & UDP) and the source and destination

ports. The first packet seen by the classifier determines

the ‘forward’ direction. For UDP traffic a flow is

considered to have stopped when no more packets are

seen for 60 seconds. For TCP traffic, a flow is stopped

when the connection is explicitly torn down or no

packets are seen for 60 seconds (which ever comes

first) [14].

We trained and classified using the following

features, calculated separately in the forward and

backward directions:

• Inter-packet arrival interval (minimum,

maximum, mean and standard deviation)

• Inter-packet length variation (minimum,

maximum, mean and standard deviation)

• IP packet length (minimum, maximum, mean

and standard deviation)

These features are simple to calculate over a sliding

window, are independent of flow length (thus allowing

timely calculation before an application has finished)

and require no knowledge of packet contents (thus

minimizing privacy intrusion or dependency on

particular packet payload encoding). We modified

Netmate tool [24] to calculate feature values for our

analysis.

4.3. Constructing training and testing datasets

To show the effectiveness of our proposed

approach we used completely different datasets for

training and testing our classifiers. Each dataset

consisted of both ET and non-ET traffic because

supervised learning algorithms work best when trained

with examples of traffic in the class of interest and

traffic known to be outside the class of interest (

‘interfering’ traffic).

The ET traffic consisted of two separate month-

long traces collected during May and September 2005

at a public ET server in Australia [18]. The distribution

of domestic and international traffic on this server was

consistent with previously published work [22]. For our

interfering (non-ET) traffic we utilised public traces:

two 24-hour periods collected by the University of

Twente, Germany, on February 6
th

 and 7
th

 2004 [20].

We will refer to the interfering traffic sources as T1

and T2 respectively.

Raw ET traffic traces taken at an ET server

typically contain far more short flows (clients probing

the server, usually less than 10 packets in total) than

actual game-play flows [22]. Balanced ET datasets for

A
cc

ep
te

d
31

Ju
ly

06
 to

 b
e

pr
es

en
te

d
at

 I
E

E
E

 L
C

N
 2

00
6,

 N
ov

em
be

r
20

06
. P

ap
er

 m
ad

e
po

ss
ib

le
 in

 p
ar

t b
y

a
gr

an
t f

ro
m

 th
e

C
is

co
 U

ni
ve

rs
ity

 R
es

ea
rc

h
Pr

og
ra

m
 F

un
d

at
 C

om
m

un
ity

 F
ou

nd
at

io
n

Si
lic

on
 V

al
le

y each month were created by taking all game-play flows

and then sampling an equal number of non-game play

(probe) flows from the raw monthly traces. Table 1

summarises the resulting balanced ET datasets we then

used for training and testing.

Table 1. ET datasets

Data Traces
Total

Flows

Total

Packets
Total Bytes

May 8688 107M 14G

Sep 6888 187M 26G

Table 2. Sampled interfering application flows

Our interfering traffic datasets were built by

extracting flows from T1 and T2 belonging to a range

of common applications. As payloads were missing we

inferred application type from the port numbers

(judged an acceptable approach because our primary

criteria for interfering traffic is that it was not ET). For

each application’s default port(s) we sampled a

maximum of 10000 flows per raw tracefile. Table 2

summarises the overall mix of traffic in our resulting

interfering datasets.

For each experiment we trained our classifiers using

a mix of ET traffic from the May dataset and

interfering traffic from T2 (total of 8,688 flows for ET

traffic mixed with 82,957 flows in the interference

class. Subsequent testing of each classifier scenario

was performed using a mix of ET traffic (6,888 flows)

from September and interfering traffic from T1 (a

mixture of 73,672 flows).

4.4. Some statistical properties of ET traffic

Consistent with many other online first-person

shooter games, ET traffic seen at a server can exhibit

three different phases: clients probing the server,

clients connecting to the server and clients actually

playing a game on the server [23].

Figure 1 partially illustrates this variation of an ET

flow’s characteristics as a scatter plot of two features -

Standard Deviation versus Mean of packet length -

calculated with N = 25 across 1000 samples of the May

dataset. Full flow and In-game feature values are shown

on the left, client probing and client connecting feature

values are shown on the right. With only two features

the regions are partially overlapping and partially

disjoint. A similar mix of overlapping and disjoint

regions also occurs with other features (such as Inter-

packet arrival time and Inter-packet length variation).

Figure 1 tells us that a classifier trained on full flow

feature values may have trouble recognising the

clusters of feature values calculated over small

windows of packets.

5. Results and analysis

First we look at the effectiveness of classifying data

using a sliding window across the test dataset and an

ML classifier trained on full-flow training sets. Then

we show how Recall and Precision improve

significantly when each ML classifier is trained using

multiple sub-flows instead. We use windows of size N

= 10, 25, 50, 100, 500 and 1000 packets. (During ET

game-play we see 20 pps from server to client and

roughly 28 pps from client to server, so these windows

correspond to 0.2, 0.5, 1.0, 2.1, 10.4 and 20.8 seconds

of actual time). Recall and Precision results are

averaged across 6,888 ET flows and 73,672 interfering

flows in the test dataset.

5.1. Training on full-flows, classifying with a

sliding window

Figure 2 shows Recall and Precision for Naïve

Bayes as each sliding window moves across the test

dataset. M is the number of packets ‘missed’ from the

beginning of each flow in the test dataset. The graphs

covers two periods – early client contact with the game

server (0 <= M <= 90) and during active game-play

(1000 <= M <= 9000). The classifier has been trained

Application Total flows

(T1, T2)

Total flows

(T1, T2)

HTTP, HTTPS 13.8K 13.3K

DNS, NTP 2.4K 2.7K

SMTP, IMAP, POP3,

Telnet, SSH

0.6K 0.5K

HalfLife 8.7K 10K

Kazaa, Bittorrent,

Gnutella, eDonkey

48K 56K

0 50 150 250

0
5

0
1

0
0

1
5
0

2
0

0

Mean Packet Length (C-S) (bytes)

P
a
c
k

e
t
L

e
n
g

th
 S

td
d

e
v
.(

b
y
te

s
) Full Flow

In Game

0 50 150 250

0
5

0
1

0
0

1
5
0

2
0

0

Mean Packet Length (C-S) (bytes)

P
a
c
k

e
t
L

e
n
g

th
 S

td
d

e
v
.(

b
y
te

s
) C-S Probing

C-S Connecting

Figure 1. Packet Length from Client to Server

A
cc

ep
te

d
31

Ju
ly

06
 to

 b
e

pr
es

en
te

d
at

 I
E

E
E

 L
C

N
 2

00
6,

 N
ov

em
be

r
20

06
. P

ap
er

 m
ad

e
po

ss
ib

le
 in

 p
ar

t b
y

a
gr

an
t f

ro
m

 th
e

C
is

co
 U

ni
ve

rs
ity

 R
es

ea
rc

h
Pr

og
ra

m
 F

un
d

at
 C

om
m

un
ity

 F
ou

nd
at

io
n

Si
lic

on
 V

al
le

y using features calculated over full flows from the

training datasets.

The classifier’s Recall degrades rapidly as we move

further from the start of each flow. Recall with small

windows (N = 10 or 25) is poor (65% and 40%) at the

flow’s beginning and drops off rapidly if we miss the

start of the flow. Recall with N = 1000 is decent (85%)

when the flow is captured from the beginning, but

rapidly drops below 10% if classifier misses more than

the first 30 packets. The Precision is 100% for all

window sizes and M values when Recall > 0.

Classifying in the middle of game-play (M > 1000)

gives Recall close to 0%, making the high achieved

Precision somewhat meaningless.

5.2. Training with individual sub-flows

Figure 3 shows the impact on Recall when the

Naïve Bayes classifier is trained using features from 25

packet sub-flows rather than full flows. Five separate

variants of the classifier are trained, using sub-flows

that cover packets 1-25, 21-45, 41-65, 61-85 and 2001-

2025 respectively of the original full flows in the

training datasets. In each case the classifier is tested

using a sliding window of 25 packets.

Recall drops off quickly if we miss more than the

first 10 packets of a flow when trained on packets 1-25.

On the other hand, Recall stays low until the sliding

window has moved beyond the early period of each

flow (M >>= 90) when trained on packets 2001-2025.

When trained on packets 21-45 the classifier’s Recall is

quite good even if we miss 30 or 40 packets, but

eventually becomes quite poor. Only by training on

packet 41 onwards (e.g. Model 41-65, and so on) can

the classifier exhibit good Recall when exposed to

game-play traffic (M > 90). Precision remained from

97.5% to 99.5% for Recall above 50% for each model.

Compared to Figure 2 training on a sub-flow picked

from within each original training flow significantly

improves our classification performance for M > 0 (i.e.

real-world scenarios where the classifier cannot be sure

it sees the start of every flow).

5.3. Training with multiple sub-flows

A logical next step is to train the classifier on a

combination of multiple sub-flows instances

representing different time periods within the original

full-flows. The classifier will then recognise new flows

if they have statistical properties similar to any of the

sub-flows on which the classifier was trained.

To illustrate this idea we trained a classifier using

the combination of different sub-flows at the same

time. From several tests with combinations of two,

three, four different sub-flows, we found the

combination of Model 1-25, 21-45, 41-65 and Model

2001-2025 from Figure 3 produces excellent

classification results.

Figure 4 shows this new classifier’s Recall as a

function of M (‘Multi Sub-Flow Model N=25’), along

with Recall for a classifier trained on Model 61-85

(best performed model in Figure 3) (‘ Best Single Sub-

Flow Model N=25’) and a classifier trained on full-

flows (using sliding windows of N=1000 and N=25).

The multiple sub-flows curve shows excellent

Recall early in a flow’s life (M < 40) (97.7-99%

compared to 77.1-93.4% for single sub-flow model).

For M > 40 the Recall is much the same as training on

the single sub-flow (95.1-99.6% vs. 93.4-99.7%

respectively). Training the classifier on full flows leads

to substantially degraded Recall relative to training on

sub-flows. Precision held steady at 98% when trained

on the multiple sub-flows (similar to the single sub-

flow model).

R
e
c
a
ll

(%
)

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
K

2
K

3
K

4
K

5
K

6
K

7
K

8
K

9
K

M (Packets)

0
10

20
30

40

50
60

70
80

90
100

N=10 N=25 N=100 N=1000

Figure 2. ET Recall: Classifier trained with full

flows, tested with four different sliding windows

R
e
c

a
ll

(%
)

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
K

2
K

3
K

4
K

5
K

6
K

7
K

8
K

9
K

M (Packets)

0

10

20

30

40

50

60

70

80

90

100

Model 1-25

Model 21-45

Model 41-65

Model 61-85

Model 2001-2025

Figure 3. ET Recall: Classifier trained on 25-

packet sub-flows, N = 25 for classification

A
cc

ep
te

d
31

Ju
ly

06
 to

 b
e

pr
es

en
te

d
at

 I
E

E
E

 L
C

N
 2

00
6,

 N
ov

em
be

r
20

06
. P

ap
er

 m
ad

e
po

ss
ib

le
 in

 p
ar

t b
y

a
gr

an
t f

ro
m

 th
e

C
is

co
 U

ni
ve

rs
ity

 R
es

ea
rc

h
Pr

og
ra

m
 F

un
d

at
 C

om
m

un
ity

 F
ou

nd
at

io
n

Si
lic

on
 V

al
le

y

The key point of Figure 3 and Figure 4 is that for

applications with time-varying traffic characteristics

there are significant benefits to training ML classifiers

using features calculated over one (or more) sub-flows

rather than full-flows.

It is worth noting that we performed similar

comparisons using N=10, but the absolute Recall and

Precision rates were lower than for N=25. Depending

on the particular application you are trying to classify,

there will be a trade-off between keeping N low (for

timely classification and reduced memory

consumption) and keeping N high (for acceptable

Recall and Precision). Characterising this trade-off is a

subject of further research.

5.4. Future work: Selecting sub-flows using

unsupervised ML algorithms

Our preceding analysis depended on manual

inspection of ET’s particular traffic characteristics.

Training a classifier for optimal recognition of another

application may require entirely different choice of

sub-flows. Ideally we would like to avoid having to

manually inspect and identify the optimal set of sub-

flows for each application of interest.

There is a potentially fruitful area of future work

along these lines. We propose utilising unsupervised

classification ML algorithms to automatically identify

key sub-flows within examples of an application’s full

flows. Intuitively this seems reasonable – unsupervised

learning algorithms identify ‘natural’ clustering of sub-

flows [16], from which we may identify a set sub-flows

representing key statistical characteristics of the full

flow. (The existence of natural clustering of feature

values in ET was hinted at in Figure 1.)

We ran a preliminary version of this idea on our ET

traces (using the Simple Expectation Maximisation

(EM) Clustering ML algorithm [27] implemented in

WEKA [17]) and found eight natural clusters of 25-

packet sub-flows during a game’s full flow. From this

we obtained eight sub-flows and trained and tested our

Naïve Bayes classifier. Compared against the use of

four sub-flows in Figure 4 the eight sub-flows achieved

slightly better Recall and basically identical Precision.

This brief analysis suggests that manual selection of

sub-flows for training is not necessary in the general

case. However, there are trade-offs. Initial investigation

suggests that whilst Recall increases with additional

sub-flows the Precision degrades somewhat. We intend

to further develop this line of research, identifying rules

and unsupervised learning algorithms that are best

suited for the automatic generation of multiple sub-

flows with which to train supervised ML classifiers.

(Nevertheless, practical classifiers can still be trained

using manually identified sub-flows in the absence of a

well developed method of automatic sub-flow

identification.)

6. Conclusions

Practical real-time traffic classifiers must accurately

classify traffic in the face of a number of constraints:

• The classifier should use statistical methods (such

as ML algorithms) as TCP/UDP port numbers

may be misleading, and packet payloads may be

opaque against direct interpretation

• ML classification should be done over a small

sliding window of the last N packets (to keep

memory requirements down and perform

classification in a timely manner)

• The classifier must recognise flows already in

progress (the flow’s beginning may be missed)

• Application’s can change their network traffic

patterns over time.

However, most previous research has focused on

training ML classifiers using statistical features

calculated across entire flows. This leads to poor

performance of the classifier when a flow’s early

packets are missed or the classifier is using a restricted

sliding window. Some recent literature discusses

classification on only the first few packets of every

flow, but they are also unable to cope when those early

packets are missed.

We propose a novel solution: The ML classifier

should be trained using statistical features calculated

over multiple short sub-flows extracted from full flows

generated by the target application. The sub-flows are

picked from regions of the application’s full flows that

have noticeably different statistical characteristics.

We show that this can significantly improve a

classifier’s performance when using a small sliding

R
e
c
a

ll
(%

)

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
K

2
K

3
K

4
K

5
K

6
K

7
K

8
K

9
K

M (Packets)

0

10

20

30

40

50

60

70

80

90

100

Multi.Sub-Flow Model N = 25

Best Single.Sub-Flow Model N = 25

Full-Flow Model N = 1000

Full-Flow Model N = 25

Figure 4. Recall: Comparing full-flow and sub-flow

training of the Classifier

A
cc

ep
te

d
31

Ju
ly

06
 to

 b
e

pr
es

en
te

d
at

 I
E

E
E

 L
C

N
 2

00
6,

 N
ov

em
be

r
20

06
. P

ap
er

 m
ad

e
po

ss
ib

le
 in

 p
ar

t b
y

a
gr

an
t f

ro
m

 th
e

C
is

co
 U

ni
ve

rs
ity

 R
es

ea
rc

h
Pr

og
ra

m
 F

un
d

at
 C

om
m

un
ity

 F
ou

nd
at

io
n

Si
lic

on
 V

al
le

y window, regardless of how many packets are missed

from each flow’s beginning. Our proposal is illustrated

by constructing, training and testing a Naïve Bayes

classifier for the detection of Wolfenstein Enemy

Territory online game traffic. With this particular

scenario we saw excellent results when trained on four

to eight sub-flows and using a sliding window of only

25 packets.

A number of future research directions open up.

These include:

• The use of unsupervised ML algorithms to

automatically identify optimal sets of sub-flows to

use when training the main classifier

• Characterising the optimal sliding classification

window size (N) for a wider range of applications

• Identifying how varying N trades classification

performance (Recall and Precision) against

resource consumption (memory consumption in

the classifier and timeliness of classification)

• Demonstrating the utility of our proposal for other

ML algorithms (not just Naïve Bayes)

• Evaluating the impact on classification accuracy

of packet loss in real networks (no literature has

explored this aspect to date)

• Exploring further reduction in the number of

features that must be calculated in real-time to

still achieve acceptable performance

• Testing our proposal in the presence of a larger

and more diverse collection of interfering traffic.

Overall we believe this small proposal significantly

assists the use of ML algorithms inside practical and

deployable IP traffic classifiers.

References

[1] L.Stewart, G.Armitage, P.Branch, S.Zander, "An Architecture

for Automated Network Control of QoS over Consumer

Broadband Links," IEEE TENCON 05 Melbourne, Australia,

21 - 24 November, 2005.

[2] Thomas Karagiannis, Andre Broido, Nevil Brownlee, kc claffy,

“Is P2P dying or just hiding?”, Proceedings of Globecom 2004,

November/December 2004

[3] F. Baker, B. Foster, C. Sharp, “Cisco Architecture for Lawful

Intercept in IP Networks,” Internet Engineering Task Force,

RFC 3924, October 2004

[4] “Snort - the de facto standard for intrusion

detection/prevention,” http://www.snort.org (accessed April

21, 2006)

[5] “Bro Intrusion Detection System - Bro Overview,” http://bro-

ids.org (accessed April 21, 2006)

[6] V. Paxson, Bro: A System for Detecting Network Intruders in

Real-Time, Computer Networks, 31(23-24), pp. 2435-2463, 14

Dec. 1999

[7] S. Sen, O. Spatscheck, D. Wang, “Accurate, Scalable

In-Network Identification of P2P Traffic Using Application

Signatures”, WWW 2004, New York, USA, May 2004

[8] A. McGregor, M. Hall, P. Lorier, J. Brunskill, “Flow

Clustering Using Machine Learning Techniques”, Passive &

Active Measurement Workshop 2004 (PAM 2004), France,

April 19-20, 2004

[9] Denis Zuev, Andrew Moore, "Internet traffic classification

using bayesian analysis techniques", ACM SIGMETRICS

2005, Banff, Canada, June, 2005

[10] S. Zander, T.T.T. Nguyen, G. Armitage, "Automated Traffic

Classification and Application Identification using Machine

Learning", Proceedings of IEEE 30th Conference on Local

Computer Networks (LCN 2005), Sydney, Australia, 15-17

November 2005

[11] S. Zander, N. Williams, G. Armitage, "Internet Archeology:

Estimating Individual Application Trends in Incomplete

Historic Traffic Traces", Passive and Active Measurement

Workshop (PAM 2006), Adelaide, Australia, March 30 - 31,

2006

[12] “Wolfenstein,” http://games.activision.com/games/wolfenstein

(viewed 19 December 2005)

[13] M. Roughan, S. Sen, O. Spatcheck, and N.Duffield, Class-of-

Service Mapping for QoS: A Statistical Signature-based

Approach to IP Traffic Classification. In ACM/SIGCOMM

IMC, November 2004.

[14] N.Williams, S.Zander, G.Armitage, "Evaluating Machine

Learning Methods for Online Game Traffic Identification,"

CAIA Technical Report 060410C, April 2006

[15] John, G., & Langley, P. (1995). Estimating continuous

distributions in Bayesian classifiers. Proceedings of the

Eleventh Conference on Uncertainty in Artificial Intelligence

(pp. 338-345).

[16] I. Witten and E. Frank, Data Mining: Practical Machine

Learning Tools and Techniques with Java Implementations,

Morgan Kaufmann Publishers, 2000.

[17] WEKA 3.4.4, http://www.cs.waikato.ac.nz/ml/weka/ (as of

February 2006).

[18] http://gs.act.grangenet.net/ as of 27th April 2006

[19] Auckland-VI trace archive,

http://pma.nlanr.net/Traces/long/auck6 .html, as of 26th March

2006

[20] University of Twente - Traffic Measurement Data Repository,

http://m2c-a.cs.utwente.nl/repository/, as of 26th March 2006

[21] J. Bussiere, S. Zander, "Enemy Territory Traffic Analysis,"

(pdf) CAIA Technical Report 060203A, February 2006

[22] S. Zander, D. Kennedy, G. Armitage “Dissecting Server-

Discovery Traffic Patterns Generated By Multiplayer First

Person Shooter Games,” ACM NetGames 2005, Hawthorne

NY, USA, 10-11 October, 2005

[23] G.Armitage, M.Claypool, P.Branch, "Networking and Online

Games - Undertanding and Engineering Multiplayer Internet

Games," John Wiley & Sons, UK, April 2006 (ISBN:

0470018577)

[24] NetMate, http://sourceforge.net/projects/netmate-meter/ (As of

October 2005).

[25] L.Bernaille, R. Teixeira, I. Akodkenou, A. Soule and K.

Salamatian, “Traffic Classification On The Fly”, ACM

SIGCOMM Computer Communication Review, Vol. 36, No.

2, April 2006.

[26] T. Karagiannis, K. Papagiannaki, M. Faloutsos, BLINC:

Multilevel Traffic Classification in the Dark, SIGCOMM’05,

Aug. 2005

[27] A. Dempster, N. Laird, D. Rubin, “Maximum Likelihood from

Incomplete Data via the EM Algorithm, Journal of Royal

Statistical Society, Series B, Vol. 30, No. 1, 1977.

