
REED: Optimising First Person Shooter Game
Server Discovery using Network Coordinates

GRENVILLE ARMITAGE and AMIEL HEYDE

Centre for Advanced Internet Architectures

Swinburne University of Technology, Australia

Online First Person Shooter (FPS) games typically use a client-server communication model, with
thousands of enthusiast-hosted game servers active at any time. Traditional FPS server discovery
may take minutes, as clients create thousands of short-lived packe t flows while probing all available
servers to find a selection of game servers with tolerable round trip time (RTT). REED reduces a
client’s probing time and network traffic to 1% of traditional server discovery. REED game servers
participate in a centralised, incremental calculation of their network coordinates, and clients use
these coordinates to expedite the discovery of servers with low RTTs.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems—client/server, Distributed applications

General Terms: Measurement, Performance

Additional Key Words and Phrases: internet protocol, home networks, server discovery, network
coordinates, latency estimation, search optimisation, online games, first person shooter

1. INTRODUCTION

Internet-based multiplayer First Person Shooter (FPS) games (such as Quake III
Arena, Counter-Strike:Source and Team Fortress 2) have become quite popular
in the past decade. They commonly operate in a client-server mode – players
control game clients, on a personal computer (PC) or dedicated games console,
that communicate with game servers hosting individual games. Game publishers
rely on enthusiasts – Internet service providers (ISPs), dedicated game hosting
companies and private individuals – to independently host the tens of thousands of
actual game servers active on the Internet at any time [Feng and Feng 2003].

A challenge for game clients is server discovery – often a manually-triggered
process of locating up-to-date information about active game servers so players
can select a suitable server on which to play. PC-based FPS games traditionally
utilise a ‘rendezvous’ service – active game servers register themselves with a master
server (often provided by the game publisher), and clients query the master server
for a list of currently registered game servers [Henderson 2002]. From the master
server’s list a client then probes each game server in turn for information such as
the network-layer round trip time (RTT), what game is currently playing, and the
number of current players. Players consider all this information, presented via the
client’s on-screen server browser, then choose one game server to join.

Some console-based games (such as XBox Live’s Ghost Recon and Halo 3 [Lee
et al. 2008]) utilise a central ‘matchmaking’ service. With XBox Live, after config-
uring their console to play a particular type of game, a subset of prospective players
will find that XBox Live has temporarily assigned their console to be a game server
for that type of game. The consoles of other players interested in playing the same

ACM Journal Name, Vol. V, No. N, October 2010, Pages 1–0??.

REED: Optimising First Person Shooter Game Server Discovery January 18, 2011 Page:2

game type will receive a list of IP addresses of current game servers from XBox Live,
actively probe available game hosts to determine RTT, and allow their players to
select an appropriate game server to join.

Competitive online FPS game play usually requires RTT ≤ 150ms ∼ 200ms [Ar-
mitage 2003; Beigbeder et al. 2004]. Clients may spend minutes probing thousands
of game servers to satisfy a player’s desire to select from a handful game servers
with acceptably low RTT. As each probe creates a new, short-lived network-layer
flow, server discovery can also temporarily overload devices that keep per-flow state
(such as wired or wireless home gateways doing network address translation, NAT).

Our challenge is to minimise the probing a client performs when locating a set of
playable game servers under the rendezvous service model. Our solution is REED1

– a novel application of previous work on virtual network coordinates [Ledlie et al.
2006; Dabek et al. 2004] in order to significantly reduce the time a player spends
doing server discovery, minimise a game client’s network traffic and limit per-flow
state imposed on network devices near the client.

Network coordinates are an artificial construct, where the euclidean distance be-
tween the coordinates of any two hosts approximates the actual RTT between them.
Under REED the master server calculates, and regularly recalculates, network co-
ordinates for each registered game server. A REED client initialises its position in
coordinate space relative to a small handful of game servers, then asks the mas-
ter server for a list of all remaining game servers ranked by increasing ‘distance’
from the client’s coordinates. By walking this list in order, the client probes game
servers in roughly ascending RTT and, therefore, can terminate the process early
once sufficient game servers with acceptably low RTT have been probed.

We illustrate our approach using Valve Corporation’s Counterstrike:Source (CS:S)
[Valve Corporation 2009a], and show that clients can discover playable game servers
with as little as 1% of the network resources and time used in traditional server
discovery. REED may be more generally applied to any FPS game that utilises the
rendezvous model of server discovery.

Our paper is organised as follows. Section 2 illustrates the challenges of current
FPS server discovery and discusses prior related work, while Section 3 introduces
network coordinates. REED is described in Section 4 and analysed in Section 5.
Sections 6 and 7 summarise performance issues and future work, and we conclude
in Section 8.

2. DISCOVERING PLAYABLE SERVERS – A CHALLENGE

Finding playable FPS game servers in a timely manner with minimal network load
is a well recognised problem [Claypool 2008]. Players who trigger server discovery
do not have the identity of any particular game server(s) in mind. Rather, they
hope to discover a reasonable selection of nearby (low RTT) game servers, from
which they can manually choose one based on additional characteristics such as a
server’s current game type, map type, number of current players, etc.

In this section we use Valve’s Steam game management system [Valve Corpo-
ration 2009d] and CS:S to illustrate the challenges of traditional server discovery,
then summarise some prior attempts to optimise the server discovery process.

1Easy to pronounce, and happens to be the acronym for “RTT Estimation to Expedite Discovery”.

(c) ACM, 2011. Author pre-print of the work, posted here by permission of ACM for your personal
use. Not for redistribution. Definitive version will be published in a future issue of ACM Transactions
on Multimedia Computing, Communications and Applications (TOMCCAP).

REED: Optimising First Person Shooter Game Server Discovery January 18, 2011 Page:3

Algorithm 1 Steam’s client-side server discovery process over UDP/IP
(1) Send a getservers query to master server at hl2master.steampowered.com:27011

(2) Receive a getserversResponse packet containing the <IP address:port> pairs of up to
231 active game servers (in no particular order)

(3) Send one A2S INFO Request probe packet to each game server in the getserversRe-
sponse list, eliciting an A2S INFO Reply packet from every active game server

(4) Repeat 1, 2 and 3 until the master server has no more game servers to return

2.1 Valve’s CS:S Server Discovery – an illustrative example

Active, public CS:S game servers register themselves with Steam’s master server so
they may be discovered and probed by CS:S clients. In mid-2009 there were over
36 000 CS:S game servers world-wide to chose from at any given time of day.

2.1.1 Registering with the master server. Game servers (re-)register with the
master server every five minutes by sending a short, UDP/IP ‘join’ request, receiv-
ing an acknowledgement with ‘challenge’ code, then replying with brief details2 of
themselves [Valve Corporation 2009b]. When shutdown gracefully, game servers
send a ‘quit’ message to the master server to de-register. Failure of a game server
to regularly re-register is treated as an implicit ‘quit’. Registered game servers are
included in the list of servers reported to CS:S clients who query the master server.

2.1.2 Client-side behaviour. A player triggers Algorithm 1 when they initiate
server discovery through their Steam client’s built-in server browser [Valve Corpo-
ration 2009b; 2009c]. Outbound A2S INFO Request UDP/IP packets are 53 bytes
long and inbound A2S INFO Reply packets (containing server-specific information
such as the server’s current map, game type, number of active players and so on)
average 135 bytes or more. Each game server’s RTT is estimated from the time
between sending an A2S INFO Request and receiving the matching A2S INFO Re-
ply. The on-screen list of available game servers (often ranked by RTT) is updated
as replies arrive and new RTT and server-specific information becomes available.
Players ultimately use this information to select and join one game server.

2.2 Traditional server discovery consumes significant time and network resources

Traditional game server discovery can take many minutes, and potentially disrupt
operation of NAT-enabled devices such as gateways and wireless access points.

2.2.1 Speed of server discovery. Probing thousands of game servers takes a noti-
cable amount of time. A Steam client caps its emission rate of A2S INFO Requests
based on its apparent network connection speed as indicated by the player (the
client offers settings such as ‘Modem - 56K ’, ‘DSL > 256K ’ or ‘DSL/Cable >
2M ’). For example, a client configured for ‘DSL > 256K ’ emits roughly 140 probes
per second and would take about 257 seconds to probe 36 000 game servers.

A player cannot simply overstate their network connection speed to enjoy higher
probe rates. Counterproductively, this can cause congestion on the player’s uplink,

2The challenge code, game server name, current game type, current map, self-reported geographic
region, any requirement for passwords before players can join, and so on.

(c) ACM, 2011. Author pre-print of the work, posted here by permission of ACM for your personal
use. Not for redistribution. Definitive version will be published in a future issue of ACM Transactions
on Multimedia Computing, Communications and Applications (TOMCCAP).

REED: Optimising First Person Shooter Game Server Discovery January 18, 2011 Page:4

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70

80

90

100

RTT (seconds)

C
D

F
 (

%
)

Australia

Japan

Taiwan

England

USA

Fig. 1. Clients in five different countries see
quite different distributions of measured CS:S
game server RTTs

0 50 100 150 200 250 300
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Seconds since first probe

R
T

T
 (

se
co

nd
s)

Probed RTTs (at ~140/sec)

Fig. 2. RTTs observed by an English CS:S client
probing 36K game servers (mid-2009). The
probe sequence is unrelated to observed RTTs

resulting in inflated RTT estimates and/or dropped (lost) probe packets.

2.2.2 Short-lived UDP flows can be problematic. Every UDP probe represents
a new, albeit short-lived, network layer flow. Devices that keep per-flow state
(such as NAT-enabled home gateways, or wireless hot-spot access points) usually
allocate memory proportional to the number of flows considered currently active.
UDP flows lack an explicit end-of-flow indication, so memory allocated for UDP
flow state is often not released until the flow has been idle for multiple minutes.
Conventional server discovery traffic can exhaust the memory of such devices, briefly
rendering them unable to forward new traffic (to or from anyone) until earlier flows
are declared idle and the associated flow state entries released.

2.2.3 All game servers are probed to find playable ones. Game servers are not
distributed uniformly around the planet, and the master server returns game servers
in no particular order. Consequently a client must probe all game servers before
presuming to have seen all (or even many) of the servers close to the client’s location.

For example, in mid-2009 there were many CS:S game servers in Europe, a mod-
erate number in the USA and few in Asia. Figure 1 reveals how clients in five
countries perceived this distribution of CS:S game server RTTs. Finding servers
with RTT ≤ 150ms ∼ 200ms is rare for Asia-Pacific clients but common for clients
in England (and European clients more generally).

Figure 2 shows the RTTs actually measured by an English client versus time since
the first probe (at 140 probes/second). The order of probing is clearly not driven
by any a priori knowledge of the RTTs likely to be experienced by the client. CS:S
clients in all regions experience this limitation, so clients far from the majority of
game servers (such as Figure 1’s Asia-Pacific clients) end up probing many game
servers that, realistically, are unsuitable for competitive online play. Simply probing
the master server’s first few hundred game servers would reduce a client’s network
traffic, but provide an unsatisfactory selection of game servers to the player.

From the game server perspective, registered game servers are regularly probed
by thousands of potential players (and some automated monitoring systems such
as http://www.serverspy.net/). As players probe before selecting a game servers
for play, both popular and unpopular (or idle) game servers attract similar levels
(c) ACM, 2011. Author pre-print of the work, posted here by permission of ACM for your personal
use. Not for redistribution. Definitive version will be published in a future issue of ACM Transactions
on Multimedia Computing, Communications and Applications (TOMCCAP).

REED: Optimising First Person Shooter Game Server Discovery January 18, 2011 Page:5

of probe traffic (easily Gbytes over many weeks [Zander et al. 2005]), regardless of
how far (in RTT) the players are from each server.

2.2.4 Filtering at the client or master server. Steam allows for client-side filter-
ing to simplify a player’s decision process (such as not showing full or empty servers
after they’ve been probed), but this does not reduce the number of probes sent.

A Steam client may also request only game servers of a certain type (such as
“only CS:S game servers”) or servers who have self-reported to be in one of eight
geographical regions (such as “US-West”, “Europe”, etc). The master server returns
a filtered subset of registered game servers, and the client sends fewer A2S INFO
Request probes. However, this coarsely-grained geographic selection is only a rough
guide to probable RTTs, and still leaves the client probing thousands of game
servers in no particularly useful order.

2.3 Related and prior examples of expedited FPS server discovery

Matching clients to game servers with suitably low RTTs may be fully or partially
automated – for example, re-locating clients to optimally placed servers [Cham-
bers et al. 2003], or a matchmaking service automatically assigning one client to
act as the temporary game server for nearby clients [Lee et al. 2008]. However,
rendezvous-based FPS server discovery involves players who wish to be presented
with, and personally select from, multiple active game servers having suitably low
RTT. We cannot simply auto-assign a player to the lowest RTT game server.

REED is not the first attempt to ensure closer game servers are probed and pre-
sented to players before more distant servers. The following scheme was envisaged
in [Armitage et al. 2006] and articulated in [Armitage 2008a; 2008b]: A client
first retrieves all registered game servers and arranges them into clusters likely to
have similar topological distance from the client (for example, game servers falling
under a common IP address prefix and countrycode (CC) [Armitage 2008a] or Au-
tonomous System (AS) number [Armitage 2008b]). A representative RTT to each
cluster is then established by probing a handful of game servers from each cluster
(‘calibration’). This client then performs ‘optimised probing’ by ranking clusters
in order of ascending RTT and probing all remaining game servers according to
their cluster’s rank. Clients located far from most game servers (such as Asian
CS:S clients) had their probe traffic and probing time reduced to less than 20%
of non-optimised server discovery. However, clients close to the majority of game
servers (such as European CS:S clients) saw basically no improvement.

Clustering has many weaknesses. Tens of seconds may pass before calibration
begins, as the client first retrieves all active game servers from the master server.
There may be thousands of calibration probes, proportional to the number of clus-
ters rather than the number of game servers. (For example, in [Armitage 2008b]
clustering on /16 address prefixes within each AS resulted in ∼ 1K clusters and
∼ 3K calibration probes for CS:S.) A few thousand active servers spread uniformly
among countries or ASes will generate far more calibration probes than a few thou-
sand servers in a handful of countries or ASes. Finally, there is a dependency
on third-party information. Clustering by country requires that either clients or
master server contain regularly-updated IP address geolocation mappings (such
as MaxMind’s GeoLite Country database, http://www.maxmind.com/app/geoip_
(c) ACM, 2011. Author pre-print of the work, posted here by permission of ACM for your personal
use. Not for redistribution. Definitive version will be published in a future issue of ACM Transactions
on Multimedia Computing, Communications and Applications (TOMCCAP).

REED: Optimising First Person Shooter Game Server Discovery January 18, 2011 Page:6

country). Clustering by AS requires IP address to AS mappings in the master
server, updated regularly from the Internet’s inter-domain routing infrastructure.

REED is not the first to utilise network coordinates for online game server discov-
ery. In 2009 Htrae [Agarwal and Lorch 2009] demonstrated that a novel synthesis
of geolocation and Earth-like network coordinates could improve the peer-to-peer
matchmaking process used by an XBox Live game (Halo 3). XBox Live assigns cer-
tain game consoles (peers) to be both client and (temporarily) a server for up to 15
other game client peers. Htrae uses third-party mappings of IP address to latitude
and longitude to ‘geographically bootstrap’ the calculation of network coordinates
for new game consoles. Each peer’s coordinates are refined through subsequent
inter-peer probing (clients seeking suitable game servers). Htrae’s improved match-
making performance (relative to other schemes) crucially relies on the geographic
bootstrapping of peer coordinates for initial estimates of RTTs between peers.

In contrast, REED significantly improves rendezvous-based server discovery. REED
clients use two orders of magnitude fewer calibration probes than CC- and AS-based
clustering approaches, regardless of how many game servers are currently registered,
or how they are topologically distributed. REED also does not rely on third-party
information to identify clusters of game servers with similar RTT or to bootstrap
its coordinate-based RTT estimation.

3. NETWORK DISTANCE ESTIMATION

Our goal is to minimise the number of IP packets a client (IPx) must send or
receive in order for it to rank multiple game servers (IPy) by ascending RTT, and
then probe them in rank order for additional server-specific information. Indirect
estimation and embedded network coordinates have emerged in the past decade as
two classes of techniques for an endpoint IPx to estimate its RTT to endpoint IPy

prior to packets being exchanged directly between IPx and IPy.

3.1 Indirect estimation

Indirect estimation involves a group of nodes probing each other to establish baseline
RTT knowledge, and a mechanism for inferring the RTT between IPx and IPy using
information about other active nodes near IPx and IPy respectively. Examples
include IDMaps [Francis et al. 2001], utilising regular active latency measurements
made by Tracers located around the Internet, and King [Gummadi et al. 2002],
using recursive queries through the domain name system (DNS) infrastructure to
infer latency between any two IPx and IPy. However, this is suboptimal for FPS
server discovery. In order to initially rank all IPy by their RTTs, an IPx would
send at least one query packet to someone else for each IPy whose RTT it wants to
infer. The client might as well probe each IPy directly (i.e. traditional FPS server
discovery). Refinements such as Meridian [Wong et al. 2005] may directly answer
questions such as “what nodes are within X ms of target T”, but they require a
cooperating infrastructure of Meridian nodes who actively probe each other and
their targets, and forward or resolve queries on behalf of a querier, IPx.

3.2 Embedded Network Coordinates

Global Network Positioning (GNP [Ng and Zhang 2001; 2002]) first introduced
the idea of modeling the Internet as a virtual geometric space. Hosts are assigned
(c) ACM, 2011. Author pre-print of the work, posted here by permission of ACM for your personal
use. Not for redistribution. Definitive version will be published in a future issue of ACM Transactions
on Multimedia Computing, Communications and Applications (TOMCCAP).

REED: Optimising First Person Shooter Game Server Discovery January 18, 2011 Page:7

Fig. 3. Vivaldi: Differences between predicted
and measured RTTs compresses or stretches
‘springs’, pushing the node to new coordinates.

Fig. 4. Vivaldi: After many iterations, nodes are
pushed to positions with minimum discrepancy
between ‘distance’ and measured RTTs.

network coordinates such that the ‘distance’ between two hosts in an N-dimensional
space is roughly proportional to the real RTT between them (this is known as
embedding). If IPx and IPy learn each other’s coordinates by indirect means, they
can calculate the likely RTT between themselves prior to direct communication.

3.2.1 Landmarks. GNP utilised Landmarks – a set of cooperating hosts who
actively measure RTTs between themselves. These RTTs are shared with a central
node, which calculates coordinates for each Landmark by minimising the overall
error between inter-Landmark distances and measured RTTs. Landmarks become
anchor points in the coordinate space – other hosts calculate their own coordinates
after measuring the RTTs to a subset of Landmarks whose coordinates are already
known. A challenge for GNP is the need for computationally-intensive, centralised
(re)calculation of Landmark coordinates whenever the full-mesh matrix of inter-
Landmark RTTs changes (either due to the RTT measurements fluctuating over
time, or Landmarks being turned on or off).

3.2.2 Distributed incremental calculation. Vivaldi [Dabek et al. 2004] elimi-
nated Landmarks and introduced a decentralised system of incremental coordinate
calculation that piggy-backed on pre-existing packet exchanges between participat-
ing nodes (such as occur between peers in a peer-to-peer file sharing system).

Vivaldi models nodes as masses connected by springs to other nodes. The rest
length of each spring is the measured RTT between nodes. Figure 3 shows each
spring under tension (or compression) if the rest length differs from the distance
between each nodes’ current coordinates. Node X measures the RTT to, and learns
current coordinates of, node Y each time it communicates with node Y for some
other reason. Node X then incrementally adjusts its own coordinates to minimise
the potential energy in the spring notionally connecting X and Y. Figure 4 shows a
node converged, after many communication exchanges, on a set of coordinates that
are useful for RTT prediction. (Node X likewise regularly shares its coordinates
with its peers so they may update their own coordinates.)

Vivaldi distributes the computational load of coordinate (re)calculation across
both time and space. Nodes need not be a neighbor to every other node, and
nodes update their coordinates incrementally and asynchronously (relative to their
peers) as RTT measurements are made or neighboring nodes are turned on or off.
Related techniques have also emerged that differ primarily in the details of how
they position nodes in coordinate space.
(c) ACM, 2011. Author pre-print of the work, posted here by permission of ACM for your personal
use. Not for redistribution. Definitive version will be published in a future issue of ACM Transactions
on Multimedia Computing, Communications and Applications (TOMCCAP).

REED: Optimising First Person Shooter Game Server Discovery January 18, 2011 Page:8

3.2.3 An imperfect predictor. Network coordinates can be an imperfect predic-
tor of both absolute distance and relative rank order [Lua et al. 2005; Ledlie
et al. 2006]. One underlying assumption is that network paths adhere to the tri-
angle inequality, which says distance vectors A and B between three nodes satisfy
|A| − |B| ≤ |A + B| ≤ |A| + |B|. However, this may not always hold for paths
between arbitrary internet hosts. RTT measurements vary over time as network
conditions change, so coordinates calculated at time t = T0 may not estimate RTT
present at time t > T0. One must use enough dimensions to accurately capture the
complexities of Internet topology, yet not use more dimensions than required for
sufficiently accurate RTT prediction. For example, [Dabek et al. 2004] showed 5D
coordinates provide better accuracy than 2D or 3D, albeit with increasing compu-
tational complexity and diminishing improvement per extra dimension.

3.3 Using network coordinates to augment FPS Server Discovery

Despite the imperfections, network coordinates have shown promise when build-
ing multicast trees for group communication systems [Vik et al. 2009] and have
excellent potential to augment traditional FPS server discovery.

If game servers and clients have network coordinates, we may estimate the relative
distances between a client and all game servers before the client begins probing for
game-state details. By subsequently probing from closest to furthest, clients can
expect to learn the game state details of the closest N game servers within (N + δ)
probes (for some small integer δ). This is a major improvement over the traditional
approach of probing every game server in no particular order.

It is more important for coordinates to establish usable relative distances than
accurate absolute distances. For example, game servers {X,Y,Z} would be probed in
the same order whether their coordinates place them {30,70,90}ms or {35,50,110}ms
from the client. Furthermore, the relative rankings need not be perfect. As noted
in Section 2, a player has no a priori expectations of which game servers they will
see first. At a plausible 100+ probes/second, modest misordering will be quickly
hidden as the client dynamically updates its on-screen list of game servers ranked
by the actual RTTs measured when each game server is probed.

4. REED – NETWORK COORDINATES FOR FASTER SERVER DISCOVERY

Here we describe the REED architecture and illustrate REED as a variant of
Steam’s existing CS:S server discovery process in a virtual 4D coordinate space.

A REED master server (RMS) borrows key ideas from Vivaldi to establish and
track the coordinates of registered game servers. REED clients borrow from GNP to
establish their own coordinates by using selected game servers as Landmarks, then
rely on the RMS to rank game servers by distance from the client when queried.
REED clients may stop probing when sufficient ‘close’ game servers have been
probed, or a player-specified RTT threshold is reached.

4.1 Centralised, incremental calculation of game server coordinates

REED performs centralised, incremental calculations of game server coordinates
distributed over time. We borrow from Vivaldi the idea of incrementally nudging a
node closer to its real coordinates over successive RTT measurements, using a model
of interconnecting springs whose tensions are based on RTTs measured between
(c) ACM, 2011. Author pre-print of the work, posted here by permission of ACM for your personal
use. Not for redistribution. Definitive version will be published in a future issue of ACM Transactions
on Multimedia Computing, Communications and Applications (TOMCCAP).

REED: Optimising First Person Shooter Game Server Discovery January 18, 2011 Page:9

Algorithm 2 REED game server (re)registration with RTT sampling
(1) Game server (G) sends short UDP ‘join’ packet to REED master server (RMS)

(2) RMS returns a single UDP packet containing:
(a) A unique challenge code,
(b) Tregistration (number of seconds until re-registration is next required), and
(c) A list Sprobe = {S1, S2, ... SN}, where Sx is the 6-byte <IP address:port> pair

of another game server

(3) G issues normal server discovery probes to each member of Sprobe, creating a list
Rprobe = {R1, R2, ... RN}, where Rx is the RTT measured to Sx

(4) G returns a single ‘challenge-response’ UDP packet to the RMS, containing the unique
challenge code, local server details and the list Rprobe

neighbors. We differ from Vivaldi in that the RMS both controls when neighbors
(game servers) probe each other, and centrally updates each neighbor’s coordinates
using the measured RTTs. Beneficially our proposal minimises the cooperation and
trust required between independently operated game servers.

Algorithm 2 extends the CS:S approach in Section 2.1.1 to now collect RTT
samples as game servers regularly re-register. The RMS requests each re-registering
game server to issue normal server discovery probes (as a client would) to a small set
of ‘neighbor’ game servers (the Sprobe list) and then return these measured RTTs
(the Rprobe list). REED assumes valid RTTs lie in the range 0 ≤ Rx ≤ 998ms, with
Rx = 999 indicating server Sx can be ignored (it did not answer within 998ms).
Every member of Sprobe thus has a matching member in Rprobe. The RMS minimises
global synchronisation of registrations by modulating Tregistration (time to next re-
registration) as game servers re-register. (Tregistration = 300 and Sprobe = {}
would mimic conventional CS:S, where game servers exchange three packets with
the master server every five minutes.)

A game server’s coordinates are initialised to (0,0,0,0) when it first registers. Each
time it re-registers, the RMS selects a set of target neighbors to probe (Sprobe), and
uses the returned RTT measurements to drive incremental (Vivaldi-like) updates to
game server coordinate stored in the RMS. Over time all game server coordinates
converge to a useful set of values, and RMS memory use scales with the total number
of registered game servers. Section 7.2.1 discusses possible Sprobe selection strategies
trading timely convergence against number of probes emitted per re-registration.

REED treats RTT measurements as bidirectional – when game server Ga probes
game server Gb, the RMS treats this as though Gb also probed Ga. Multiple game
servers may use different ports to share an IP address – the RMS treats these as
being the same node when constructing Sprobe and calculating coordinates.

4.2 Calibration – using landmarks to position a client in coordinate space

REED clients begin server discovery by using Algorithm 3 to position themselves
relative to a set of landmark game servers with known coordinates. A getCalib-
Servers message requests Ncalib game servers and the RMS selects and returns
these landmarks (the Scalibprobe list) in a getCalibServersResponse reply. Direct
probing then establishes the RTT to each server, and the client locally calculates its
own coordinates (Cw, Cx, Cy, Cz) such that they minimise the overall error between
(c) ACM, 2011. Author pre-print of the work, posted here by permission of ACM for your personal
use. Not for redistribution. Definitive version will be published in a future issue of ACM Transactions
on Multimedia Computing, Communications and Applications (TOMCCAP).

REED: Optimising First Person Shooter Game Server Discovery January 18, 2011 Page:10

Algorithm 3 Calibration: Positioning a game client in coordinate space
(1) Game client (C) sends a getCalibServers query to the RMS, indicating the number of

game servers C wishes to probe (Ncalib)

(2) RMS sends a getCalibServersResponse packet to C, containing a list Scalibprobe =
{S1, A1, S2, A2, ... SN , AN}, where N ≤ Ncalib and Ax represents the (w, x, y, z)
coordinates of a landmark game server whose 6-byte <IP address:port> pair is Sx

(3) C measures RTT to each member of Scalibprobe using normal server discovery probes

(4) Using the measured RTTs, C calculates its probable location (Cw, Cx, Cy, Cz) in
coordinate space relative to the coordinates (Ax) of each member of Scalibprobe

Algorithm 4 Probing in order of increasing distance from client
(1) Game client (C) sends a getOrderedServers query to the RMS containing:

— (Cw, Cx, Cy, Cz), the client’s present location
— RTTlimit, only game servers closer than this RTT in ms (≥ 999ms for “all servers”)
— Slast, the last 6-byte <IP address:port> pair returned in the immediately preceding

getOrderedServersResponse (or <0.0.0.0:0> if this is the first query)

(2) C receives a getOrderedServersResponse containing Sprobe = {S1, S2, ... SN}, where
— Members of Sprobe are pre-sorted in order of increasing euclidean distance from C
— Sx is the 6-byte <IP address:port> pair of an individual game server
— N is limited by packet size (N ≤ 230 using Steam’s packets, Section 6.4)

(3) C issues regular server discovery probes to each member of Sprobe in turn

(4) C repeats steps 1, 2 and 3 until the RMS has no more game servers to return (indi-

cated by the last member of Sprobe being <0.0.0.0:0>) or the client terminates early

(Sections 4.3.2 or 4.3.3)

measured RTTs and euclidean distances to the coordinates (Ax) of each landmark
(Sx). Section 7.2.2 discusses strategies for selecting members of Scalibprobe.

For N-dimensional space we need Ncalib ≥ (N +1) landmarks. (In Section 5.2 we
use Ncalib = 14 and find diminishing benefits to Ncalib ≥ 12 using 4D coordinates.)

4.3 Ordered Probing and Early Termination (Auto-stop)

After establishing its own coordinates, a REED client performs ordered probing of
game servers using Algorithm 4 (based on Algorithm 1). We describe four possible
techniques for automatic early termination of probing (auto-stop) once a player has
enough information from which to make their selection (evaluated in Section 5).
We assume the client lets a player specify their maximum tolerable RTT (RTTstop)
and/or how many of the closest game servers they wish to chose from (Nclose).

4.3.1 Probing in order of increasing distance from client. Upon receiving a
client’s initial getOrderedServers query (Slast = <0.0.0.0:0>) the RMS ranks all
registered game servers in order of ascending distance from the client’s declared
location, (Cw, Cx, Cy, Cz), up to a nominated RTTlimit (for RTTlimit ≤ 998ms, or
RTTlimit = 999ms to return all game servers). The client then uses repeated ex-
changes of getOrderedServers and getOrderedServersResponse to retrieve and probe
this ordered list of game servers.

By using the RMS to rank game servers the client can begin probing once the
(c) ACM, 2011. Author pre-print of the work, posted here by permission of ACM for your personal
use. Not for redistribution. Definitive version will be published in a future issue of ACM Transactions
on Multimedia Computing, Communications and Applications (TOMCCAP).

REED: Optimising First Person Shooter Game Server Discovery January 18, 2011 Page:11

Algorithm 5 Early termination when RTTs exceed player’s threshold (RTTstop)
(1) Wautostop is the sampling window size (e.g., Wautostop = 100)

(2) Wait for at least Wautostop servers to be probed

(3) Terminate Algorithm 4’s probing when RTTbottom ≥ RTTstop, where RTTbottom is
the 2nd percentile of the last Wautostop RTT samples

Algorithm 6 ‘Intelligent’ probing of Nclose game servers
(1) Wautostop is the sampling window size (e.g., Wautostop = 100)

(2) Nclose is the number of suitable servers to return

(3) Terminate Algorithm 4’s probing when B ≥ Nclose, where:
—B is the number of probed game servers with RTTs below the current value of

RTTbottom, and RTTbottom is the 2nd percentile of the last Wautostop RTT samples

first getOrderedServersResponse message arrives. This also avoid sending every
game server’s coordinates to the client, which maximises the number of servers we
can fit in each getOrderedServersResponse message packet.

4.3.2 Terminate after probing all servers under RTTstop. Algorithm 4 relies on
the RMS calculating reasonably correct absolute distances. In practice a client
using Algorithm 4 alone should set RTTlimit = (RTTstop + δrtt). The positive
offset (δrtt) helps minimise the number game servers excluded because their RTTs
are estimated to be over, even when actually under, a player’s nominated RTTstop.

An alternative is to set RTTlimit = 999ms and implement Algorithm 5 – a
client-side auto-stop approach from [Armitage 2008b] that presumes the RMS gets
relative rankings reasonably correct so measured RTTs generally trend upwards.
Algorithm 5 terminates Algorithm 4 when the 2nd percentile of recent RTTs exceeds
RTTstop (to minimise premature auto-stop due to outliers whose RTTs diverge
noticeably from the distance implied by their coordinates).

Unfortunately, neither scheme helps clients who are close to the majority of game
servers. For example, English CS:S clients (Section 2.2.3) would probe over 90% of
all CS:S servers if we used Algorithm 5 with a quite realistic RTTstop ≤ 150−200ms.

4.3.3 Terminate after probing Nclose suitable servers. A player who triggers
server discovery seeks a practical selection of Nclose nearby game servers, not simply
‘the closest’ game server nor the thousands whose RTTs may fall below RTTstop.

We propose two extensions to Algorithm 4. Our ‘First’ method is to simply query
the first Nclose game servers in the order they are returned by the RMS (regardless
of whether each probed server’s RTT is consistent with its relative rank).

Our ‘Intelligent’ method adapts to any divergence between measured RTTs and
the master server’s predicted distances. Algorithm 6 terminates Algorithm 4 once
we have probed Nclose game servers whose RTTs are under a (slowly increasing)
lower threshold, RTTbottom. By presenting the player only those game servers whose
RTTs are under RTTbottom, we remove from consideration any outliers whose RTTs
noticeably diverge from the distance implied by their coordinates.

(A trivial extension to both methods would be to probe Nclose game servers that
also meet additional criteria, such as “has X players” or “uses map Y”.)
(c) ACM, 2011. Author pre-print of the work, posted here by permission of ACM for your personal
use. Not for redistribution. Definitive version will be published in a future issue of ACM Transactions
on Multimedia Computing, Communications and Applications (TOMCCAP).

REED: Optimising First Person Shooter Game Server Discovery January 18, 2011 Page:12

5. IMPACT OF REED ON CLIENT PERFORMANCE

Our core contribution is to show the extent to which REED can benefit clients
under typical conditions. An RMS would usually operate for months at a time,
so for our typical case we treat the RMS as having already established reasonably
stable coordinates for registered game servers. Hypothetically assuming Steam was
upgraded to use REED, we illustrate REED’s positive impact on a CS:S client’s
server discovery process for clients located in three different parts of the planet,
and evaluate the impact of Section 4.3’s different auto-stop techniques.

5.1 Methodology – Emulating a deployed REED system

Upgrading all CS:S servers and clients with REED was impractical. Instead we
constructed two matrices of live RTT measurements involving active CS:S game
servers in mid-2009, and used this to emulate both the calculation of game server
coordinates by an RMS and a client’s calibration and ordered probing sequence.

Network coordinates works best when the number of dimensions, and shape of
the virtual space, capture the vagaries of internet routing. We evaluated regular 2D,
3D, 4D and 10D coordinates, and the 2D+H (“height”) coordinate scheme proposed
for Vivaldi [Dabek et al. 2004].

5.1.1 Emulating the REED master server’s positioning of game servers. First,
we configured a real CS:S game server on each one of 15 PlanetLab (PL) [PlanetLab
2008] nodes around the world (five each from Europe, North America and Asia).
Each of these PL nodes then probed all (∼36 000) registered CS:S game servers
multiple times (including those on the other PL nodes) to build up a matrix of
RTT samples (using Qstat, a command-line game server browser, http://www.
qstat.org) . Each PL node probes the CS:S game servers on every other PL node
four times back to back, then probes all other CS:S game servers over the next four
to five minutes. We repeated this process five times, once every 25 minutes.

Using the minimum RTTs captured across multiple measurements (the ones least-
influenced by transient network congestion) we built a 15x15 matrix of RTTs be-
tween the PL nodes, and a 15xN matrix of RTTs between each PL node and the
∼36 000 CS:S game servers. We calculated 2D, 3D, 4D, 10D and 2D+H coordinates
for all CS:S game servers in two steps. First, we used the 15x15 matrix of RTT
measurements to calculate the positions of our 15 PL nodes relative to each other
(in each coordinate space). These 15 PL nodes were then used as landmarks to
calculate the coordinates of every other active CS:S game server (using the RTT
measurements in our 15xN RTT matrix).

5.1.2 Emulating a client’s calibration and ordered probing steps. We evaluated
the impact of REED from the perspective of five clients in Europe, America and
Asia respectively. To do so, each of the 15 landmark locations were, in turn, treated
as a client location that is presumed to have probed the remaining 14 landmark
nodes to establish its coordinates. (In other words, Scalibprobe from Algorithm 3
always contains the other 14 landmark PL nodes, and probing is emulated by
reading RTTs from the 15x15 RTT matrix created in Section 5.1.1.) For each
client we then sorted the ∼36 000 CS:S game servers by ascending ‘distance’ from
the client (using coordinates calculated in Section 5.1.1 for the CS:S game servers).
(c) ACM, 2011. Author pre-print of the work, posted here by permission of ACM for your personal
use. Not for redistribution. Definitive version will be published in a future issue of ACM Transactions
on Multimedia Computing, Communications and Applications (TOMCCAP).

REED: Optimising First Person Shooter Game Server Discovery January 18, 2011 Page:13

0 10 20 30 40 50 60

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Error (ms)

2D+H
2D
3D
4D
10D

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n
of

 P
ai

rs

Fig. 5. Distance estimation error between pairs
of PL nodes (landmarks) and CS:S game servers
when positioned as in Section 5.1.1 with 2, 3, 4
and 10 dimensions or 2D+H coordinates

6 8 10 12 14

Number of Landmarks

R
el

at
iv

e
E

rr
or

0.0

0.1

0.2

0.3

0.4

0.5

0.6

●

●

●

●

●
●

●
●

● ●

Median
Mean

Fig. 6. Relative error between estimated and
measured RTT in 4D space vs number of land-
marks (across all clients to all 36K CS:S game
servers)

Each client’s ordered probing was then emulated by looking up (in the 15xN RTT
matrix) previously measured RTTs between the client and each game server.

5.1.3 Choice of coordinate space and number of landmarks. Coordinate systems
trade complexity against estimation accuracy. Figure 5 compares the distribution
of absolute error between estimated and measured RTTs for every pair of landmark
(PL) nodes and 36K CS:S game servers when using 2D, 3D, 4D or 10D euclidean
coordinates or the 2D+H scheme. 2D performs worst, 2D+H is similar to 3D
coordinates3, and 4D is better again and indistinguishable from 10D. Thus we
chose 4D coordinates for our detailed analysis of ordered probing and auto-stop.

Embedding a client in an N-dimensional coordinate space requires probing at
least N + 1 landmarks, but not too many more landmarks than are required for
a reasonable estimate of the client’s coordinates. Using 4D coordinates, Figure 6
shows the distribution of error between estimated and measured RTTs measured
from all 15 clients to all 36K CS:S game servers versus number of landmarks use to
establish each client’s coordinates. Relative error stabilises for ≥ 12 landmarks, so
our use of 14 landmarks in Section 5.1.2 and subsequent analysis is reasonable.

5.2 Results from a REED client’s perspective

Here we show the degree to which REED clients probe game servers in ascending
order of actual RTT, and consider each of Section 4.3’s auto-stop techniques.

5.2.1 Ordered probing results in generally ascending RTT. Figures 7, 8 and 9
show the initial 14 calibration probes and subsequent ordered probing experienced
by REED clients in Europe, America and Asia respectively. Compared to Figure 2,
REED clients see generally ascending measured RTTs and many low-RTT game
servers within the first few seconds of probing. This strongly suggests that REED
clients can, and should, implement one of Section 4.3’s auto-stop techniques.

3Vivaldi intended the H term to capture the latencies of access links, assuming that no two nodes
share an access link. This assumption is often violated by groups of FPS game servers.

(c) ACM, 2011. Author pre-print of the work, posted here by permission of ACM for your personal
use. Not for redistribution. Definitive version will be published in a future issue of ACM Transactions
on Multimedia Computing, Communications and Applications (TOMCCAP).

REED: Optimising First Person Shooter Game Server Discovery January 18, 2011 Page:14

o

oo

o

o

o
o

o

oo

o

o

o

o

0 50 100 150 200 250

Seconds since first probe

0

100

200

300

400

500

R
T

T
 (

m
s
)

++
++++++++++
+++++++++++++++++++++++++++++++++++++++
++
++
+++++
++++++++
++++++
+
++++++
+
+
+++++++++++
++++++++++++
+++++
+++++++++++++
+++++++
+++++++++++++++
+
++++++
+++++++
+++++
++++++++++++++++++
+++++++++++
++++
+++++++
+
+++++
++
+++++
++++++++
++++++++++++++++++++
+
+++
++++++++
+++++
+++++++++++++
+
+
++++
+++++++
+++++
+++++++++++++++
+++++++++
+++++++++++++++++++
+
+++++++++++
+
++++++++
+++++++++++++++
+
++++++++++++++++
+++
+++++++++++++
+
+++
+++++++++++++++++++++++++++++++++
+++++++++++++++++
+++++++++
+
+++++++++++
++++++++++++++++++++++++
+
+++
+
+
+
++++
+++++++++++++++++
++++++
+++++++++++++++
+++++++++++++
++++++
+
+
+
++++++++++++
+++++++++++++
+++++++++++
+
++++++
+++++++
+++
+
+++++++++
+++++++++
+
++++
+++++++
+++++++++++
+++++
+++++++++++++
+
+++++
++++++++++++++++++
+++
++++++++++++++++++++++++++
++++++++
+
+
+
++++++++++
++++++++
+
+++
++++++++
++++++
++++++
+
+++++++
++++++++++++++++
++++++++++
+
+++++++++++++++++++++++++++++
+++++++
+++++++++
++++++
+++++++++
+++++++
++
++++
++
++++
+
+++++++++
++++
++++++++
++++
+++++++++++++++++++++++++++++++++
+
++++++++++++
+++++++
++++
+
++
+++++++++++++++++++++++++++++++++++
+++++
+
++++++
++++++++++++++++++++++++
++++++++++++
+
+++++++++++++++++
++++++++++++++++++++++++++++++++++++
+++++++++++
++++++++++++++++++++++
++++++
++++++
++++++++++++++++
+
+++++++
+
++++++
+
+++++++
++++++
+++
+++++++
++++++++++++++++++
+++++
+++++++
+++++++
+++++
++++
++++++
+++++
++++++++++++++
++++++++++++
++++++++++++++++++++
++++++++++
+++++++
+
++++++++++++++++
+++++++++++++++++++++++
+++++++
+
++++++++++++++++++++++
+++++++
+
++
+
+++++++++
++
+
++++
++++++++++++
++++
++++++++++++++++
++++++++++
++++++++++
++++++++++
+
+
+
++
+++++++++
+++++++++++++++
+++++++
+
++++
+++
+++++++++++++
++++++
++++++++++++
+++
++++++++++++++
+
+
+++++++
++++
++++++
+++++++
+++++++
+++++++++
+
+++++
+
+++++++++++
+
+++++
+++++++
++++++++++++
+
++++++++++++
++++
+
++++++
+
+
+++++++
+
++++++++++++++
+
++++++
+
+++++++++++++++++
++++++
+++
+
++++++
++
+++++++++++
++++++++
+
+++
+++
+
++++++
+++++++++++
+++++++++++++
+
++++++++++++++
+++++++
+
++
+
++++++
+++++++++
+++
+++
++++++
+++++++++
+
++
+++++++++++
+++++++
++++++
+
++++
+
+++++
+
+++
+++++++
++++++++++++
++++
+
+
++
++
+++++++++
++
++++++
+
+++++++++
+++++++++++
+++
+
+
++++++++++++++++++++
+++++
+
+++++
+++++++
+
+
+
++++++++++++++
++
++++
+
+
+++++++++++++
++++
+
++++++++
++++++++++
+++++++
+
++
+
++++++++++
+
+
++
+
+++
+
+++++++
+
++++++++++
+++++++++
++
+++
+++
+
+++++++
+
+
+
++++
++
++++
+
++
+++
+
++++++++
++++
+
++++
+++
+
+
+++++++++
+
+++++++++++++
+++++++++++
++
+++++++
+
++
+++
++++
+++++++++
++++++++
+
++
+
+
++++++++++
+
++++++++++
++++++++++
+
+++
+++++++
+++++++++++++++

+
++++
+++++++++
+
++
+
+
+
+
+
+
++++++++
+
+
+++
+
++++
+
+
++++++++++
+++++++++++

+

++++++
++++++
+
+++++
+
++++++++
++++++++++++
++++
+

+
++++++++++++++++++
++++++++++
+
+++++++++++++++
+
++++++++
++
++
++++++++++++
++++++
+
+++++++++++
+
+++
+
++++
++++++++++++++++
+
++
+++++++++
+
++++
++
+
+++
++
++++++++
+
+
++++
+++++
+++++++++++
+
+++++++
++++++++++

+

+
+++++++
+

+
++++++++++++
++++
++++++
+
+++
+

+++
+
++++++
+
++++++
+
+++++++
++
++++++
+++++
+
+++++++
+
+
+
++
++++++
++++
+
+
+
++++++++++++
++++++
+
+++
+++
+++++
++++
+++++
+++++++
+++++++++
++
++++++
+
+++++++++
+
+++++++
+++++++
+
+

+
+
+
++++++++
+++++++
+++
++++++
+
+++++++++
++++++
+

+++
+

++
+++++++
+
+++
++++++++++++
+++
+
++
++++
+
+++++++++

+

+
+++++++
+++++++++++
+
+++++++
++++++++++
+
++++++++++
+
+++
+
+

+
++

++++
++++++++
+

++
+
++++++
++
++
+++++++
++
+

+++
+
+++++
++
+
++
+

+

+
+
+++++++++
+
+++++
++++++++
+
++++++
+

+++
+

++

+
+
+
+
+
++++
+
+++
+
+++
+
+++

+

+++

++
+++++
+
+

+
+++++
+
+++++
+
+
+

+
++

+

+

+
+
++++
+
+++
++
+
++
+++++++++
+
+

+
++++++
+
++
++
+
++
++++

++
+
+
+
+
+
++
++

+

+

++++
+
+
+
+
+
++

+
+++

+

+

+
++++

+

+++

++
+++++
+
++
++

+
++++
+
++
+++
+
+
+++

+
+
+

+
+
+

+
+
+++++
+
++++
+
+++
+
+

+
++
+
+++

+

+

+

+
+

+
+++++++

+

++
+

+

++
+
+++

+++++

+++

+

+
+++

++
+++++

+

++

+

+
+

+

+
+
++
+

+

++++
+
+
++
+
+
++
+
+++
++

++
+
+

+
++
+
+
+
++
+
++++++
++
++
+++
+
+++
+

+
+++

+++
+
++
+
+++
+

+
+
+

+

++++
+
+
++
+++++++
++

+

++

+

+
+
+
+
+
++

+
++
+++
++

++
+
++
+
+
+
+
+++
+
++
+++
++
+

++
++
+
+++
+

+

+
+
+++

+

+++++++
+++
+
+
+
++
+
+
+
++
++
+++
+
++++
++
++
+
+

+
+
+++
+

+
++
+

+
+
+

+
+
++
+
+

+++
+++++++
+
++++++
++++
+
+++++
+
+
+
+
+
+
+
+
++++++
++
+
++
++
+
++++
+
++
++++
++
+++
+
+
+++
+
+

+++++
+
+
+

++
++++
+++
+++++++++
+
++

+

+
++++

+

+

+++++++++++
+++++++
+
++++++++
++
+
++++++
+++++++++
+++++++
++++++++++
+++++++++++++++
+++++++++++++++++++++++++++++
+
++
+

+
+
+
++
++
++++++++
++++++++++
++
+
+
+
++
++++
+++
+
+++++++++++++++
++
++++++
+
++
+
+
+++++++
+
++

+

++
+
+
+
++
++++++++
+
+++++
+
++
+++++++
+
+++++
+++++++
+
++
++++++
++++++
++++++
+++++++++++++++++++
+++++
+
+++
+++++++++++
+++++++++++++++++++++++++++++++++
++++++
+

+++++++++
+++++++
+
++++++
+++++++++++++++
++++
+++++++++++++++++++++++++
++++++++++++++
++++++++++++
+++++++++++++++++
++++++++++++

+
++++
+++++++
++++++++++
++++

+

+++
++++
+
+
+
++++
+
++
+
++
+++++++++++
+
++++++++++
+
++
+
+
+++++++
+
++++
+
+
+
++
++++++
+
++
+++++
+
+++
+
++++
+++++
++
+
++++++
+
+
++++++++
+++
+++
++
+
+
+++++++
+++++++++++
+
+++++++++++++
+++++
++++++++++

+

++++++
+
++
+
+++++++++++++
++++++++++++++
++++
+++++++++++
+++++++++++++
++++++
+
+
+++++
++++++
+++++++

+

+
++++++++
++
++
+++++++
+++++++++++++++++++++
+++++++++++++++++
++++++++
++++++++++++++++
++++
++
++
++++
++++++
+
+
+++
+
+
+
+++
++
++++++
++
+
++
+++++++
++
+
+++
+
++
+

++

+
++
+

+
+
+++++++
+
+
+++

+

+
+
++++
+
+++
++
+
+

+

+

+
+

+

+
++++
++
+
+++++++++++++++++++
+++
++
+
+++++
+
++

+

+
+++++++++++++
++++++
+
+++++++++++++++

+

+++
+++++
++
+
++
+
++
+
+++++++++++
+
++++++++
+
++
+++++++++++++
+++++
++++
+
+
++
++
+
+
++
+++
+

+
+
+
+
+++++++
++
+
++
++
+++

+

++
+
++
+++++
++

+
+

+

+

++
+
+

+
++++

+

+++

+

+
+
+
+
++++
+
+
+

+

+

+
++
+

+
+
+

+

+

+

+

+

+
+
+
+++
++++

+

+

+++

+

+
+
++
+
++

+
+
+

+
++
++
+++

+
++
+

+
+
+
+
++

+

++++

++

+
+++
+++
++

+

+

+

++
+

+

+
+

+
+

++

+

+

+

++

+
+
+
+

+

+

++
++
++

+
+++

+

+
+
+++++

+
o
+

Calibration probes
Ordered probes

Fig. 7. Probed RTT versus time for European
CS:S client using REED at 140 probes/second

o
o
o
o

o

oo

o

o
o

o

o

o

o

0 50 100 150 200 250

Seconds since first probe

0

100

200

300

400

500

R
T

T
 (

m
s
)

+++
+++++++++++++++
+
++++
+++++
+
+++
+++++++++++
++
++++++
++
+++
+
++++++
+
+++
+++++++
+
+++++
+++++
+
++++
++++++
+
+
++++++++++++++++
+++++
++++++
++
+
+++++++
+++++++++
++
++
+
+++++++++
++++++++
+
++++++
+
++++++++
+++++++++++++
+
++++
+++++++
++++++++++++++
++++++++++++++++++++++++++++
++
+++++++++++++++++++
+
+
++
+++++++
+++++++++
++
++
++++
+++++++++++++++++++
+++++++++
+
++
+++
+
+++++++++
+
++++++
++++++
+
++++++++
+++++++++
++++++++++++
++++
+
++++++
+
++
+
+
+
+
+++++++
+
+++
++++
+
++++
+
++++++++++
+++++
++++++++++
+++++++++++++++++++++++++
+++++++++++
+
++++
+
+++++++++++
+
+
+
++
+++++++++++++++++++++
+++++
+
++
++++++++
+
+
+
+++
++++++
+

++
+++++++++++
+
+++
+++
++++++++++++++++++++++++++++++
+
+++++++
+
++++
+
++
+
++
+
++
+++++
+
+++++++++
+
++
+
++++++
+
+++
+

+
++
++
+
++
+
+
+
+
++++
++++
++
+
+++++++

+
+++++
+
+++

++++
+

+
+
+
+++
++++++++
+
++

+

++
++
+

+
++++
++

+
++
++

+
++++
++

+++++++
+
+
+
++++++++
+
+
+
++
+
+++++
+
++++++++++++
+
++
++++
+
+++
++++++
+++++++++
+++++++++++
+
++++++++++
++
+
++++
++++
++++++++++++
++
+
+++++++++++++++
+++++
+
+++
+
++
+
++++++
+++++
+
+++
+
+++++++++
+
+++
+
+++
+++++++
+
+++++++++++++++++++++
+++
+
++++++++++++
+
+
+
++++++
++++++++++++++++
+++++++++++
++++
+++++
+++++++++
+++++++
+++++
++++++++
+++++++++++++++
+
++
+++++++
+++
+
++++
++++++++++
++++++++++
++++++++
++++
+++++++
++++++
++++++++
+

++

+
++
++++
+
++++++
+++++++++++
+++++
+++++++++++
++
++++++++
+++
++++++++++++++++
+++++++
++++++
++++++++
++
+
+++++
++++
+
++++++++
++++++
+
+++++
+++++++
+

+++
+
+
+++++
+++
+
+
+
+++
+++++++
+++++
+
+++
++
+++++++
+
+++
+
+
+
++
++++
+++++
+
++
+++++
+
+++
+++++++
+
++
+
+
+++
++++
++
+
++++
+++++
+++++
+
+
++
+++
+
+
++
+
+
+++++
++
+
+++
+
++++++
++
++
++++
++++++++++++++++
+++++
++++
++++++++
+
++++++++
++++
++
+++++++
+++++++++
+++++++
+++++++++
++
+++++
+
++++++++
+
+
+
+
++++++
+
+
++
+
+++++
++++++
+
++++++
++++
++++++++
+++++
+
+++++++
++
+++
+++
+++++++
++
+
+++++++++
++
+
+
++
++++
+++
+++++
+
+
+++++++
+
+
++++++
+++++
++++++++
+++++++
++
+
+++++
+++++++
+
++++
+++
++
+
+++
+++
+++
++++++++
+
+++
+
+
+++
++++
++
++
+
+++
+++++++++
+++++
++++++
+++++++++++++++
++++++
+
++
+
++
+
++
+
++
+
+++++
+
+++
+
+
+++++++++++
+++++++++++++++
+++
+
+++++
++
+
+
++
+
++
+
+
++++++
+++++++
+++++++++
+++
+
+++
++
++++
+++++++++
+
++++++
++++
+++++++++++++
+
+++++
++
++++
+++++++
+
+++++
+
++++++
+
++++++++++++
+++
++
++++
+
++++++
++++++
++
++++++
++
+
+++++++
++
+++++++
++++++
+++++
+++++++
+
+
++++++++
+
++
+++++++
++
+
+
++++++++
+++
+
+++
+
+++++++++++++
+
++
++
++
++++
++++++
+++++++++++
+
++
+++++++
+++++
+
++
+++++
+
++++++++
+++
++++++++
+
++
++
++
+
++++++++
++++++++++++
++++
+
++++

+
+++++++++
+++++++
+++++++
+++++++
++++++++++++
+
++
++++
+
+++++
+
++
++++++
+
++++
+
++++++
+++++++++++++
++
++
++++++++++++
++
+++
+
+++
++++++++++++
++++++
++
+++
+++
++
+++
+
++
++
+
+++
+++++++++
+
++++
+
++
+
++
++++++++++++
+++++++++++
+
+
+
++++
+++
+
++++++++++++++
+++++++
+++++++++++
++++++++
++++
+
+
+++++++++
+
++
++++
+
++++++++++
++++++++++++
+++++++
+++++++
++++++
++
+
++++++
++++
++
++
++++++
+
+
+
++++
+++++++++++++
++++++++
+++++
+
++++++++
++
++++
+
++++++++
++
+
+
++++
+
++++++++
+
++++
+
+++++++++++++
++++++++
+
+++++++
+++
++
+++++++++++++
++
+
++++
+++++++++++++++
++++
+
++++
+
+++++++++
+++++++
+
+
+++++++++++
+++
+
+
+
+
++++++++++
+++++++++
+
++
++
++++++
+
++++++++++++++++++++++++
+++++
++
++++++
++++++++++
+
+++
+++++++++
+++
++
++
++++++++
++++
+
+++
+++
+
+++
+++
+
++++++
+
++++++++
++++
+
+
+
+++
++++
++
++++++++
++++++
+++++++++
++++++++++++
+++++++++++
+
++++
+++++
++
+
+++++++++++++++++++++++++++
+++
+++
+++++++
+
+++++++
+
++++++++++
+
+
+
++
++
+++++++++++++++++++++
+

+

+
+
++++++
+++
+
+
+
++++
++++++++
+
+++
+++++++++
+
++++++
+++++
+
+++++
+++++++
+
++++++++++
+
+++
+
++++
++++++
+++++
++++++++++
++
+
++++
++++++
++++
++++
++++
++
+
+++
+++++++++
+
+++++++++
+++++++++
+
++++++++
+++++
+
++
+++
+
+++++++
+++++++++
++++++
++++++
++++++
++
+++
++
++
+
+
++++
+++
++
++
++
++++
+
+++++
++
++++
++
+
+
++++
++
++
++++++
+
++++++
+++
+
++
++
+
+
++
+
+
+
++++
+++
+
+++++
+++
+
+++
+
+
+++
+
+++++
++
+
+
+
++++
+
+
+
+++++++++++++
+
+
+
+++++++++++
++++++++
++
+++
+
++++
+
++
+

+
+
+
++++
+++++
++
+
+
++
++++++++++
+
+++++++
+
++++
+
++++
+++++

++
+
+
+++++
+
++++
++++++++++++
+++++
+
++++
+
+
++++++
+++
+
++++++
+
+++++++
+
+
++
+
++
+
++++++
+
++
+
+++++
++
+++++++
+++++
+
+
++++
+++
+
+++++++
+
++
+
+++++
+
+++
++++
+
+

++
++++++
+
++++
++
++++
+
++
+

+
+
++++
+
++
+
+++

+
++
++++
+++
+++++
+
++
+
+
+
++++++++

+
++++++
++
+++
+
+++
++
+
++
+++
+
+++
++
+
+++++
+++++
+
+
++
+
+
+++
+

+++++
++++
+++++++++++
+
++++++
++++++
++++++++
+
++++
+
+
++++
+
+
+
+
+
++++++++
+
++
+
+
+
+++++
+
++
+
++
++
++++++++++
+
+
++++++++++++
++
+++
+++++
++
++
++++++
+
++
+
+
++
++++++
++++++
++++
+++++
++
++++
+
++++++
+++++
++
++
+
++
+
+
+
++++
+
+
+
+
++++++++++++++
++
+
+
+
++++++++
++++++++
+++
+
+++++++++
+

+
+
+
+
+
++++
+++
++
+
+
+
+
+
++
+
+
+++++++
+++++
+

++
+
+
+++
+
+++++++++++
+
+++++++++
+++++++++++
++++
+
++++
++++++++
+
+
++++
+
+++
++++
+
+
++++++++
++++++++
+
++++++++
+
+
++
+
++
+++++++++
++
+++++++++++++
+
+
+
++
++
+
+++++++++
++++++
+
+++++++
+
++
+
+++++
+
+++++++++
++
+

+
++++++++++
+
+
++
++
+
+
++++
++++++++
+
++
+++
++
+
++
+++++
+
+
+
+++++
+
+++
+++++++
+
+
++++++++
++
++
+++++
++++++++
+

+
+++++++++++++++++++++
+
+++
++
++
+++++++++++++
+++++++++++++

+

++++++
+++++++++
+
++
+++++++++++++
++++++++++++++++
+

+

+++++++
+++++
++++++
+
+
+++
+
++
++++
+++

+

+++++++
+++++++
+

+

+++
+

+++++++++++++++
++
+
+++++++
+
++++
+
+
+++++++++++
++
+
+++++
+
+++

+

++++++
++

+

+
+
++
++
++++++
+++
++
+
++
++
++++++++++
+
++++
++++
+
++++
+
++++++++++++
++++++
+
++++++
++++++++++
+++++++++++++++
+++++
+++++++++++++++
+++++++++++++
+++++++
+
+
++++++
+

+

+++++++
+
++

+
++
+++++
+++++
+
++

+

++
++++
+
++

+

+++
++
+
++

+++
++
++

+

+

+
+

+

+
+++
+++
+

+

++

+
+
++

+

++

++
+
+
+

+
+
++
++
+
+
+
++++
++

+

++++++++++++++++++
++

+

++
++++
+
+
++
+
++++
+
+++++

+

+

+

++
++

++
+

+

+
+++

+

++++

+

++

+
++

+
+
++

+
+

++
++++++++++
+
+++
+
+

o
+

Calibration probes
Ordered probes

Fig. 8. Probed RTT versus time for American
CS:S client using REED at 140 probes/second

o
o

o

o

o

oo

o
o

o

ooo

o

0 50 100 150 200 250

Seconds since first probe

0

100

200

300

400

500

R
T

T
 (

m
s
)

+++

++++
++

+

+++
+++
+
++
++

+

+++++++++
++++

+
+

+++

++

+++

+

++

++

++

+

+

+++
++

+

++

+

+
+
++
+
++
++++++
+++++
+
++++

+

+
+++++++
+++++
+++++
++
++
+++
+++++++
+
++
+++++

+

+
++++++++
+++++
++++++++
+
+
+++++
++++++
+
++++++
+
++
+
++++
+
++
+
+
++
+++
+
++
+++++++++++
+++
+++
+
+++++
+++++++
+
+++
++++++
+
+
++++
+
+
+

+
+++
+
+
++++
++++
+++++
+
+

++
++
+
++
+++++++++++++
+
++
+++++++++
++++++++++++++++
++++++++++++++++++++++
+

++
++++++++++++++
+++++++
++++++++++++++++++++
+++
+
++++++++++++++++
+
+++
+
++
++
++++++++
+++++++
+++++++++++
+
+++++++
+
+++++++++++++++++++++++++
++++++++
+++++++++++++++++++++++++++++++++++
+++++++++
+
++
++++++
++++++++++++++++++++++++++
+++++++++++++++++++++
+++++++++++
++++++++++++++++++++
++++++++++++
++++++++
++++++++++++++++++++++++++++++++++++
+++++++++++
+++++++++++++++++++++
++++++++++++++++++++++++++++
+
++++++++++++++
++++++++++++++++++++++++
+++++
+
+
+++
++
+
++++
+++++++++++++++++++
+
+
+++
++
+
++++++++++++++++
+++++++++
++++++++
+
++
+++
+++
+
+
+
++
++
+
+
+
+
+++++
+
++++++++
+
+
+++++
++
+
++
++
+
++
+++++
+
++++
+
+

+

++++
++
+
+

+
++++++++++
+
+++++++

+
++
++
+++
++++++++
+
+
++
++
+
++++
+
+++++
+

+
+++++++
+++++++++++++++++++
+
++++++++
+
++
++++
++++
++++
+++++
+++++++++
++++++++
+++++++++++++
+++++++++++++
+++++++++
++++++++++++
+
++++++
+
+++++++++++++++
+++++
++++++++++++++++++++++

+

++++
+++++++++
+

+

+
+
++++++++

++

+

+

+++++

+

+

+++

+

+

+

+

+

+++++

++

+

+

+

++

+++

+

++++

+

+++

+

+++

+++

++++
+

+

++++

+

+++

++++++++++++++++

+

+++

++

+++

+

+

++
++++
++++++
+++++++++++
+++++

+

++++++
+++++++++++++
+
++++

+

+++++++++++++

+

++
+
+++++++++

+

++++
++++++
++
+++
+++++
+
+
++++
+

+
+++
+
++++
+++
+
+++
+
++++++++
++
+
++
++
+
++++
+++++++
+
+++++
++++
+
+++++
++
+
++++++
+
+++
+
+++++
++++
++++++
+
+++

+

+++
++
+
+
++++

++

+
++++++

++

+

+

++
++
+
+
++
+
+
++++++++++++

+

+++
++++++
+

+++
+++++
+
+++++
+
+

+
+
+

+

+++
+
++

++
+

+

+

+
+
+
++
+
+
++
+
+
++++
++
+
++
+
+
++++++++

+
++++
+
++
+++++
+

+
+
+

+++
++
+
+

++

+
++

++

+++++
+

+

+
+++

++
++++
+++

+
+++
+
+++

+

++++++
++++++++
+

++

+

++
+
+++++++++++

+

+
++
++++
+++

++
+
+++++++++
+++++++++++

+
+

+
+++++++
+

+

+
+
+++++

+

+
+
+
+++
+
+

+

+

++

++++++

+
+++++++++
++
+
+
+
+
++++
++
++

+

+++++
+
++++++++

+

++++

+

+
++
+
+
++++++++

+

++++++++++

+
++++

+

++

++

+
+
++++++++
+

++++++++

+

++
+
+
++++++

+

++

+

+

+

++
+
++

++

+

++++

+
+++
+

+++++++
+
+

+

++++

+

+++

++

+

+

+++++

+

+++

+

+

+

+++

+

+

+
+
++

+

+

+

+
+

+++

++

+

+

+

+

+

+

+

+
+

+++++

++

+

+++
+

+
+
+
+

+

+
++
+
+
+

+

+++

+

+

+

++

+

+++

+

+++

+

+++++

+

++++++++
++++++

+

++++

++

++

+

+

+

++

+

++

+++

+++

+

++
+

++
++

+

+

+
+

+

+

++

+++++++++

+

+++

+
++

++

++

++

+

+
+++
+

+++++++

+

+

++++

+++

++
+++++

+

+++++

+

++++++

+

+
+++

++

+++

++

++

+

+++

+

++

++
+

+

+

+

++++

+++

+++
+
+++
+

+

+

++++++
+

++
+
+
+++
++++
+++++

+

++++
+

+

++++++

++

+++
++

+++++++++
+++

+

+++++++++
+

+

+

+

+
++
++++++
++
+++
+++++++
+++
+++++++++++
++++++
++++++
+
++++++++
++++
+
+++++
+
+++++++++
++++++++++++++++
++
++++

+

+
++++++++
+++++
++++
++
++++
+
+++
+++++
++++++++
++++++
++++++++++

+
+
++
+
++
+

+
+
++++++
++++
++
+
++++++++
+++
+
+++++++++
+++++++++
+
+++++++
+
++++++
+++++++++
+++++
+++++++++
++++++++++++
+
++++
++++++++
+++
++++++++++
+++++++
+
++++
+++
+++++++
+++
++++
+++++++++++
+
++++++
++
+++++
++
+
+
++++
+++++++
+
++++
+++++++++++++++++++
++++++
+
++++++
+++

+
+
++++
+
++
+
++++++
+++++++++++
++++++
+++++++++
++++++
++++++++
+
+
+++++++++
+++++
+++++++++++++++++
+
+++
+
+
++++++++++++++++++++
++++++
+
+++++++++
+
+++++++++++++
+
++
+

+
++++++++++
++
+++++++
+
+++
++++
+++++++
+
+
+
++++++++
+
++
+
++++++
+++++
+
++
+++
+
+
+
++
++++++++++++++
++++++++
+++++++
+++++++++
+++
++
+
++++
+++++++++
++++++
+++++++
+++++++++++++++++++
+
++++++++++++
++
+
++++++++++
+++++
++++++++++
+++++++++++++
+++++++++++++++++++
++
+++++
++++++
+++++
+
++
+++++
+
++++++
++++++
++++
+
+++++++
+
+
++++++
++++
+++++++++
+++++++
++
+++++
+++
+
++++
+
+++
+++
++++
++++
++++++++
++++++++
+++++++++++++++
+++

+

++++
+++
+
++++
+
+++++++
+++
+++++++++
++++
++++
+
+++
+++++
+
++
++++
++++++++++
+
++++++
++++++++++++
+++++
+++++
+++++
+++++
++++++++++
+++++++++++++++++++++++++++++
++++
+++++
+++++++
++++++++
+++++++++
+
++++
++++++++++++++++
+++
++++++++++++++
++++
+++++
+
++++++++
++++++
++++
+
++++
+

+
+++
+
+
++++++
+
++
++
++++++++++++++
+
+
++++
+
++++++++
+
+
++++++++
+++++
+++
+
+++++++
++
+
+++
++++++++
+++
+++++++++++++++
++++++++++++++++++++++
++++++++++
+
+
+++++
+++
+
+
++++
+++++++
++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++
++++++++++++++
++
++
++++++++++++++++++++
++++++
+
+++++++
++++++++++
+++++++++++++++++++++++++
+++++
++
+
+
++++++++++++++++++
+
+
+++++++++++++++++++++++++++++++
+++++++++++++
++++
+
++++
++++++
+
+++++++++++++++++
+++++++++++++++++++++
+++++++++++
++++++++++
++++++++++++++++++++
+++++++
+++
+
++++++++
+++++++++
+++++++++++++++++++++
+++++++++++++
+++++++++++++++
++++++++++++++++
+++++++
+++++++
+++++++++++++
+++++
+++
++++++
++++++++++++
+++
++++++++++
+++++++++++
+++++++++++
+
++++++
+++++
++++++++++
+
+++
++++++++++++
++++++++++
+
+++++++++++++
++++
++++++++++++++++++
++++++
+++++++++
+++++
+
++++++++++++++++++++++++
++++++++++
+++
+
+++++++++++
+
++
+++++
+++++
+++++++++++++++++++++++
+
+++
+
+
++
+
+
+++
+
++++++++
+++++
++++++++
+++++++++
+++
+
++
++++++++
+++++++++
+
++++
++++++
++++++
+++++
+++++
+++
+
+
++++++++++++++++++
++++++++++++++
+++++++++++++
+
++
++++++++++
+
++
++
++++++
+++++++++
++
++
+++++++
+++++++++++
++++++++++++++++++++++++
+++++
++++
+
++++++
+++
+
++++++++++++++
++++++++++++++++++
+++
+
++++++++++++
+
+++++++++++
+++++++++++
+
+++++
++++++++++
++++
+
++++++++++
+
++
++++++++
+++++
+++++++++
+
+++++
++++
+++++
+
+
+++++++++
++++++++++
+++++++++
++++++++++
++
+
+++++
+++++
++

++++++
++
+
++
+++++
+
+
+++++
+
+++++
+++
++
++
++++
+
+
++

+
+++
+

+
++
+
+
+
++
+++
++++
+
+
+
++++++++++
+
+
+
++
+
++++++
+++++++++
++++++
+
++
+++
+
+++++++++++++
+++++++++++
+
++
+++++++++
++++++++++++++
+
++++
++++
+
++++++
+
++++
+
+++

+

++++++
++++++
++
+
+
++
++++++++
++++++++
+++++++++
+++
+
+++
+++++
+

+
+++
+
++
+
+
+
+++++
++++++
+++
+

+
++++
++
+
+
++

+

+

+
++
+
+

++
++
+
+
+
+
+++++

+

+++++
++
++
+

+

+++
+
+

+

+
++
++

o
+

Calibration probes
Ordered probes

Fig. 9. Probed RTT versus time for an Asian
CS:S client using REED at 140 probes/second

40 80 120 160 200

−
50

0
50

10
0

Player's RTT tolerance (RTTstop) (ms)

δδ r
tt

(m
s)

Fig. 10. The δrtt required by Algorithm 4 to
cover 98% of game servers under RTTstop

RTTstop(ms) 40 80 120 160

Europe 29 25 13 5

America 88 78 12 3

Asia 99 99 98 97

Table I. Percentage reduction in probe time and
network traffic for clients in Europe, America
and Asia when using Algorithm 5 for auto-stop

RTTstop(ms) 40 80 120 160

Europe 0.05 0.03 0.04 0.02

America 1.03 0.12 0.03 0.03

Asia 0.00 0.50 1.18 1.66

Table II. Percentage of servers under RTTstop

that are missed by clients in Europe, America
and Asia when using Algorithm 5 for auto-stop

5.2.2 Auto-stop after exceeding RTTstop. Both of Section 4.3.3’s auto-stop tech-
niques are poor for clients who see thousands of game servers under RTTstop.

Imagine we wished to use Algorithm 4 alone (with RTTlimit = (RTTstop + δrtt))
and aimed (for somewhat arbitrary reasons) to discover at least 98% of all game
servers under RTTstop. Figure 10 shows the spread of δrtt required to achieve this
goal for a range of RTTstop. For RTTstop = 40ms we need RTTlimit of 60− 90ms.
The required δrtt also varies significantly with RTTstop, so deploying clients using
Algorithm 4 and a fixed δrtt is impractical.

Table I reveals the reduction in probe time and traffic experienced by different
clients when using Algorithm 5 and various RTTstop. Asian clients see a substantial
(c) ACM, 2011. Author pre-print of the work, posted here by permission of ACM for your personal
use. Not for redistribution. Definitive version will be published in a future issue of ACM Transactions
on Multimedia Computing, Communications and Applications (TOMCCAP).

REED: Optimising First Person Shooter Game Server Discovery January 18, 2011 Page:15

40 Servers with First auto-stop
Eu Am As All

Mean RTT 17.6 10.7 47.9 25.4

Median RTT 19.0 11.5 39.1 23.2

Reduction 99% 99% 99% 99%

Table III. First auto-stop for 40 servers – 54
probes in 0.39 seconds

120 Servers with First auto-stop
Eu Am As All

Mean RTT 18.6 12.5 76.2 35.8

Median RTT 19.1 12.6 72.2 34.6

Reduction 99% 99% 99% 99%

Table IV. First auto-stop for 120 servers– 134
probes in 0.96 seconds

40 Servers with Intelligent auto-stop
Eu Am As All

Mean RTT 11.0 6.8 23.3 13.7

Median RTT 11.8 7.8 28.2 15.9

Mean Probes 771 646 184 534

Mean Time 5.5s 4.6s 1.3s 3.8s

Reduction 97% 97% 99% 98%

Table V. Intelligent auto-stop for 40 servers

120 Servers with Intelligent auto-stop
Eu Am As All

Mean RTT 13.1 9.1 63.2 28.5

Median RTT 13.2 9.7 66.5 29.8

Mean Probes 1835 837 438 1037

Mean Time 13.1s 6.0s 3.1s 7.4s

Reduction 93% 97% 98% 96%

Table VI. Intelligent auto-stop for 120 servers

benefit for all values of RTTstop. However, the abundance of nearby game servers
means European clients receive a modest 28% reduction at RTTstop = 40ms and
American clients see little benefit unless RTTstop ≤ 100ms.

Table II shows the percentage of servers under a particular RTTstop who would
not have been probed by clients in each region when using Algorithm 5. The
RMS gets relative server rankings reasonably correct, so clients in all three regions
would probe until almost all game servers under each nominated RTTstop are found.
However, as previously noted, this is not a good outcome for clients where many
thousands of game servers exist under the player’s RTT tolerance.

5.2.3 Auto-stop after probing Nclose servers. Much better results are achieved
using Section 4.3.3’s First and Intelligent methods for probing a sufficient number
of the game servers estimated to be close by (Nclose). We consider two scenarios:
Nclose = 40 and Nclose = 120.

Tables III and IV show the impact of using the First auto-stop technique for Eu-
ropean (Eu), American (Am) and Asian (As) clients sending 140 probes per second.
The per-region means and medians are derived using separate measurements from
all five clients in each region. The RTTs are derived from the game servers that are
ultimately presented to the player. All regions need one second or less to identify
40 or 120 game servers with quite playably low RTTs.

Relative to First auto-stop, Tables V and VI show that Intelligent auto-stop
identifies 40 or 120 game servers with generally lower mean and median RTTs, but
requires roughly 5 to 30 times more probes. (As European clients see a significant
number of low RTT game servers, their use of Intelligent auto-stop results in roughly
four times as many probes as American clients and over six times as many probes
as required by Asian clients.)

5.2.4 Choice of auto-stop algorithm. Both First and Intelligent auto-stop achieve
a substantial reduction in network traffic and probing time relative to the ∼36 000
probes emitted by a regular CS:S client. Which approach to implement depends
(c) ACM, 2011. Author pre-print of the work, posted here by permission of ACM for your personal
use. Not for redistribution. Definitive version will be published in a future issue of ACM Transactions
on Multimedia Computing, Communications and Applications (TOMCCAP).

REED: Optimising First Person Shooter Game Server Discovery January 18, 2011 Page:16

F I O

40 Servers

0

10

20

30

40

50

60
R

T
T

 (
m

s)

●
●

●● ●●

F I O

120 Servers

0

20

40

60

80

100

Fig. 11. Spread of game server RTTs seen by all
15 clients using First and Intelligent auto-stop
or Optimal (Nclose = 40 or Nclose = 120)

●

●

●

●

F I O

Europe

0

10

20

30

40

50

R
T

T
 (

m
s)

●

● ●

F I O

America

0

10

20

30

40

50

F I O

Asia

0

10

20

30

40

50

Fig. 12. Spread of game server RTTs seen by
each region’s clients using First and Intelligent
auto-stop or Optimal (Nclose = 40)

on whether it is more important to probe as quickly as possible or identify game
servers whose RTTs are as low as possible.

Figure 11 shows the spread of game server RTTs obtained using First and Intelli-
gent auto-stop versus the hypothetical ‘Optimal’ case (which assumes we select the
closest Nclose game servers, using perfect knowledge after all available game servers
are probed). Whether we’re identifying 40 or 120 playable game servers, Intelligent
auto-stop selects a set of servers whose spread of RTTs is closer to Optimal. First
auto-stop requires far fewer probes to select 40 or 120 game servers with a quite
playable (albeit wider) spread of RTTs. Figure 12 shows that this relationship
between First, Intelligent and Optimal RTT distributions also holds within each
region. (To save space, a similar relationship for Nclose = 120 is not shown.)

We recommend REED clients implement either First or Intelligent auto-stop
with player-configurable Nclose, allowing players themselves to control the trade-off
between rapid or comprehensive server discovery.

6. DEPLOYMENT AND PERFORMANCE CONSIDERATIONS

Here we consider some of the performance issues relevant to realistic deployment
of REED – how an RMS can handle hundreds of client requests per minute, the
network load experienced by individual game servers, potential for third-party de-
ployment of REED, and re-using Valve’s existing control packet format.

6.1 Using GPUs for high-speed ranking of game servers

In early 2010 we observed that a single CS:S game server receives up to 350
A2S INFO Request unique probes per minute from around the world. Handling the
corresponding load of initial client queries to an RMS under REED would require
an RMS to re-rank over 36 000 game servers up to 350 times per minute. Ranking
points by relative distance is trivial for the graphics processing units (GPUs) in
modern, low-cost consumer graphics cards. For example, an Nvidia 8800GT GPU
can do roughly 24 000 new rankings per minute on 50 000 random points in 4D
coordinate space using the Thrust CUDA library [Hoberock and Bell 2010].

A further simplification is to eliminate the
√

X step to calculate absolute dis-
tances, and rank by (distance)2 instead – this makes no difference to actual ordering
(c) ACM, 2011. Author pre-print of the work, posted here by permission of ACM for your personal
use. Not for redistribution. Definitive version will be published in a future issue of ACM Transactions
on Multimedia Computing, Communications and Applications (TOMCCAP).

REED: Optimising First Person Shooter Game Server Discovery January 18, 2011 Page:17

of game servers returned using Algorithm 4. Thus an RMS may easily and cheaply
rank games servers with raw GPU power rather than rely on elegant algorithms.

6.2 Network traffic load on REED game servers

It is important to place REED’s additional game server probing into context. Cur-
rent CS:S game servers exchange three packets every five minutes with the master
server during re-registration, or 36 packets/hour. In early 2010 CS:S game servers
answered an average of 6120 server discovery probes/hour from clients worldwide
over 24hr periods, thus exchanging 12240 packets/hour whether the game server
had players or not. A game server with players experiences a further ∼ 60 packets
per second (or 216 000 packets/hour) bi-directionally per connected client.

In N-dimensional space game servers must be ‘linked’ by RTT measurement to
at least (N +1) other game servers. A REED game server being probed by X other
game servers, and asked to probe Y targets, will see 3 + 2 (X + Y) packets every
5 minutes due to re-registration. Consider a REED CS:S game server probed by
5 game servers, and probing 10 other game servers, every 5 minutes (X = 5, Y =
10). This game server’s REED re-registration traffic is 396 packets/hour, or ∼ 3%
of the traffic from regular client probing. A whole day of REED re-registration
traffic will be exceeded by a mere 3 minutes of game play by one player. Given that
game servers register to attract players, REED re-registration traffic will range from
being a trivial, to practically irrelevant, fraction of a game server’s overall network
load. Furthermore, re-registration traffic for most game servers will be offset by a
reduction in regular probing by REED clients (how much will depend on relative
distribution of each particular game type’s game servers and player populations).

6.3 Third-party deployment of REED

Using just 15 landmarks regularly probing 36K game servers, Section 5’s results
suggest REED might also be utilised by third-party server browsers (such as Game-
SpyArcade, http://www.gamespyarcade.com). Deploy 15 or more well-connected
private landmark nodes around the world to probe each other and all active game
servers every 5 minutes (analogous to Section 5.1’s use of PlanetLab nodes). Let
a third-party ‘RMS’ regularly collect these RTT samples from each landmark,
(re)calculate coordinates for all game servers and answer queries from the third-
party browser’s own REED client. With 15 landmarks, game servers would experi-
ence 180 additional probes per hour but emit no new probes during re-registration.

6.4 Implementing Algorithm 2 using Steam packet formats

If we re-use Steam’s existing packet format an RMS may request up to 230 RTT
samples each time a game server re-registers (Algorithm 2). Steam’s 1400 byte UDP
payload limit [Valve Corporation 2009c] allows N ≤ 230 entries in a query packet’s
Sprobe list if it is encoded as a sequence of 6-byte binary values terminated by
<0.0.0.0:0> (allowing 10 bytes the RMS’s 4-byte challenge code and Tregistration).
Steam’s challenge-response packet utilises backslash-delimited clear text. Treating
each Rx as a three digit string in the range 000 ≤ Rx ≤ 999, Rprobe may be encoded
as a string of 3N digits taking up to 690 bytes. Current CS:S challenge-response
payloads are typically less than 256 bytes, so there is plenty of room to add up to
690 bytes of Rprobe within a 1400 byte UDP payload.
(c) ACM, 2011. Author pre-print of the work, posted here by permission of ACM for your personal
use. Not for redistribution. Definitive version will be published in a future issue of ACM Transactions
on Multimedia Computing, Communications and Applications (TOMCCAP).

REED: Optimising First Person Shooter Game Server Discovery January 18, 2011 Page:18

7. LIMITATIONS AND FUTURE WORK

Players are fully aware of the uncertainties in server discovery – servers come and
go, network conditions change, so players do not expect to always find the same
servers in the same order every time. We’ve evaluated REED from the perspec-
tive of reducing client probing time and network traffic, assuming an RMS that’s
been operating for months and established reasonable coordinates for its long-term
registered game servers. This leaves a number of open questions for future work.

7.1 Methodological limitations

We used well-connected PlanetLab nodes as both landmarks and ‘fake clients’. As
REED’s estimation of game server coordinates primarily depends on probing be-
tween game-servers (which are typically also well-connected) we believe our method-
ology reasonably demonstrates REED’s potential benefits. Where probing times are
mentioned, we have assumed the time taken to query the RMS is negligible and
that client probes are emitted in a pipelined manner at 140 probes/second.

7.2 Challenges for the REED master server

7.2.1 Chosing Sprobe for timely convergence. Timely convergence (in response
to network variations and game servers starting up or shutting down) must be
balanced against the number of probes each game server emits per re-registration.
A large Sprobe set provides quick convergence for recently registered game servers,
while long-lived game servers may be sufficiently served by small Sprobe sets. At
minimum, in N-dimensional coordinate space every game server must be a direct
neighbor of (‘linked’ by RTT measurement to) at least (N + 1) other game servers,
and a path must exists (connecting via one or more neighbors) between any two
game servers. Consequently there remains fruitful future work studying the im-
pact of different RMS strategies for populating Sprobe and varying Tregistration over
time. Possibilities include ensuring each Sprobe contains a mix of game servers
from different countries (geo-location based on IP addresses), or including more ac-
tive rather than inactive game servers, or building specific types of interconnected
partial-meshes or trees of links in coordinate space, and so on.

7.2.2 Chosing Scalibprobe landmarks. Section 5.1.2’s client calibration utilised
landmarks from three major geographical regions, providing a diverse set of refer-
ence points. However, the RMS might instead select landmarks scattered uniformly
around the coordinate space’s origin, or use geo-location to identify landmarks who
(geographically) surround the querying client. In addition, the RMS should change
landmarks over time so calibration probe traffic is not focused on any one set of
game servers. Future work could characterise the performance implications of dif-
ferent strategies for choosing Algorithm 3’s Scalibprobe set for each querying client.

7.2.3 Impact of anomalous RTT samples. By varying Sprobe over time, REED
minimises the incentive for any given game server to disruptively influence RTT
samples. For example, imagine that game server X induces induces high apparent
RTT between itself and game server Y (by lying about the RTT it measures to Y,
and/or delaying its replies to Y’s own probes). Any negative impact on server Y’s
coordinates will be diluted as the RMS continues to solicit and receive un-tainted
(c) ACM, 2011. Author pre-print of the work, posted here by permission of ACM for your personal
use. Not for redistribution. Definitive version will be published in a future issue of ACM Transactions
on Multimedia Computing, Communications and Applications (TOMCCAP).

REED: Optimising First Person Shooter Game Server Discovery January 18, 2011 Page:19

estimates of RTT between Y and other game servers.
If temporary, localised network congestion causes a game server to return inflated

RTTs in their Rprobe lists the impact will similarly be diluted by time (as more
samples arrive) and space (as the RMS utilises reports from multiple neighbors to
adjust the coordinates of any given game server).

Future work should explore the degree to which the RMS can detect, and mitigate
against, anomalous RTT samples (whether deliberate or accidental), and provide
incentives for independent game server operators to act in ‘good faith’.

8. CONCLUSION

REED is a novel application of previous work on network coordinates to the problem
of game server discovery where publisher-hosted master servers track independent,
enthusiast-hosted game servers. A REED master server (RMS) directs REED game
servers to regularly sample the RTTs between themselves, then uses these samples
to embed game servers into a virtual coordinate space. In effect, REED performs
centralised, incremental calculations of game server coordinates distributed over
time. REED clients establish their own coordinates by using selected game servers
as landmarks (without needing local geo-location knowledge). The RMS ranks and
returns game servers by distance from clients, so clients may probe game servers
by ascending order of likely RTT regardless of the client’s location. Using data
on over 36K Counter Strike:Source (CS:S) game servers, collected by PlanetLab
landmark nodes, we show REED reduces a CS:S client’s probe time and network
traffic levels to as little as 1% of conventional server discovery. While conventional
CS:S clients generate tens of thousands of UDP flows over multiple minutes, REED
clients discover 40-100 playable, low-RTT game servers in 1 − 13 seconds while
using ∼ 54 − 1800 UDP flows – expediting a player’s ability to select and join a
game server, and curtailing the creation of unnecessary UDP/IP flow-state in NAT-
enabled gateways or wireless access points. REED can improve server discovery of
any game whose diversely located clients and servers are often separated by more
than the RTT typically accepted for competitive online game-play.

9. ACKNOWLEDGEMENT

We are grateful to Mark Claypool for providing access to PlanetLab, and to Ben
Barsdell and David Barnes for insight into the potential of GPUs for sorting.

REFERENCES

Agarwal, S. and Lorch, J. R. 2009. Matchmaking for online games and other latency-sensitive
p2p systems. In Proc. of ACM SIGCOMM 2009 conference on Data communication. ACM,
New York, NY, USA, 315–326.

Armitage, G. 2008a. Client-side Adaptive Search Optimisation for Online Game Server Discov-
ery. In Proc. of IFIP/TC6 NETWORKING 2008. Singapore.

Armitage, G. 2008b. Optimising Online FPS Game Server Discovery through Clustering Servers
by Origin Autonomous System. In Proc. of ACM NOSSDAV 2008. Braunschweig, Germany.

Armitage, G. September 2003. An Experimental Estimation of Latency Sensitivity in Multiplayer
Quake3. In Proc. of 11th IEEE International Conference on Networks. Sydney, Australia.

Armitage, G., Javier, C., and Zander, S. December 2006. Topological optimisation for online
first person shooter game server discovery. In Proc. of Australian Telecommunications and
Network Application Conference. Sydney, Australia.

(c) ACM, 2011. Author pre-print of the work, posted here by permission of ACM for your personal
use. Not for redistribution. Definitive version will be published in a future issue of ACM Transactions
on Multimedia Computing, Communications and Applications (TOMCCAP).

REED: Optimising First Person Shooter Game Server Discovery January 18, 2011 Page:20

Beigbeder, T., Coughlan, R., Lusher, C., Plunkett, J., Agu, E., and Claypool, M. 2004.
The effects of loss and latency on user performance in Unreal Tournament 2003. In Proc. of
3rd workshop on Network and system support for games. ACM, New York, NY, USA, 144–151.

Chambers, C., Feng, W.-C., W.-C., F., and Saha, D. 2003. A geographic, redirection service
for on-line games. In ACM Multimedia 2003 (short paper).

Claypool, M. 2008. Network characteristics for server selection in online games. In ACM/SPIE
Multimedia Computing and Networking (MMCN).

Dabek, F., Cox, R., Kaashoek, F., and Morris, R. 2004. Vivaldi: a decentralized network
coordinate system. In Proc. of ACM SIGCOMM 2004 conference on Data communication.
ACM, New York, NY, USA, 15–26.

Feng, W.-C. and Feng, W.-C. 2003. On the geographic distribution of on-line game servers and
players. In Proc. of the 2nd workshop on Network and system support for games. ACM Press,
New York, NY, USA.

Francis, P., Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., and Zhang, L. 2001. Idmaps: a
global internet host distance estimation service. IEEE/ACM Transactions on Networking 9, 5
(Oct), 525–540.

Gummadi, K. P., Saroiu, S., and Gribble, S. D. 2002. King: estimating latency between
arbitrary internet end hosts. In Proc. of the 2nd ACM SIGCOMM Workshop on Internet
measurment. ACM, New York, NY, USA, 5–18.

Henderson, T. 2002. Observations on game server discovery mechanisms. In Proc. of the 1st
workshop on Network and system support for games. ACM, New York, NY, USA, 47–52.

Hoberock, J. and Bell, N. 2010. Thrust c++ template library for CUDA. http://code.google.
com/p/thrust/.

Ledlie, J., Pietzuch, P., and Seltzer, M. 2006. Stable and accurate network coordinates. In
Proc. of the 26th IEEE International Conference on Distributed Computing Systems. IEEE
Computer Society, Washington, DC, USA, 74.

Lee, Y., Agarwal, S., Butcher, C., and Padhye, J. 2008. Measurement and Estimation of
Network QoS Among Peer Xbox 360 Game Players. In Proc. 9th Passive and Active Network
Measurement Conference (PAM 2008). Springer Berlin / Heidelberg, 41–50.

Lua, E. K., Griffin, T., Pias, M., Zheng, H., and Crowcroft, J. 2005. On the accuracy of
embeddings for internet coordinate systems. In Proc. of the 5th ACM SIGCOMM conference
on Internet Measurement. USENIX Association, Berkeley, CA, USA, 11–11.

Ng, T. and Zhang, H. 2002. Predicting internet network distance with coordinates-based ap-
proaches. In Proc. of IEEE INFOCOM 2002. Vol. 1. 170–179.

Ng, T. S. E. and Zhang, H. 2001. Towards global network positioning. In Proc. of the 1st ACM
SIGCOMM Workshop on Internet Measurement. ACM, New York, NY, USA, 25–29.

PlanetLab. 2008. Planetlab - an open platform for developing, deploying, and accessing
planetary-scale services. https://www.planet-lab.org/.

Valve Corporation. 2009a. Counterstrike: Source. http://counter-strike.net/.

Valve Corporation. 2009b. Master server query protocol. http://developer.valvesoftware.

com/wiki/Master_Server_Query_Protocol.

Valve Corporation. 2009c. Server queries. http://developer.valvesoftware.com/wiki/

Server_Queries.

Valve Corporation. 2009d. Welcome to Steam. http://www.steampowered.com/.

Vik, K.-H., Griwodz, C., and Halvorsen, P. 2009. On the influence of latency estimation
on dynamic group communication using overlays. R. Rejaie and K. D. Mayer-Patel, Eds.
Multimedia Computing and Networking 2009 7253, 1, 725307.

Wong, B., Slivkins, A., and Sirer, E. G. 2005. Meridian: a lightweight network location
service without virtual coordinates. In Proc. of ACM SIGCOMM 2005 conference on Data
communication. ACM, New York, NY, USA, 85–96.

Zander, S., Kennedy, D., and Armitage, G. October 2005. Dissecting server-discovery traffic
patterns generated by multiplayer first person shooter games. In Proc. of 4th workshop on
Network and system support for games. New York, USA.

(c) ACM, 2011. Author pre-print of the work, posted here by permission of ACM for your personal
use. Not for redistribution. Definitive version will be published in a future issue of ACM Transactions
on Multimedia Computing, Communications and Applications (TOMCCAP).

