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ABSTRACT
Controlled usability trials are frequently desirable when assessing
the impact of network latency, loss and jitter on highly interactive
networked applications such as online games. This leads to a
requirement for accurate (or at least predictable) emulation of IP
level latency, loss and jitter on a localized network testbed. This
paper reflects on the mathematical and experimental insights we
gained when developing a controlled jitter network environment.
We used FreeBSD’s kernel-resident dummynet module to
introduce controlled jitter, but our results generalize to other tools
that can introduce dynamically variable delays in an IP packet
path. We expect these insights will stimulate further user-
experience trials built around low-cost, unix-based networking
tools.

Keywords: Jitter, Emulation, Latency, Internet, Online
Games, Usability Trials.

1. INTRODUCTION
There has been an increase in the number of research
projects attempting to quantify the impact of game traffic
on networks [3,4,5,8,9] and network conditions (such as
path latency, packet loss and path jitter) on the game
player’s online experience [1,2,6,11]. This research is
driven largely by the fact that highly interactive, real-time
online games represent both a challenging consumer-driven
requirement (creating demand for broad-band access and
predictable network performance) for Internet Service
Providers (ISPs) and a potential market for ‘premium’
services (read ‘higher fee for predictable network
characteristics’). Understanding the qualitative and
quantitative relationships between user experience and
network characteristics helps ISPs develop suitable network
engineering guidelines, and helps future game server
operators optimally locate and provision their services
around the Internet.

One research approach has been to observe ‘real life’ game
playing conditions – monitoring user behavior and concurrent
network conditions from public, online game servers. The
resulting data sets often cover hundreds to thousands of played
games, and hundreds of self-selected client sites around the
Internet. Causal links are then inferred from observed
correlations between attributes such as median latency and a
player’s enjoyment of a particular online game.

Unfortunately, these causal links are tenuous because it is
rather difficult to control the network conditions affecting

players on public servers, and it is almost impossible to
know the types of players frequenting public servers. This
leads to a natural desire for running user-experience trials
under circumstances where the network conditions can be
controlled and the players accurately classified.

Our paper looks at some specific issues surrounding the
creation of predictable, controlled jitter in a localized
network testbed that emulates the network conditions
experienced by typical multi-player game clients (Figure
1). Unlike latency and loss, jitter is harder to produce
reliably because it is a statistical variation in latency rather
than a completely independent variable. Jitter occurs
primarily as the result of queuing delays in network devices
such as switches and routers.

Internet

Server

Client

Client
Client

Client

Client

Jitter

Figure 1. Jitter in the real world

Section 2 begins with some mathematical predictions
regarding the consequences of introducing jitter through
random fluctuations of latency and measuring jitter through
an uncorrelated sampling process. Section 3 describes our
experimental testbed for introducing and measuring
controlled jitter, section 4 describes our results and the
paper concludes in section 5.

2. MATHEMATICAL PREDICTIONS
We can model the behaviour of a uniformly or normally
distributed jitter system using fairly simple probability
results.

Where the delay in both directions is uniform and the
sample is delayed on both the outbound and inbound paths,
then the total delay will be the sum of two uniform
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distributions. Where random variables are independent, the
probability density function of the sum of them is their
convolution. It is easy to show that the probability density
function of the sum of two uniformly distributed random
variables has a triangular distribution [15]. We show this
below before developing models for the more complicated
scenarios.

Assume the jitter in the outbound and inbound direction is
uniformly distributed with jitter between 0 and a seconds.
Denote the random component of the outbound jitter by X
and the inbound by Y. Then total jitter is:

Z = X+Y.

Let the probability density functions for X and Y be Xf and

Yf respectively. The probability density function for Z is
therefore given by:
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This describes a triangular distribution as shown in Figure
2.
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Figure 2. Triangular Distribution

In some of the scenarios described in this paper, not all
inbound samples are subject to jitter. In this case we can
describe the probability distribution with an impulse
function at zero and a uniform distribution on the
remainder of the interval [0,a] as follows. We use the same
definitions as before and let the probability of the sample
not being subject to inbound jitter be u. Denote the delta
function at z by δ(z). The probability density function for Y
then becomes:
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In this case, the probability density function for Z is given
by:

(5)

otherwise0

2for,
1

2

34

0for,
1

2

2

2

�
�
�

�

�
�
�

�

�

≤≤��
�

�
		



� −−�
�

�
	



� −

≤≤��
�

�
		



� −+

= azaz
a

u

a

u

azz
a

u

a

u

fZ

This describes a triangular distribution with a vertical axis
displacement as shown in Figure 3. When u is zero, it
simplifies to the triangular distribution described in (2).
When u is 1 it simplifies to a uniform distribution. For
Figure 3 the value of u is 0.8.
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Figure 3. Modified Triangular Distribution

The final scenario we describe is where the inbound jitter
and outbound jitter are both from a normal distribution. It is
well known that the sum of two normally distributed
variables is itself normally distributed, so we would expect
the total jitter in that case to have a normal distribution.

Consequently, we would expect the random component of
our experimentally observed jitter to have one of the
distributions described above or a normal distribution.

3. EXPERIMENTAL METHODOLOGY
3.1 Creating Jitter in the Laboratory
FreeBSD (a stable, widely used, open source unix-like
operating system) includes an extremely useful kernel module
known as dummynet [9] . Dummynet enables the imposition
of additional latency, bandwith limits and packet loss to traffic
flowing through the kernel’s network stack. A FreeBSD-based
ethernet bridge can introduce a wide range of controlled
latency and packet loss scenarios.

Dummynet is reasonably precise as a latency and loss rate tool
[11] (to within one millisecond once the FreeBSD kernel is
recompiled with its internal ‘tick’ counter set to 1000 Hz
rather than its default of 100Hz). Dummynet is controlled
through FreeBSD’s internal ipfw packet filter, and operates
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on traffic flows identified as ‘pipes’. For example, one can
configure particular latency or loss with commands like:

ipfw pipe 1 config delay 10ms (to instantiate an
additional latency of 10 milliseconds)

or

ipfw pipe 1 config plr 0.15 (to instantiate a loss
rate of 15%)

To create jitter we must continuously vary the dummynet pipe
rule to cause fluctuations in the configured latency. One goal
of this paper is to characterise dummynet’s efficacy when used
in such a manner, and demonstrate that it can be a suitably
predictable and controllable source of network jitter.

We explored the use of other freely available traffic shaping
tools such as the BSD family’s ALTQ [12] , Linux’s
IPROUTE2 [13] and NIST Net [14] . Of these, NIST Net
appeared to be most promising, as it claims to offer the ability
to produce configurable jitter. However, the project has been
abandoned for some time (supporting only the now dated
Linux 2.4 kernel series). All of the other tools implement
essentially the same functionality as dummynet, so we believe
our results will generalize to testbeds built with them instead.

3.2 Testbed configurations
Our artificial jitter testbed consisted of three Intel 2.4 GHz
Celeron hosts, interconnected by 100Mbit/sec Ethernet as
shown in Figure 4. One machine (Pinger) generates ICMP
Echo Request traffic through a specially configured bridge
to a Target host. All three machines ran FreeBSD 4.9
kernels re-compiled with 1ms tick timers.

B ri dg e /
D um m y n e t T ar g e tP i n g e r

Figure 4. Physical network layout diagram

Our experiments explored the three separate delay/jitter
configurations shown in Figure 5.

S T
Delay/Jitter

Delay/Jitter

S TDelay/Jitter

S
Delay/Jitter

Delay/Jitter
TDelay

Figure 5. Three test configurations

The first puts all ICMP ping traffic traveling between the
source and target in both directions into a single jittering
pipe. The second puts Pinger->Target and Target->Pinger
traffic in their own separate pipes. The third introduces an
additional fixed delay at the Target.

We found no difference between the first two methods at
the data rates we used, although the first method could
potentially suffer from queue exhaustion and uncontrolled
packet loss as traffic loads increased. Consequently we
used two pipes for most results presented in this paper.

We also confirmed that our jittering scheme did not induce
any re-ordering of the packets flowing through a given
dummynet pipe.

4.EXPERIMENTAL RESULTS
Although it is easy to reconfigure a dummynet pipe at regular
intervals from a pseudo-random stream of integer values, our
experiments show that you should choose your random
distribution carefully, keeping in mind how it can interact with
your pipe re-configuration interval. Simply fluctuating
(jittering) the dummynet pipe according to a uniform random
distribution can create unexpectedly non-uniform distributions
of actual latency through your bridge.

4.1 Jitter Constraints
We sampled the actual jitter created along our end-to-end path
by using high speed ‘ping’ trials from Pinger to Target. In this
context, high speed means a stream of ICMP Echo Request
packets every 5ms, 25ms or 50ms apart – essentially sampling
the path’s roundtrip time at those intervals.

Each test involved many tens of thousands of pings while the
bridge’s dummynet pipe rule was reconfigured (jittered) every
X milliseconds, for X = 100, 500, 1000, and 2000. This was
intended to emulate moderately fast to slow fluctuations in
path latency. As all traffic ran through the bridge twice, ping’s
estimated round trip time (RTT) is twice the delay configured
into the dummynet pipes. When configured with uniformly
distributed latencies from 28ms to 52ms (and a mean of
40ms), we created a range of RTTs from 56ms to 104ms with
a mean of 80ms. The normally distributed latencies were
centered about a mean of 40ms with a standard deviation of
4ms, which approximated the same spread of latencies
obtained using the uniform distribution.

We decided not to explore jittering intervals less than 100ms
for now, even though jitter induced by real network congestion
events can have much shorter intervals. Many fast-paced
online games only send server to client update packets every
40 to 100ms (e.g. 40ms for XBox Halo on a LAN, 50ms for
Quake3, 60ms for Half-Life and 100ms for older games such
as Quake2). In other words, the client-server network path of
such applications is sampled every 40-100ms, constraining the
player’s awareness of path latency changes.

We tested 2 types of random distribution - uniform and
normal. The last three trials were stimulated by uniform
linear/ramp distributions.
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4.2 Trial Results using Uniform Random
Distributions
Figure 6 shows the resulting distribution of RTTs, measured
over 100000 jitter transitions, with the bridge jittering every
1000ms (i.e. picking a new, random latency value between
28ms and 52ms every second). Two trials are presented, in
which ping packets were generated at 5ms or 50ms intervals,
uncorrelated to the jittering transitions every second. The
distribution looks reasonably uniform (we achieved an
identical result when jittering every 2 seconds). Figure 7
shows the distribution of measured jitter over 100000
uniform random jitter transitions with a jittering interval of
500ms. Figure 7 is beginning to show some of the
displaced triangular behaviour predicted in our
mathematical model (Figure 3).

This behaviour becomes clearer in Figure 8. We also show
in Figure 8 that there is no discernable distinction between
using one pipe or two when jittering packets through the
bridge (first and second configurations respectively from
Figure 5). In addition, the 25ms and 50ms sampling
histograms are excluded as they looked exactly the same.
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Figure 6. Distribution of measured latency given uniform
jitter every 1000ms, 100000jitter samples
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Figure 7. Distribution of measured latency given uniform
jitter every 500ms, 100000jitter samples

 0

 0.5

 1

 1.5

 2

 2.5

 3

 50  60  70  80  90  100  110

R
el

at
iv

e 
F

re
qu

en
cy

 (
%

)

Latency (ms)

Relative Frequency VS Latency for 100ms Jitter Intervals, 5ms Pings

2 pipes
1 pipe

Figure 8. Distribution of measured latency given uniform
jitter every 100ms, 5ms sample intervals, 100000jitter
samples

Figure 9 is based on the third configuration in Figure 5,
with the 40ms mean latency split between a fixed 20ms at
the Target and the bridge set to jitter around a mean of
20ms instead of 40ms. We see that splitting the source of
jitter and latency across two delay elements does not
materially change the results, which suggests an accurate
usability testbed need only implement a single bridge to
provide the desired jitter and mean latency.
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Figure 9. Distribution of measured latency given uniform
jitter every 100ms, 2 pipes, 100000jitter samples

Figure 10 provides a more dramatic illustration of what
happens when the jittering interval approaches, and then
becomes smaller than, the average RTT. There’s an
increasing chance of one or more packets being in the pipe
itself each time dummynet’s pipe rule is reconfigured,
skewing the effective RTT distribution towards the more
triangular shape predicted in section 2. (Given the uniform
distribution of jittering and the uncorrelated sampling of
5ms ping intervals.)
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Figure 10. Distribution of measured latency given
uniform jitter every 100ms, 5ms sampling, for mean
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4.3 Trial Results using Random Normal
Distributions
The Central Limit Theorem [15] suggests that a Normal
distribution should better approximate the spread of jitter
present in the Internet, as jitter is caused by the cumulative
variation in delay within multiple network devices. (CLT
says that when we add multiple variates from the same
distribution they will tend to the Normal Distribution.)

Figure 11 shows the resulting distribution of RTTs,
measured over 50000 jitter transitions, with the bridge jittering
every 100ms (picking a new random latency value normally
distributed around the mean of 40ms each time). Two trials are
presented, in which ping packets were generated at 5ms or
50ms intervals. As expected, the sum of two normal
distributions (jittering of the path in each direction) is also
normally distributed.
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Figure 11. Distribution of measured latency given
normally distributed jitter every 100ms, 2 pipes,
50000jitter samples

Figure 12 demonstrates the third test scenario (Figure 5),
with the mean 40ms latency component being split into two
parts. The bridge was set to jitter the same amount around
20ms instead of 40ms, and a 20ms fixed delay was
introduced at the target machine. As with Figure 9 the
results suggest an accurate usability testbed need only
implement a single bridge to provide the desired jitter and
mean latency.
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Figure 12. Distribution of measured latency given
normally distributed jitter every 100ms, 2 pipes, 5ms
sampling, 50000jitter samples

4.4 Trials using Non-random Distributions
We also experimentally demonstrated the convolution of
distinctly non-uniform jittering distributions and its impact on
actual measured RTTs. Figure 13 shows the results of jittering
dummynet between two specific latencies (28ms and 52ms)
every 100ms, and probed the path with 51000 ping packets.
There are two spikes in the RTT histogram corresponding to
the two actual latencies (at 56ms and 104ms), and another
spike halfway between these two values (at 80ms). [If you
stood back and superimposed a number of these graphs on top
of each other (as would be the case with a uniform random
distribution of possible dummynet latency transitions) you
begin to see how the RTT distribution in Figure 8 comes
about.]
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Figure 13. RTT when jitter between two distinct
latencies at a 100ms jitter interval
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Figure 14 shows the RTT distributions that resulted when we
re-ran our trials using three different linear ‘ramp’
distributions. The RTT distributions are marked ‘52->28’
(jittering with 24 one-millisecond steps from 52ms down to
28ms, then repeat from 52ms), ‘28->52’ (jittering with 24 one-
millisecond steps from 28ms up to 52ms, then repeat from
28ms), and ‘28->52->28’ (jittering with 48 one-millisecond
steps from 28ms up to 52ms then back down to 28ms again).
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Figure 14. RTT when jitter with ramp distributions and
a 100ms jitter interval

These ramps are also uniform distributions. The key difference
is that each transition from one dummynet latency to the next
is only one millisecond (except for one transition at the end of
each 24 step cycle for ‘52->28’ and ‘28->52’). Figure 14 is
quite different to Figure 8, even though both were generated
by jittering dummynet every 100ms. The ‘28->52->28’
jittering function results in quite a smooth distribution of RTT.
Both the ‘52->28’ and ‘28->52’ jittering functions create a
mostly smooth distribution of RTT, with a small spike around
80ms corresponding to the large jumps from 28ms to 52ms (or
vice-versa) every 24 jittering intervals (every 2.4 seconds).

5. CONCLUSION
The evaluation of highly interactive networked games (and
similar applications) can benefit from usability trials
conducted on testbeds that provide controlled and predictable
latency, loss and jitter. This paper illustrates some interesting
results when emulating jitter using FreeBSD’s kernel-resident
dummynet module, and provides the mathematical premises
behind these observations. If you ‘jitter’ the dummynet pipe at
intervals that approach the pipe’s mean latency the resulting
distribution of round trip times (RTTs) will be skewed and
cluster more around the mean value even though your driving
distribution is uniform. This is consistent with the convolution
of two uniform random distributions.

It is clear that experimental testbeds should carefully utilize
non-uniform (e.g. normal, or otherwise pre-skewed) jittering
distributions if they wish to jitter at rates approaching their
mean client-server path length. Alternatively, the jittering
intervals should be at least ten times longer than the desired

mean client-server path length. Although this would appear to
limit one’s ability to emulate jitter occurring at very short
intervals (e.g. sub-50ms) this shouldn’t be a great limitation as
many interactive games typically don’t ‘sample’ the network
more frequently than every 40-100ms anyway. We expect this
paper’s insights to augment the development of jittering tools
for usability testbeds built around unix-based toolkits.
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