
ISBN/ISSN 0977586103

Copyright (c) Australian Telecommunication Networks & Applications Conference (ATNAC), Australia, December 2006

Mitigating Email Spam by Statistical Rejection of

TCP Connections Using Recent Sender History
Minh Tran, Grenville Armitage

Centre for Advanced Internet Architectures
Swinburne University of Technology

Melbourne, Australia
{mtran,garmitage}@swin.edu.au

Abstract- Email spam is a significant problem for ISPs and

Internet users. While part of the solution is legislative, there

remains many avenues for innovative technological spam-

mitigation techniques. We propose a novel TCP-layer algorithm

that statistically accepts or rejects in-bound TCP connection

requests based on the recent past history of spam injection from

particular source IP addresses. Our scheme allows for the

automatic rehabilitation of legitimate senders and cuts the

operating cost of manually updated blacklists and whitelists. It

also reduces the consequences of falsely categorising emails and

reduces the last-hop network resource consumption caused by

spammers. Our scheme sits transparently in front of the existing

SMTP server, so it will supplement (rather than replace) existing

spam-filters operating inside existing SMTP servers or at the

end-user’s mail client.

Index Terms— spam, anti-spam, random rejection, TCP

drop/reset, FreeBSD kernel, ipfw, proxy server, mail sever.

I. INTRODUCTION

Email spam has become a major problem for mail server
operators around the world. The solution-space has both legal
and technological aspects [1][2], and various schemes
continue to be deployed with only modest success. A common
approach is to use blacklists and whitelists to identify whether
the source of an inbound SMTP connection is to be ignored or
trusted respectively. A key challenge is ensuring blacklists and
whitelists are kept up-to-date as sites become spammers, are
falsely tagged as spammers, or rehabilitate themselves.
Traditionally such list updates are performed manually. The
use of blacklists and whitelists against unknown senders may
be supplemented by content filtering techniques. However,
such techniques exhibit finite rates of false-positives
(legitimate emails falsely classified as spam) and false-
negatives (spam falsely treated as legitimate emails).

Other techniques are economic-based, requiring senders to
prove their willingness to send by absorbing a cost on sending
traffic. They include Microsoft’s ‘stamp of approval’ method
[5], refundable bankable postage [6], e-postage [7] or an
improved payment method with differentiated surcharge [8].
Nevertheless, if the spammer meets the ‘cost’, the mail server
will still accept spam emails for delivery. Consequently a high
level of network resource, server-side disk and CPU load can
be wasted for spam. Moreover, spammers can distribute the
computational load across their zombies and reduce the
incremental cost to their operation. Thus, ‘willingness to incur

computational cost to send’ is not a strong indicator that the
sender is ‘legitimate’.

We propose a novel anti-spam technique that should
reduce the operational load (on mail server operators) of
creating and using blacklists. Our scheme automates the
rehabilitation process, thus reducing the human intervention
required by mail server and blacklist operators. We also
reduce the negative long-term consequences of false-positives
[3] and erroneous blacklisting on legitimate email senders.

Our approach operates at the TCP layer and is deployed in
front of the SMTP server being protected. We apply a form of
statistical rejection of inbound TCP connections based on
recent history of spam injection from each sender’s IP address.
We aim to achieve recommended anti-spam goals [11], allow
automatic rehabilitation of legitimate senders who have been
previously marked as spammers, and thus reduce operational
costs the network and SMTP servers. In the following section
we will discuss about the operation and implementation of our
scheme.

II. DESCRIPTION OF OUR NOVEL SPAM MITIGATION SCHEME

A. A high level overview of our anti-spam scheme

Our new proposal extends a previously published idea to
rate limit TCP connections from probable spammers [10]. In
[10] we monitored inbound SMTP traffic on a per-source IP
basis, and applied severe IP packet rate limiting on any flows
that appeared to be carrying spam. We proposed that spam
detection occur in real-time inside an SMTP server proxy that
would impose any necessary rate limiting. The scheme would
‘hurt’ spammers by ensuring individual rate-limited SMTP
connections took substantial lengths of time to complete. And
yet we avoided the negative impact of false-positives by
eventually allowing all emails through.

Fred Baker originally proposed the basis of our new
scheme in May 2005 [14]. A key limitation of our previous
scheme [10] was the consumption of local resources (in the
SMTP proxy) to handle packet queues on a per-source IP
address basis for every active inbound SMTP connection. Our
new approach introduces the notion that an inbound TCP
connection may be rejected with some random probability
proportional to the level of spam already seen from the
connection’s originator over some configurable period of time.
Rejection is instantiated by returning a TCP RST packet rather
than TCP SYN-ACK in response to the inbound TCP-SYN
packet. Figure 1 illustrates our model (assuming a prototype

ISBN/ISSN 0977586103

Copyright (c) Australian Telecommunication Networks & Applications Conference (ATNAC), Australia, December 2006

SMTP proxy built using FreeBSD’s ipfw functionality [12]).

A crucial aspect of our new proposal is that email sources
may have their ‘reputation’ rehabilitated over time without
manual intervention. Sources sending acceptable emails
should have their TCP reject probability tend towards 0 over
time, even if this means rehabilitating an IP source address
previously considered to be an unacceptable source.
Conversely, sources sending unacceptable emails should see
their rejection probability tend towards 1, even if that source
had recently been known for sending acceptable emails.

We can describe this scheme by analogy to a concept from
active (router) queue management - random early detection
(RED), described in RFC2309 [11]. Rather than ‘queue size’
we measure the changing probability of email being judged
'unacceptable' by a target site's automated spam filters (Figure
2). For each IP address that sends mail to an SMTP target, a
moving average between zero and one is maintained,
decreasing over time and increasing on each receipt of an
unacceptable email. Borrowing directly from RED
terminology, we further nominate lower and upper bounds on
Q - minth (minimum threshold) and maxth (maximum
threshold) respectively, such that when Q is < minth all TCP
connections are accepted, when maxth < Q, all new TCP
connections are rejected, and when minth <= Q <= maxth new
TCP connections are rejected with a probability varying
between 0 and maxp (the maximum rejection probability).

External information (from DNS blacklists or local
whitelists) is used to permute the parameters Qinit, Qincr,
Qdecr, minth, maxth and maxp. For example, Qdecr influences
the rate at which a source can be rehabilitated. Whitelisted IP
addresses might be assigned a faster Qdecr than non-
whitelisted addresses. Whitelisted address might also benefit
from having a lower maxp than non-whitelisted addresses.

maxth dictates when the most aggressive TCP connection
rejection regime is entered - IP addresses appearing in DNS
blacklists could be assigned a lower maxth than non-
blacklisted IP addresses (rather than blocking them outright).

Our technique leverages the willingness of legitimate mail
sources to retry failed SMTP transfers. Over multiple retries
(typically separated by tens of minutes) a legitimate email will
eventually get through. On the other hand, a spammer either
refuses to retry, or wastes a huge amount of time waiting to
retry. In the latter cases we have denied the spammer a rapid
method of transmitting their spam. By introducing a sliding
scale of reject probability we provide a modest level of
negative feedback to legitimate sources that are occasionally
letting junk or spam emails leak through. (Or who are victim
of some unexpected false-positive, such as incorrect listings in
a 3

rd
 party blacklist or incorrect classification by the local

site’s own in-line spam assessment algorithms). At the other
extreme, persistent offenders will find their reject probability
hovering just below 100%.

B. An implementation of our anti-spam scheme

Our prototype has been implemented inside a FreeBSD-
based transparent SMTP proxy server. The proxy terminates
inbound SMTP connections on behalf of the local SMTP
server, and makes TCP connection reject or accept decisions
using the algorithm described in the previous section. If a
connection is accepted, the proxy establishes a new TCP
connection to the local SMTP server and forwards the SMTP
exchange line by line. We also implement in-line spam
assessment of each SMTP message passing through the proxy,
which then permutes the proxy’s assessment of a source’s
willingness to send spam.

Although the random TCP reject functionality could be
implemented within the kernel we chose to implement it using
TCP packet interception rules in FreeBSD’s ipfw network
layer firewall. Each sender’s IP address and their spam-
sending behaviour are continuously monitored and dealt with
by updating the ipfw rule that controls how new SYN packets
are treated (Figure 3). Our prototype also reacts to spam
coming over an already-accepted connection by randomly
closing existing connections if the content-analysis filter
detects an over-threshold level of spam from this connection.

C. Operation of our prototype anti-spam proxy

At start up our anti-spam proxy server checks a local
blacklist file and implements an initial spam history database
QList of IP addresses and their Reject probability (Figure 3).
Blacklists and whitelists are also used to build entries of
TableQ which keeps the list of senders’ type (such as
blacklisted, whitelisted, or unknown) and their corresponding
parameter settings (Qinit, Qincr, Qdecr, minth, maxth, maxp).

A list of rules is created inside ipfw to identify each IP
address from which we wish to reject connections and the
associated reject probability. This list of rules is then
constantly updated as spam arrives, or sources are re-
habilitated.

When a TCP SYN arrives at the proxy, ipfw first decides
whether to pass the packet up the TCP stack, or to initiate an

Spam prob.

(Q avg)

D rop/

R eset

Prob.

M inth M axthQ in it

Figure 2 Using RED-like terminology to express connection rejection
probability as a function of an IP address’ prior spam sending history

Spam
Mitigation

Proxy Server

SMTP
Server

Incoming SYN

Incoming SYN

Incoming SYN

Incoming SYN

Ipfw rules/
Kernel’s SYN

handler function

Figure 1 Architectural model – statistical TCP connection rejection
implemented as a proxy before a protected SMTP Server

ISBN/ISSN 0977586103

Copyright (c) Australian Telecommunication Networks & Applications Conference (ATNAC), Australia, December 2006

immediate rejection (sending back a TCP RST). If the SYN is
rejected, ipfw will reject (with 100% probability) any
retransmitted SYN packets from the same source for a short,
configurable period of time (typically a few tens of seconds, in
case the source tries a few quick retransmits to get around a
non-zero reject probability). If accepted, ipfw allows the two-
way TCP session to proceed. New sources have their
‘spammer status’ queried in DNS black list servers [13] and
the resulting information is stored in TableQ and the spam
history database QList.

As email flows across the TCP connection the proxy server
performs content evaluation. If spam content is detected, the
server updates/increments the Reject probability of the sender
(at Qincr rate) based on the spam probability and the sender's
Qinit. minth, maxth, maxp settings. When the sender spam
probability reaches a certain threshold, the proxy server also
closes (randomly, according to the spam probability) the
socket with the sender. The value of Reject probability is also
updated in QList.

We keep the following variables for each correspondent IP
address in the spam history database:

Address: The IP address of the source.

Q: Ratio of mail received that has been deemed unacceptable by

the SMTP receiver's spam filters.

lastReceipt: Timestamp of last update of Q (used to optimise the

mathematics of time decrementing Q)

These variables are global to the implementation, whether
implemented as compile-time or configuration variables.

minth: The minimum threshold; if Q < minth, no TCP SYNs are

rejected; otherwise some or all TCP SYNs are rejected.

maxth: The maximum threshold; if maxth < Q, all TCP SYNs are

rejected at the rate maxp

maxp: The maximum rejection probability

Qincr: The rate at which Q is increases

Qdecr: The rate at which Q is decreases

Qinit: The initial value Q is set to on receipt of an email from a

new TCP correspondent.

III. VALIDATION AND ANALYSIS OF OUR ANTI-SPAM SCHEME

A. Experiment setup and parameter settings

Figure 4 shows our test-bed with four different types of
email senders. We want to evaluate the impact of our schemes
on the rehabilitation of legitimate senders and how it will
function against spammers.

The spam mitigation proxy server operated at machine
mtran which forwarded accepted-emails to the mail server at
mtran4. Each sender used the open source email client
smtpclient and automated scripts to send consecutive emails at
certain intervals. Each email recipient’s mail box size was
logged on the mail server to. SMTP traffic at mtran was
captured with tcpdump and post-analysed using ethereal. Ipfw
was configured to maintain state regarding a previous SYN
rejection for one minute (using the sysctl variable
net.inet.ip.fw.dyn_syn_lifetime).

Table 1 shows the parameter settings for each of the sender
type in our experiment. Unknown senders start with the initial
Reject Probability Qinit as 0 – treated as good sources until
experience proves otherwise. Q decrements by Qdecr every
minute. Q only increments at Qincr rate if the new content
analysis spam is greater than the existing spam probability by
at least 5%. Different parameter settings will have different
consequences on spammers and legitimate senders (whose
emails could be falsely classified as spam or whose machine

MT Proxy

Reading emails/content filtering

Query DNSBLs

Calculate spam prob.

TABLE Q

IP add Q init Qincr Qdecr

BL

WL

default

…

DNSBL

KERNEL

Qavg Drop/Reset Pro

QList Drop/Reset rules

Incoming SYNs

Randomly close socket

Check local BL/WL

Ipfw

Open new socket, port 25

Look up

Timely update

decr over time

Figure 3 Diagram of the operation of our anti-spam tool

Unknown sender Blacklisted

sender

Whitelisted

sender

Qinit 0 50 0

Qdecr 5% 1% 10%

Qincr 5% 10% 1%

minth 5 5 5

maxth 95 95 95

maxp 95 95 95

Table 1 Parameter settings in the Test-bed

Whitelisted
good senders

mtran.caia.swin.edu.au
136.186.229.90

mtran4.caia.swin.edu.au

 136.186.229.151

SMTP

TCP/IP

NETWORK

IP
address

Prob Timestamp

- Perform content
filtering and update
spam list
- Close TCP
connection if
spam>spam threshold

- Look up
databases
for spam
history of
the sender
- Randomly
acknowledg
e or reject
SYNs
packets

Incoming

SYNs

User 1

User 2

User 3

User 4

Mail Pool

Unknown
good senders

Spammers

Blacklisted
spammers

SPAM MITIGATION

PROXY SERVER
MAIL SERVER

Figure 4 Test-bed Implementation

ISBN/ISSN 0977586103

Copyright (c) Australian Telecommunication Networks & Applications Conference (ATNAC), Australia, December 2006

could be hijacked and exploited by spammers to send spam
emails for a certain period). Evaluating the impact of these
parameters will be the subject for future work.

B. How our scheme functions against spam

Our first scenario involves artificial ‘spammers’ sending
spam every 10 seconds. They sent spam emails with a mixture
of different spam probability level (rated by our content filter)
for 15 minutes. Faced with our proxy rejecting their emails
with a high probability, the ‘spammers’ reduced their spam
level by sending a mixture of emails with ‘good’ content (for
5 minutes) and then even took a break (for 10 minutes) before
resuming sending us more spam. This time, they sent us spam
every 90 seconds (simulating a spammer guessing that the
proxy allowed for rehabilitation every 1 minute).

Figure 5 shows spammer behaviour and the response of
our anti-spam tool. As soon as the content filter detects spam,
the Reject Probability (and ipfw rule) is immediately updated.
No matter what action a spammer took, their only choice (to
increase the chance of email delivery) was to wait for the
Reject probability to decrement over time. Sending quickly
does not help - many of their emails were rejected (first by the
dynamic SYN rule in ipfw and second due to their high level
of Reject Probability). The gaps on the graph (gaps between
blue-colour markers from a period such as 0 to 15 minutes)
are periods when spammer emails were rejected.

Figure 6 shows the disk space consumed for a single
mailbox over time with the proxy in operation. If the spam

had been arriving unopposed, a linear growth in consumption
would have occurred. The non-linear sections in Figure 6
reflect times when the proxy successfully protected the
mailbox. Overall, 22 emails arrived in the mailbox (compared
to 130 emails transmissions attempted – a saving of 83% in
disk space). Our proxy would be similarly beneficial for any
SMTP server that stores email before spam-filtering them. In
general the network traffic saved over a time period is:

Number of emails/ minute x (Email payload [~5 Kbytes] +
SMTP control message exchanges - RST packets)

In our experiment, for the first 20 minutes, the network traffic
saved is about:

120 emails x (5 x 1024 Bytes + 1541 Bytes – 54 Bytes)

= 120 emails x 6607 Bytes = 792,840 Bytes = 774.26 KBytes

C. Legitimate senders and automatic rehabilitation:

The experiment was done with two types of good senders

(whitelisted senders and legitimate unknown senders). Figure
shows the rate at which automatic rehabilitation happens.

Legitimate senders who are falsely classified as spam were
allowed to rehabilitate. With our anti-spam's current setting
(Qdecr = 5% for unknown senders and 10% for whitelisted
senders), unknown senders could rehabilitate within an hour
while whitelisted senders took less than 30 minutes. (This
applies when their emails are rated at 100% spam probability
by our content filter. In practice rehabilitation is likely to
occur even faster.) In addition, we allow senders to clear their
name from the short-term blacklist if their Reject Probability
Q reaches 5% and they send no spam during rehabilitation.

D. Spam IP address distribution and our anti-spam scheme

Using actual spam traffic arriving at Swinburne on 27th
June 2004 we plot a rough estimate of the probability that a
particular IP address will send another spam email within the
next hour (Figure 8). About 16.5% of spammers sent at least a
spam email within a period of 5 minutes from the prior time
they had sent spam. This number goes to about 20% for 15
minutes and nearly 30% for 1 hour period.

Figure 9 shows the reaction of our anti-spam scheme to

0

10

20

30

40

50

60

70

80

90

100

110

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Time (in Minute)

S
p

a
m

 a
n

d
 R

e
je

c
t
P

ro
b

a
b

ili
ty

 (
in

 %
)

Whitelisted Senders - Spam Probability Whitelisted Senders - Reject Probability
Unknown Senders - Spam Probability Unknown Senders - Reject Probability

Figure 7 Rehabilitation of Whitelisted and Unknown senders

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50

Time (in Minute)

M
a

il
 B

o
x

 S
iz

e
 (

in
 K

B
y

te
s

)

Figure 6 Server Mail Box Size as a function of time

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

Time (in Minute)

S
p

a
m

 a
n

d
 R

e
je

c
t
P

ro
b

a
b

il
it

y
 (

in

%
)

Spam probability detected Reject probability in ipfw rule

Figure 5 Sender’s Reject and Spam Probabiliity as a function of time

ISBN/ISSN 0977586103

Copyright (c) Australian Telecommunication Networks & Applications Conference (ATNAC), Australia, December 2006

both unknown and blacklisted spammers. If 16.5% or 20% of
spammers send another email within 5 or 15 minutes, our
proxy is still able to keep the record of their spam history. As
a consequence, their emails with be dropped/reset at the rate
of 70% and 42% (unknown spammers) or 90% and 82%
(black-listed spammers) respectively.

If unknown spammers come back after one hour period
and send more spam, the Reject probability will apply
immediately as soon as our content filter detects spam. If the
spammers delay their action by waiting for one hour for their
name to clear, then our scheme has successfully forced them
to slow down their spam sending process. Blacklisted

spammers are punished even more. In our experiment, after
being seen to send an email with 100% spam probability, the
connection with the blacklisted spammer was immediately
closed and all of the spammer’s subsequent emails were
rejected. Such a spammer also had to wait much longer for
their Reject probability to decrement although it will never go
below 50% (default setting for blacklist-Qinit in our scheme).

IV. CONCLUSION AND FUTURE WORK

Most existing anti-spam techniques tend to be built around
‘trusted’ blacklists that must be manually updated. Such
updating requirements lead to increased operator costs and
frustration when innocent (or rehabilitated) sites are not

removed from blacklists in a timely manner. Other techniques
such as content filtering and economic-based ones face the
negative consequence of falsely classifying spam sources
(either based on the message content or by guessing the
source’s legitimate intention through their willingness of
spending resources on sending emails). Our anti-spam tool
differs in that it reduces the costs of false-classification and
allows blacklisted IP addresses to be rehabilitated
automatically, without operator intervention.

An important extension is to combat spammers who
rapidly cycle through closely spaced IP addresses (whether
from zombie armies or hijacked/purchased IP address space).
We propose to temporarily ‘poison’ a range of IP addresses
either side of an IP address from which spam is seen,
proactively raising the reject probability of neighbouring IP
addresses that may be about to send spam. Neighbouring
addresses that are not subsequently used to send spam will be
rehabilitated in relatively short time.

There are many configurable parameters in our anti-spam
tool. Future work will evaluate how these parameter settings
impact on spam mitigation and the rehabilitation of legitimate
senders. Optimal settings will be a function of the
spam/legitimate email profile of any given mail server. We are
also interested in calculating the sensitivity of our results to
the choice of content analysis filter in the proxy itself.

REFERENCES

[1] S. L. Pfleeger, G. Bloom, “Canning Spam: Proposed Solutions to
Unwanted Email”, IEEE Security & Privacy Magazine, Vol. 3 (2), pp.
40-47, Mar 2005

[2] House of Representatives, “CAN-SPAM Act of 2003” ,
http://www.spamlaws.com/federal/108s877.html (as of Aug 2006)

[3] C. Williams, D. Ferris, "The cost of spam false positive", Ferris
Analyzer Information Service. Report #385, Aug 2003

[4] L. Zang, J. Zu, T. Yao, “An Evaluation of Statistical Spam Filtering
Techniques”, ACM Transaction on Asian Language Information
Processing, vol. 3 (4), pp. 243-269, Dec 2004

[5] The Penny Black Project, Microsoft Research,
http://research.microsoft.com/ (as of Aug 2006)

[6] M. Abadi, A. Birrell, M. Burrows, F. Dabek, and T. Wobber,
“Bankable postage for network services”, Proc. of the 8th Asian
Computing Science Conference, Mumbai, India, Dec 2003

[7] “An Overview of E-Postage”, Taughannock Networks, Feb 2004,
http://www.taugh.com/epostage.pdf (as of Aug 2006)

[8] Rui Dai and Kang Li. “Shall we stop all unsolicited email messages?”
Proc. of the First Conference on Email and Anti-Spam,, Mountain
View, CA, USA, July 2004

[9] G. Lindberg, “Anti-Spam Recommendations for SMTP MTAs”,
RFC2505, The Internet Engineering Task Force, Feb 1999

[10] M.Tran, G.Armitage. "Evaluating The Use of Spam-triggered TCP/IP
Rate Control To Protect SMTP Servers," Proc. of Australian Telecom.
Networks & Applications Conference, Syney, Australia, Dec 2004

[11] B. Braden and others, “Recommendations on Queue Management and
Congestion Avoidance in the Internet”, RFC 2309, The Internet
Engineering Task Force, Apr 1998

[12] “FreeBSD handbook, chapter 26 Firewalls”,
http://www.freebsd.org/doc/ (As of Aug 2006)

[13] J. Jung, E. Sit, “An Empirical Study of Spam Traffic and the Use of
DNS Black Lists”, Proc. of the 4th ACM SIGCOMM Conference on
Internet Measurement, Sicily, Itaty, Oct 2004

[14] Fred Baker – Cisco Systems USA, private communications, May 4th

2005

0

10

20

30

40

50

60

70

80

90

100

110

0 5 10 15 20 25 30

Time (in Minute)

S
p

a
m

 a
n

d
 R

e
je

c
t

P
ro

b
a

b
il

it
y

 (
in

 %
)

Unknown spammers - Spam Probability Unknown spammers - Reject Probability

Blacklisted spammers - Spam Probability Blacklisted spammers - Reject Probability

Figure 9 Spam and Reject probability of Unknown and Blacklisted Spammers

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30 35 40 45 50 55 60

Time (in Minute)

N
u

m
b

e
r

o
f

IP
 a

d
d

re
s
s
e
s
 (

in
 %

)

Figure 8 Spammers IP address distribution on 27th Jun 2004

