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Abstract- Email spam is a significant problem for ISPs and 

Internet users. While part of the solution is legislative, there 

remains many avenues for innovative technological spam-

mitigation techniques. We propose a novel TCP-layer algorithm 

that statistically accepts or rejects in-bound TCP connection 

requests based on the recent past history of spam injection from 

particular source IP addresses. Our scheme allows for the 

automatic rehabilitation of legitimate senders and cuts the 

operating cost of manually updated blacklists and whitelists. It 

also reduces the consequences of falsely categorising emails and 

reduces the last-hop network resource consumption caused by 

spammers. Our scheme sits transparently in front of the existing 

SMTP server, so it will supplement (rather than replace) existing 

spam-filters operating inside existing SMTP servers or at the 

end-user’s mail client. 

Index Terms— spam, anti-spam, random rejection, TCP 

drop/reset, FreeBSD kernel, ipfw, proxy server, mail sever. 

I. INTRODUCTION

Email spam has become a major problem for mail server 
operators around the world. The solution-space has both legal 
and technological aspects [1][2], and various schemes 
continue to be deployed with only modest success. A common 
approach is to use blacklists and whitelists to identify whether 
the source of an inbound SMTP connection is to be ignored or 
trusted respectively. A key challenge is ensuring blacklists and 
whitelists are kept up-to-date as sites become spammers, are 
falsely tagged as spammers, or rehabilitate themselves. 
Traditionally such list updates are performed manually. The 
use of blacklists and whitelists against unknown senders may 
be supplemented by content filtering techniques. However, 
such techniques exhibit finite rates of false-positives 
(legitimate emails falsely classified as spam) and false-
negatives (spam falsely treated as legitimate emails). 

Other techniques are economic-based, requiring senders to 
prove their willingness to send by absorbing a cost on sending 
traffic. They include Microsoft’s ‘stamp of approval’ method 
[5], refundable bankable postage [6], e-postage [7] or an 
improved payment method with differentiated surcharge [8]. 
Nevertheless, if the spammer meets the ‘cost’, the mail server 
will still accept spam emails for delivery. Consequently a high 
level of network resource, server-side disk and CPU load can 
be wasted for spam. Moreover, spammers can distribute the 
computational load across their zombies and reduce the 
incremental cost to their operation. Thus, ‘willingness to incur 

computational cost to send’ is not a strong indicator that the 
sender is ‘legitimate’. 

We propose a novel anti-spam technique that should 
reduce the operational load (on mail server operators) of 
creating and using blacklists. Our scheme automates the 
rehabilitation process, thus reducing the human intervention 
required by mail server and blacklist operators. We also 
reduce the negative long-term consequences of false-positives 
[3] and erroneous blacklisting on legitimate email senders. 

Our approach operates at the TCP layer and is deployed in 
front of the SMTP server being protected.  We apply a form of 
statistical rejection of inbound TCP connections based on 
recent history of spam injection from each sender’s IP address. 
We aim to achieve recommended anti-spam goals [11], allow 
automatic rehabilitation of legitimate senders who have been 
previously marked as spammers, and thus reduce operational 
costs the network and SMTP servers. In the following section 
we will discuss about the operation and implementation of our 
scheme.  

II. DESCRIPTION OF OUR NOVEL SPAM MITIGATION SCHEME

A. A high level overview of our anti-spam scheme 

Our new proposal extends a previously published idea to 
rate limit TCP connections from probable spammers [10]. In 
[10] we monitored inbound SMTP traffic on a per-source IP 
basis, and applied severe IP packet rate limiting on any flows 
that appeared to be carrying spam. We proposed that spam 
detection occur in real-time inside an SMTP server proxy that 
would impose any necessary rate limiting.  The scheme would 
‘hurt’ spammers by ensuring individual rate-limited SMTP 
connections took substantial lengths of time to complete. And 
yet we avoided the negative impact of false-positives by 
eventually allowing all emails through. 

Fred Baker originally proposed the basis of our new 
scheme in May 2005 [14]. A key limitation of our previous 
scheme [10] was the consumption of local resources (in the 
SMTP proxy) to handle packet queues on a per-source IP 
address basis for every active inbound SMTP connection. Our 
new approach introduces the notion that an inbound TCP 
connection may be rejected with some random probability 
proportional to the level of spam already seen from the 
connection’s originator over some configurable period of time. 
Rejection is instantiated by returning a TCP RST packet rather 
than TCP SYN-ACK in response to the inbound TCP-SYN 
packet. Figure 1 illustrates our model (assuming a prototype 
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SMTP proxy built using FreeBSD’s ipfw functionality [12]).  

A crucial aspect of our new proposal is that email sources 
may have their ‘reputation’ rehabilitated over time without 
manual intervention. Sources sending acceptable emails 
should have their TCP reject probability tend towards 0 over 
time, even if this means rehabilitating an IP source address 
previously considered to be an unacceptable source. 
Conversely, sources sending unacceptable emails should see 
their rejection probability tend towards 1, even if that source 
had recently been known for sending acceptable emails. 

We can describe this scheme by analogy to a concept from 
active (router) queue management - random early detection 
(RED), described in RFC2309 [11]. Rather than ‘queue size’ 
we measure the changing probability of email being judged 
'unacceptable' by a target site's automated spam filters (Figure 
2). For each IP address that sends mail to an SMTP target, a 
moving average between zero and one is maintained, 
decreasing over time and increasing on each receipt of an 
unacceptable email. Borrowing directly from RED 
terminology, we further nominate lower and upper bounds on 
Q - minth (minimum threshold) and maxth (maximum 
threshold) respectively, such that when Q is < minth all TCP 
connections are accepted, when maxth < Q, all new TCP 
connections are rejected, and when minth <= Q <= maxth new 
TCP connections are rejected with a probability varying 
between 0 and maxp (the maximum rejection probability). 

External information (from DNS blacklists or local 
whitelists) is used to permute the parameters Qinit, Qincr, 
Qdecr, minth, maxth and maxp. For example, Qdecr influences 
the rate at which a source can be rehabilitated. Whitelisted IP 
addresses might be assigned a faster Qdecr than non-
whitelisted addresses. Whitelisted address might also benefit 
from having a lower maxp than non-whitelisted addresses. 

maxth dictates when the most aggressive TCP connection 
rejection regime is entered - IP addresses appearing in DNS 
blacklists could be assigned a lower maxth than non-
blacklisted IP addresses (rather than blocking them outright). 

Our technique leverages the willingness of legitimate mail 
sources to retry failed SMTP transfers. Over multiple retries 
(typically separated by tens of minutes) a legitimate email will 
eventually get through. On the other hand, a spammer either 
refuses to retry, or wastes a huge amount of time waiting to 
retry. In the latter cases we have denied the spammer a rapid 
method of transmitting their spam. By introducing a sliding 
scale of reject probability we provide a modest level of 
negative feedback to legitimate sources that are occasionally 
letting junk or spam emails leak through. (Or who are victim 
of some unexpected false-positive, such as incorrect listings in 
a 3

rd
 party blacklist or incorrect classification by the local 

site’s own in-line spam assessment algorithms). At the other 
extreme, persistent offenders will find their reject probability 
hovering just below 100%. 

B. An implementation of our anti-spam scheme 

Our prototype has been implemented inside a FreeBSD-
based transparent SMTP proxy server. The proxy terminates 
inbound SMTP connections on behalf of the local SMTP 
server, and makes TCP connection reject or accept decisions 
using the algorithm described in the previous section. If a 
connection is accepted, the proxy establishes a new TCP 
connection to the local SMTP server and forwards the SMTP 
exchange line by line. We also implement in-line spam 
assessment of each SMTP message passing through the proxy, 
which then permutes the proxy’s assessment of a source’s 
willingness to send spam. 

Although the random TCP reject functionality could be 
implemented within the kernel we chose to implement it using 
TCP packet interception rules in FreeBSD’s ipfw network 
layer firewall. Each sender’s IP address and their spam-
sending behaviour are continuously monitored and dealt with 
by updating the ipfw rule that controls how new SYN packets 
are treated (Figure 3). Our prototype also reacts to spam 
coming over an already-accepted connection by randomly 
closing existing connections if the content-analysis filter 
detects an over-threshold level of spam from this connection. 

C. Operation of our prototype anti-spam proxy 

At start up our anti-spam proxy server checks a local 
blacklist file and implements an initial spam history database 
QList of IP addresses and their Reject probability (Figure 3). 
Blacklists and whitelists are also used to build entries of 
TableQ which keeps the list of senders’ type (such as 
blacklisted, whitelisted, or unknown) and their corresponding 
parameter settings (Qinit, Qincr, Qdecr, minth, maxth, maxp). 

A list of rules is created inside ipfw to identify each IP 
address from which we wish to reject connections and the 
associated reject probability. This list of rules is then 
constantly updated as spam arrives, or sources are re-
habilitated.  

When a TCP SYN arrives at the proxy, ipfw first decides 
whether to pass the packet up the TCP stack, or to initiate an 
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Figure 2 Using RED-like terminology to express connection rejection 
probability as a function of an IP address’ prior spam sending history
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immediate rejection (sending back a TCP RST). If the SYN is 
rejected, ipfw will reject (with 100% probability) any 
retransmitted SYN packets from the same source for a short, 
configurable period of time (typically a few tens of seconds, in 
case the source tries a few quick retransmits to get around a 
non-zero reject probability). If accepted, ipfw allows the two-
way TCP session to proceed. New sources have their 
‘spammer status’ queried in DNS black list servers [13] and 
the resulting information is stored in TableQ and the spam 
history database QList. 

As email flows across the TCP connection the proxy server 
performs content evaluation. If spam content is detected, the 
server updates/increments the Reject probability of the sender 
(at Qincr rate) based on the spam probability and the sender's 
Qinit. minth, maxth, maxp settings. When the sender spam 
probability reaches a certain threshold, the proxy server also 
closes (randomly, according to the spam probability) the 
socket with the sender. The value of Reject probability is also 
updated in QList.  

We keep the following variables for each correspondent IP 
address in the spam history database: 

Address: The IP address of the source.  

Q: Ratio of mail received that has been deemed unacceptable by 

the SMTP receiver's spam filters. 

lastReceipt: Timestamp of last update of Q (used to optimise the 

mathematics of time decrementing Q)  

These variables are global to the implementation, whether 
implemented as compile-time or configuration variables.  

minth: The minimum threshold; if Q < minth, no TCP SYNs are 

rejected; otherwise some or all TCP SYNs are rejected.  

maxth: The maximum threshold; if maxth < Q, all TCP SYNs are 

rejected at the rate maxp  

maxp: The maximum rejection probability 

Qincr: The rate at which Q is increases  

Qdecr: The rate at which Q is decreases  

Qinit: The initial value Q is set to on receipt of an email from a 

new TCP correspondent.

III. VALIDATION AND ANALYSIS OF OUR ANTI-SPAM SCHEME

A. Experiment setup and parameter settings 

Figure 4 shows our test-bed with four different types of 
email senders. We want to evaluate the impact of our schemes 
on the rehabilitation of legitimate senders and how it will 
function against spammers. 

The spam mitigation proxy server operated at machine 
mtran which forwarded accepted-emails to the mail server at 
mtran4. Each sender used the open source email client 
smtpclient and automated scripts to send consecutive emails at 
certain intervals. Each email recipient’s mail box size was 
logged on the mail server to. SMTP traffic at mtran was 
captured with tcpdump and post-analysed using ethereal. Ipfw 
was configured to maintain state regarding a previous SYN 
rejection for one minute (using the sysctl variable 
net.inet.ip.fw.dyn_syn_lifetime).  

Table 1 shows the parameter settings for each of the sender 
type in our experiment. Unknown senders start with the initial 
Reject Probability Qinit as 0 – treated as good sources until 
experience proves otherwise. Q decrements by Qdecr every 
minute. Q only increments at Qincr rate if the new content 
analysis spam is greater than the existing spam probability by 
at least 5%. Different parameter settings will have different 
consequences on spammers and legitimate senders (whose 
emails could be falsely classified as spam or whose machine 
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Figure 3 Diagram of the operation of our anti-spam tool 
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Qinit 0 50 0 
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Qincr 5% 10% 1% 
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maxp 95 95 95 

Table 1 Parameter settings in the Test-bed 
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could be hijacked and exploited by spammers to send spam 
emails for a certain period). Evaluating the impact of these 
parameters will be the subject for future work.  

B. How our scheme functions against spam 

Our first scenario involves artificial ‘spammers’ sending 
spam every 10 seconds. They sent spam emails with a mixture 
of different spam probability level (rated by our content filter) 
for 15 minutes. Faced with our proxy rejecting their emails 
with a high probability, the ‘spammers’ reduced their spam 
level by sending a mixture of emails with ‘good’ content (for 
5 minutes) and then even took a break (for 10 minutes) before 
resuming sending us more spam. This time, they sent us spam 
every 90 seconds (simulating a spammer guessing that the 
proxy allowed for rehabilitation every 1 minute).  

Figure 5 shows spammer behaviour and the response of 
our anti-spam tool. As soon as the content filter detects spam, 
the Reject Probability (and ipfw rule) is immediately updated. 
No matter what action a spammer took, their only choice (to 
increase the chance of email delivery) was to wait for the 
Reject probability to decrement over time. Sending quickly 
does not help - many of their emails were rejected (first by the 
dynamic SYN rule in ipfw and second due to their high level 
of Reject Probability). The gaps on the graph (gaps between 
blue-colour markers from a period such as 0 to 15 minutes) 
are periods when spammer emails were rejected. 

Figure 6 shows the disk space consumed for a single 
mailbox over time with the proxy in operation. If the spam 

had been arriving unopposed, a linear growth in consumption 
would have occurred. The non-linear sections in Figure 6 
reflect times when the proxy successfully protected the 
mailbox. Overall, 22 emails arrived in the mailbox (compared 
to 130 emails transmissions attempted – a saving of 83% in 
disk space). Our proxy would be similarly beneficial for any 
SMTP server that stores email before spam-filtering them. In 
general the network traffic saved over a time period is: 

Number of emails/ minute x (Email payload [~5 Kbytes] + 
SMTP control message exchanges - RST packets)  

In our experiment, for the first 20 minutes, the network traffic 
saved is about:   

120 emails x (5 x 1024 Bytes + 1541 Bytes – 54 Bytes)  

= 120 emails x 6607 Bytes = 792,840 Bytes = 774.26 KBytes 

C. Legitimate senders and automatic rehabilitation: 

The experiment was done with two types of good senders 

(whitelisted senders and legitimate unknown senders). Figure 
shows the rate at which automatic rehabilitation happens. 

Legitimate senders who are falsely classified as spam were 
allowed to rehabilitate. With our anti-spam's current setting 
(Qdecr = 5% for unknown senders and 10% for whitelisted 
senders), unknown senders could rehabilitate within an hour 
while whitelisted senders took less than 30 minutes. (This 
applies when their emails are rated at 100% spam probability 
by our content filter. In practice rehabilitation is likely to 
occur even faster.) In addition, we allow senders to clear their 
name from the short-term blacklist if their Reject Probability 
Q reaches 5% and they send no spam during rehabilitation. 

D. Spam IP address distribution and our anti-spam scheme 

Using actual spam traffic arriving at Swinburne on 27th 
June 2004 we plot a rough estimate of the probability that a 
particular IP address will send another spam email within the 
next hour (Figure 8). About 16.5% of spammers sent at least a 
spam email within a period of 5 minutes from the prior time 
they had sent spam. This number goes to about 20% for 15 
minutes and nearly 30% for 1 hour period.  

Figure 9 shows the reaction of our anti-spam scheme to 
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both unknown and blacklisted spammers. If 16.5% or 20% of 
spammers send another email within 5 or 15 minutes, our 
proxy is still able to keep the record of their spam history. As 
a consequence, their emails with be dropped/reset at the rate 
of 70% and 42% (unknown spammers) or 90% and 82% 
(black-listed spammers) respectively. 

If unknown spammers come back after one hour period 
and send more spam, the Reject probability will apply 
immediately as soon as our content filter detects spam. If the 
spammers delay their action by waiting for one hour for their 
name to clear, then our scheme has successfully forced them 
to slow down their spam sending process. Blacklisted 

spammers are punished even more. In our experiment, after 
being seen to send an email with 100% spam probability, the 
connection with the blacklisted spammer was immediately 
closed and all of the spammer’s subsequent emails were 
rejected. Such a spammer also had to wait much longer for 
their Reject probability to decrement although it will never go 
below 50% (default setting for blacklist-Qinit in our scheme). 

IV. CONCLUSION AND FUTURE WORK

Most existing anti-spam techniques tend to be built around 
‘trusted’ blacklists that must be manually updated. Such 
updating requirements lead to increased operator costs and 
frustration when innocent (or rehabilitated) sites are not 

removed from blacklists in a timely manner. Other techniques 
such as content filtering and economic-based ones face the 
negative consequence of falsely classifying spam sources 
(either based on the message content or by guessing the 
source’s legitimate intention through their willingness of 
spending resources on sending emails). Our anti-spam tool 
differs in that it reduces the costs of false-classification and 
allows blacklisted IP addresses to be rehabilitated 
automatically, without operator intervention. 

An important extension is to combat spammers who 
rapidly cycle through closely spaced IP addresses (whether 
from zombie armies or hijacked/purchased IP address space). 
We propose to temporarily ‘poison’ a range of IP addresses 
either side of an IP address from which spam is seen, 
proactively raising the reject probability of neighbouring IP 
addresses that may be about to send spam. Neighbouring 
addresses that are not subsequently used to send spam will be 
rehabilitated in relatively short time. 

There are many configurable parameters in our anti-spam 
tool. Future work will evaluate how these parameter settings 
impact on spam mitigation and the rehabilitation of legitimate 
senders. Optimal settings will be a function of the 
spam/legitimate email profile of any given mail server. We are 
also interested in calculating the sensitivity of our results to 
the choice of content analysis filter in the proxy itself. 
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