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Abstract— Literature on the use of Machine Learning (ML)
algorithms for classifying IP traffic has relied on bi-directional
full-flow statistics while assuming that flows have explicit direc-
tionality implied by the first packet captured or the Client-to-
Server direction. In contrast, many real-world classifiers may
miss an arbitrary number of packets from the start of a flow,
and be unsure in which direction the flow started. This would lead
to degradation in classification performance for application with
asymmetric traffic characteristics. We propose a novel approach
to train the ML classifier using statistical features calculated
over multiple short sub-flows extracted from full-flow generated
by the target application and their mirror-imaged replicas as
if the flow is in the reverse direction. We demonstrate our
optimisation when applied to the Naive Bayes and Decision Tree
algorithms. Our approach results in excellent performance even
when classification is initiated mid-way through a flow, without
prior knowledge of the flow’s direction and using windows as
small as 25 packets long.

I. INTRODUCTION

Real-time traffic classification has potential to solve difficult

network management problems for ISPs and their equipment

vendors. Traffic classification may be a core part of automated

intrusion detection systems, denial of service attacks detection,

trigger automated re-allocation of network resources for pri-

ority customers, or identify the use of network resources that

contravenes the operator’s terms of service.

Commonly deployed IP traffic classification techniques

involve direct inspection of each packet’s contents on the

network and/or TCP/UDP port numbers. Yet the value of such

techniques is diminishing. Regular updates are required to

track minor changes in applications’ packet payload formats,

customers obfuscate packet contents through encryption, and

government privacy regulations may constrain the ability of

third parties to lawfully inspect packet payloads.

The research community has responded with traffic classi-

fication based on statistical patterns in externally observable

attributes of the traffic. Particular efforts have occurred in the

application of Machine Learning (ML) techniques to IP traffic

classification [1] [2] [3] [4]. Attributes of flows (e.g. max/min

packet lengths, flow durations or inter-packet arrival times)

are known as ’features’. Classification involves two stages -

training the ML algorithm to associate sets of features with

known traffic classes (creating rules), and applying the learnt

rules to classify unknown traffic. Each ML algorithm has a

different approach to sorting and prioritising sets of features,

which leads to different dynamic behaviours during training

and classification.

Our research contributes to the practical application of

ML algorithms within the constraints of IP traffic classifiers

deployed in operational networks. Most published research

has evaluated the effectiveness of different ML algorithms

when applied to entire datasets of IP traffic - trained and

classified over full flows consisting of thousands of packets

and hundreds or thousands of flows. The efficacy of ML

classifiers has not been explored when they have access to

only a subset of a flow’s packets or they do not see the start

of every flow (even the most recent work of [5] assumes the

initial packets of every flow are captured and available for

classification). In addition, although not always clearly stated,

directionality has been an implicit attribute of the features

on which ML classifiers were trained and tested. Application

flows are assumed to be bi-directional, and the application’s

statistical features are calculated separately in the forward and

reverse directions [1] [2] [3] [5] [6]. Most work assumes that

the forward direction is indicated by the first packet of the

flow (on the basis that it is commonly the initial packet from

a client to a server) [6] [3]. Subsequent evaluations assume

a trained ML classifier sees the first packet of every flow in

order to calculate features with the correct sense of forward

and reverse direction.

In real IP networks traffic classifiers must reach decisions

well before a flow has finished, they may not see the actual

start of a flow, and the application’s statistical behaviour may

change over the lifetime of each flow. For privacy reasons a

classifier may be denied access to packet payloads or even

certain header fields, and have no knowledge of where clients

or servers are actually located on the network. Thus a real-

world classifier cannot be sure whether the first packet it sees

(of any new bi-directional flow of packets) is heading in the

’forward’ or ’reverse’ direction. This can lead to degraded

classification performance.

The preceding considerations gives rise to our proposal that

practical real-time traffic classifiers must accurately classify

traffic in the face of a number of constraints:

• The classifier should use statistical methods (such as

ML algorithms) as TCP/UDP port numbers may be

misleading, and packet payloads may be opaque against

direct interpretation

• ML classification should be done over a small sliding
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window of the last N packets (to keep memory re-

quirements down and perform classification in a timely

manner)

• The classifier must recognise flows already in progress

(the flow’s beginning may be missed)

• Application’s can change their network traffic patterns

over time

• The classifier doesn’t have to know about the direction

the original flow traverses, it can assume the forward

direction is the direction of the 1st packet of most recent

N packets it captured, regardless if it is from client to

server or server to client.

We have previously demonstrated a novel approach to ML

classification that meets the first four requirements [7]. We

proposed training the classifier on a combination of short

sub-flows extracted from full-flow examples of the target

application’s traffic. Our approach resulted in excellent perfor-

mance while allowing the sliding window classifier to properly

identify an application regardless of where within a flow the

classifier begins capturing packets.

This paper extends our work in [7] to address the last

requirement listed above. We propose and demonstrate a novel

modification: The ML classifier is trained using statistical

features calculated over multiple short sub-flows (as in [7])

and their mirror-imaged replicas (multiple ’synthetic sub-

flow pairs’). The sub-flows are picked from regions of the

application’s full flows that have noticeably different statistical

characteristics, and coupling with their mirrored replicas as if

they are travelling in the reverse direction.

We demonstrate the benefit of our proposal when applied

to two different supervised learning ML algorithms, C4.5

Decision Tree and Naive Bayes. We utilise a hypothetical

classification scenario where real-time flows belonging to the

online multiplayer game Wolfenstein Enemy Territory (ET)

[8] must be dynamically detected while mixed in amongst

thousands of unrelated, interfering traffic flows. We charac-

terise the classification performance of each ML algorithm as

a function of the location of the sliding window relative to

the actual beginning of an application flow and the apparent

’direction’ of a flow.

Our paper is organised as following. Section II briefly

summarizes keys components of our proposal. Section III

describes our experimental demonstration of our proposal,

with our results analysed in section IV. Section V describes

some future research directions and concludes our paper.

II. OUR PROPOSAL

We present an improved technique for training and using

ML classifiers such that IP flows can be classified in finite

periods of time and without regard to inferred or actual

directionality of flow or the number of packets missed from

the beginning of a flow. We propose that realistic ML-based

traffic classification tools should:

• Operate the ML classifier using a sliding-window over

each flow - we presume the classifier can see (or must

use) no more than the most recent N consecutive packets

of a flow (an N-packet sub-flow) at any given time.

• Train the ML classifier using sets of features calculated

from multiple sub-flows. The sets of training sub-flows

are created in two steps: (a) Take short sequences of N

consecutive packets from different points within examples

of the target application’s flows (a sub-flow), and then (b)

create mirror-imaged replicas of each packet sequence

with the directions reversed (a mirrored sub-flow).

Training the classifier on multiple sub-flows of size N

packets maximises the classifier’s ability to recognise an

application flow even when exposed to only a small window of

traffic from the flow. Each sub-flow is taken from places in the

original flow having noticeably different statistical properties

(for example, the start and middle of the flow) [7].

Also training on mirrored replicas of each sub-flow is the

key contribution of this paper. Doing so enables the classifier

to recognise an application’s traffic in either direction. This

is an important step - as packets flow through the classifier’s

sliding window the first packet can alternately represent traffic

in the Client to Server (C-S) or Server to Client (S-C) direc-

tion. To ensure the classifier need not make that distinction,

we train the classifier to recognise the application in either

direction.

III. ILLUSTRATING OUR EXPERIMENTAL APPROACH

A. Machine Learning Algorithms and Teminology

In this paper we use the Naive Bayes [9] and C4.5 Decision

Tree [10] implementations in WEKA tools [11]. These are

well-understood supervised-learning algorithms with different

internal training and classification mechanisms. Testing our

proposal with both algorithms reveals benefits in either case,

suggesting our proposal is applicable to more than just one

particular type of ML algorithm. (Due to space limitations we

refer readers to [12] for further details of these algorithms.)

Recall and Precision are two metrics often used to evaluate

the performance of ML classification algorithms. If a classifier

is trained to identify members of class X, Recall refers to the

proportion of class X’s instances which are correctly classified

as belonging to class X and Precision refers to the proportion

of the instances which truly have class X among all those

classified as class X. Both metrics range from 0 (poor) to

100% (optimal). While using both, it is important to note that

high Precision only is meaningful when the classifier achieves

good Recall.

B. Flows and Features

Full-Flows are bidirectional streams of packets between

a given pair of hosts, defined by the source and destination

IP addresses, port numbers and protocol. The C-S direction

determines the ’forward’ direction. Flow timeout is used as

specified in [6]. Each sub-flow is a fragment of N consecutive

packets (bi-directional) taken from different points within the

original application flow’s lifetime. Its forward direction is

defined the same as full-flow: C-S direction. The Synthetic

Sub-Flow pairs consists of the sub-flows and their synthetic
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pairs, whose statistical properties are the same as the sub-flows

except they are swapped for backward and forward directions

(as being calculated with the forward direction of the sub-flow

is defined as the reverse direction: S-C).

For full-flow, sub-flow and synthetic sub-flow pairs models,

we trained and classified the classifier using the following

features, calculated separately in the forward and backward

directions: Inter-packet arrival interval, Inter-packet length

variation and IP packet length; all with minimum, maximum,

mean and standard deviation values. These features are calcu-

lated based on the framework of Netmate tool [13].

For testing the classifier we assume that the classifier defines

the forward direction as the first packet of a flow that it could

capture, regardless whether it is from C-S or S-C.

C. Construction of training and testing datasets

To show the effectiveness of our proposed approach we

use completely different datasets for training and testing our

classifiers. The game traffic consists of two separate month-

long traces collected during May and September 2005 at a

public ET server in Australia [14]. Our interfering (non-

ET) traffic came from two 24-hour traces collected by the

University of Twente, Germany, on February 6th and 7th 2004

[15](named T1 and T2 respectively). They include a large

range of common applications (HTTP, HTTPS, DNS, NTP,

SMTP, IMAP, POP3, Telnet, SSH, HalfLife, Kazaa, Bittorrent,

Gnutella, eDonkey). As payloads were missing we inferred

application type from the port numbers (judged an acceptable

approach because our primary criteria for interfering traffic is

that it was not ET). For each application’s default port(s) we

sampled a maximum of 10000 flows per raw tracefile.

For each experiment we trained our classifiers using a mix

of ET traffic from May dataset and interfering traffic from T2

(sub-flows are extracted from 8,688 full-flows for ET mixed

with 82,957 full-flows in T2). Subsequent testing of each

classifier scenario was performed using a mix of ET traffic

(N packets extracted from 6,888 full-flows) from September

and traffic from T1 (N packets extracted from a mixture of

73,672 full-flows). Further details can be found in [7].

D. Statistical properties of ET traffic
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Fig. 1. Packet Length from S-C and C-S

Figure 1 compares Std.Dev vs. Mean packet length calcu-

lated with N = 25 taken at the middle of the flows (¨In game¨),

in comparison to the same feature values calculated over full-

flows. It is clear that feature values calculated ¨In game¨ are

quite distinctive, and differ significantly between the S-C and

C-S directions. Clearly there is a significant asymmetric in the

feature values in the bi-directional communications.

Measured across all the ET flows, Figure 2 shows the

percentage of sub-flows whose first packet is in the C-S

direction as a function of how many packets (M) are missed

from the start of the full flow. This is 100% when M = 0,

and fluctuates significantly for small, non-zero values of M

(the value doesn’t reach 0% for M = 1 because in some

finite number of ET flows both the first and second packets

seen on the wire are in the C-S direction). In the region

2000 <= M <= 2009 there appears to be roughly equal

chance that the 2001st, 2002nd, ... 2009th packets traverse in

the C-S or S-C directions.
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Fig. 2. Flows with the Mth packet captured in the C-S direction

Recall that the game flow’s statistical properties are asym-

metric. Thus training the classifier models with features cal-

culated in one direction leads to degraded Recall anytime the

first packet captured traverses in the reverse direction. In the

next section we see that such a classifier’s overall Recall rate

is proportional to the number of sub-flows that actually start

in the same direction as used to train the classifier.

IV. RESULTS AND ANALYSIS

We show how Recall and Precision improve significantly

when each ML classifier is trained using multiple synthetic

sub-flows pairs instead.

A. Classifying using a sliding window without training on

mirrored sub-flows

First we recap the results in [7], comparing the effectiveness

of classification when the classifier has been trained on full-

flow features and multiple sub-flow features in a specific

direction. We use a window of size N=25 packets and sub-

flows based on packets 1-25, 21-45, 41-65 and 2001-2025

[7]. (During ET game-play we see 20 pps from server to client

and roughly 28 pps from client to server [16], so this window

corresponds to 0.5 second of real time). The classifier has not

been trained using mirrored sub-flows, and assumes that the

first packet it sees in each sliding window is in the same (C-S)

direction as the sub-flows on which it was trained.

Figure 3 shows Recall and Precision for Naive Bayes

models as each sliding window moves across the test dataset.

M is the number of packets ’missed’ from the beginning of



ISBN/ISSN 0977586103

Copyright (c) Australian Telecommunication Networks & Applications Conference (ATNAC), Australia, December 2006

each flow in the test dataset. The graphs cover two periods -

early client contact with the game server (0 <= M <= 9)
and during active game-play (2000 <= M <= 2009).
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Fig. 3. NB Recall: N=25 trained on Full-Flow and Multiple Sub-Flows

Recall for both training models suffer as M increases above

zero, yet training on multiple sub-flows is significantly better

than training on full-flow features. The median Recall when

trained on multiple sub-flows fluctuates significantly around

66% (0 <= M <= 9) and sits relatively stable at 69% when

2000 <= M <= 2009. More importantly, for small values

of M we see dramatic shifts in Recall each time the sliding

classification window moves by one packet. This is a direct

consequence of the classifier assuming (sometimes incorrectly)

that the first packet in the sliding window represents the C-S

direction when in reality it does not (as shown in Figure 2).
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Fig. 4. Recall Rate for Full-Flow, Sub-Flows Decision Tree models

Figure 4 shows similar results with the Decision Tree

models. Missing early packets in the flow (0 <= M <= 9)

results in a median Recall of 54% and 65% for full-flows and

multiple sub-flows models respectively. Both models degrade

noticably when the first packet in the window is in the S-C

rather than C-S direction. When classification begins in the

middle of a flow (2000 <= M <= 2009) the multiple sub-

flows model’s Recall is stable at 79% (still not particularly

good).

B. Training on multiple synthetic sub-flow pairs, classifying

with a sliding window

Now we demonstrate the effectiveness of our new proposal

to additionally train the classifier on synthetically mirrored

pairs of sub-flows take from different time periods within the

original full-flows. The classifier will then recognise new flows

in either direction if they have statistical properties similar to

any of the sub-flows on which the classifier was trained.

We create the synthetic model for the combination of sub-

flows 1-25, 21-45, 41-65 and 2001-2025. Now in the training

dataset, we have both instances from the multiple sub-flows

with the forward direction defined as C-S direction, and

their ¨synthetic sub-flow pair¨ instances with feature values

calculated as the forward direction is from S-C direction.

Using the Naive Bayes ML algorithm Figure 5 shows

Recall as a function of M for this new classifier (’Multi Syn.

Sub-Flows Model’) and a classifier trained on multiple sub-

flows as in [7] (’Multi Sub-Flows Model’, cf. Figure 3) .
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Fig. 5. Recall Rate for Naive Bayes models

Compared to the multiple sub-flows model (with a median

Recall of 69%) the multiple synthetic sub-flows curve shows

excellent Recall (median of 99%) that is almost unaffected

by the alternating of apparent flow direction caused as the

classifier misses M packets.

However, the gain in Recall is accompanied by a slight loss

in Precision. Using Naive Bayes Figure 6 shows Precision

as a function of M for the same models shown in Figure 5.

The median Precision drops by 1.3% for 0 <= M <= 9
and 1.9% for 2000 <= M <= 2009. Nevertheless our new

approach still achieved 96.6%-97.7% Precision for different

values of M.
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Fig. 6. Precision Rate for Naive Bayes models

Improved Recall is also seen when our new approach is

applied to a Decision Tree classifier. Compared to the multiple

sub-flows model (with a median Recall of 79%), Figure

7 shows the multiple synthetic sub-flows classifier having

excellent and consistent Recall (median of 99%) that is almost

unaffected by the alternating of apparent flow direction caused

as the classifier misses M packets.

Unlike the Naive Bayes models, Figure 8 shows the

Decision Tree classifier exhibiting a gain in Precision when

utilising our new approach. The median Precision increases by

2.7% for different values of M, staying around 97.3%-98.2%

for the Multiple Synthetic Sub-flows model.
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Fig. 8. Precision Rate for Decision Tree models

The change in Precision exhibited by the Naive Bayes

and Decision Tree algorithms suggest sensitivities of our

approach to the internal construction of each ML algorithm

and the statistical properties of the ’interfering’ traffic. In the

training phase, while using the synthetic sub-flow statistics,

we introduce the new range of possible values (of features

in the reverse direction) to a single attribute to build the

classifier. For Naive Bayes, depending on how different the

asymmetric traffic statistics are in different flow direction,

this would change the distribution’s parameters of the at-

tribute accordingly (the mean and std.dev of the attribute’s

normal distribution function). Similarly, the values range of

a single attribute for the Decision Tree algorithm also might

change significantly, introducing new range of test nodes and

branches. While the test on each test nodes of the Decision

Tree algorithm is based on a particular possible value of the

attribute, the decision of Naive Bayes algorithm is based on

the distribution of the attribute values that might match better

with possible attribute values of the interference traffic. Further

explanation of the reduction and increase in Precision for

Naive Bayes and Decision Tree algorithms respectively is left

to future work.

V. CONCLUSION

In this paper we address the problem of a practical, ML-

based traffic classifier that must use a small sliding window,

start at an arbitrary point within a flow’s lifetime, and recog-

nise application flows regardless of implied flow direction.

We extend previous work on training with sub-flows [7]

to include the idea of training with multiple synthetic sub-

flow pairs. Each sub-flow extracted from training data is

paired with a mirror image sub-flow that appears to go in

the opposite direction. We demonstrate significantly improved

classification performance by constructing, training and testing

with Naive Bayes and C4.5 Decision Tree classifiers for the

detection of Wolfenstein Enemy Territory online game traffic.

With a sliding window of only 25 packets we saw excellent

results with two quite different ML algorithms. We believe our

approach will also show benefits when applied to other ML

algorithms.

In the future we plan to characterise optimal values of N for

different target applications and memory consumption limits

in the classifier itself, explore the impact of packet loss on the

achievable Recall and Precision, and test our proposal in the

presence of a larger and more diverse collection of interfering

traffic. Overall we believe this small proposal significantly

improves the utility of ML algorithms inside practical and

deployable IP traffic classifiers.
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