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Abstract— This paper introduces a preliminary study of 

synchronisation between packet loss events across concurrent 

TCP flows.  Loss synchronisation is explored over four routing 

paths – one inside Australia and three international paths 

(Australia to Asia, Europe and North America respectively).  We 

confirm that loss synchronisation does exist but the level varies 

from path to path.  We outline further work that is required to 

improve our understanding of loss synchronisation. 

I. INTRODUCTION

Understanding Internet traffic could give significant insight 
into networking mechanism design.  Most of the current 
Internet measurements are focused on the traffic characteristics 
within a single flow, such as revealing the relationship between 
packet losses, Round-Trip Times (RTTs) and congestion 
window sizes.  As a result, they are not able to explicitly reveal 
how the traffic characteristics within a given flow are related to 
the ones within other competing (concurrent) flows. 

This paper is an effort to reveal the correlation level of 
traffic characteristics between concurrent TCP flows.  In 
particular, we focus on the level of loss synchronisation 
between concurrent TCP flows.  Perfect loss synchronisation 
(global synchronisation) assumes that in the presence of 
congestion all the competing flows experience packet losses at 
the same time (thus, packet losses are ‘synchronised’ between 
competing flows).  The synchronised loss model has been used 
in related work in [1] and [2] and observed by some early work 
[3].  Unpublished sources from SLAC [4] and other researchers 
also show the signs of loss synchronisation. 

The recent development on high-performance TCP variants 
has resulted in TCP variants such as Scalable TCP [5], HSTCP 
[6], HTCP [7], BIC [1], CUBIC [8], etc.  These variants 
increase their congestion window more aggressively in a 
round-trip time (RTT), release a smaller portion of bandwidth 
in response to loss events than standard TCP and thus improve 
overall bandwidth utilisation in high bandwidth-delay-product 
(BDP) networks.  It is conjectured that in the presence of 
congestion the increased aggressiveness of high-performance 
TCP variants would cause large synchronised packet losses.  
The work in [2] shows the long convergence time between a 
newly established high-performance TCP flow and an already 
established flow to achieve the fair bandwidth share.  Ideally 
the two flows are expected to achieve the fair bandwidth share 
as soon as possible. 

The long convergence time observed in [2] is obviously a 
negative effect of loss synchronisation and needs to be tackled.  
On the other hand, loss synchronisation could be utilised.  The 
work in [9] proposed a “blind” method to improve the 
performance of high-performance TCP with random losses, 
based on the idea that serious congestion tends to create loss 
synchronisation while packet losses tend to be random between 
concurrent TCP flows in the presence of transit congestion or 
random packet losses (such as wireless losses).  The double 
sides of loss synchronisation (negative and positive effects) 
motivate us to explore its nature and its potential impact on 
networking mechanism design. 

In this paper, we report some of the early findings from this 
loss synchronisation study: a glance at loss synchronisation 
between concurrent TCP flows.  Four paths were studied, 
namely, Melbourne to Adelaide (Australia), Beijing (China), 
Miami (USA) and Berlin (Germany).  We found that loss 
synchronisation between concurrent TCP flows does exist but 
the level varies from path to path.  More detailed analysis is 
being carried out and will be available for future report. 

This paper is organised as follows.  First, we describe data 
collection procedure in Section II.  Then in Section III, we 
present definition and analysis method used in this paper.  The 
measurement analysis is presented in Section IV.  Section V 
concludes this paper and presents a discussion of future work. 

II. DATA COLLECTION

Data collected for this study was generated in week-long 
trials comprising of tests at regular intervals.  The data was 
collected at the bulk-sending side of the TCP flow.  It is easier 
to detect loss events at the sending end and thus the local host 
collected the data.  A number of TCP flows were initiated 
concurrently in each test. 

A. Remote Hosts 

During the study, four remote hosts at educational 
institutions were used to receive the data generated by the 
concurrent TCP flows.  Given that these hosts are at 
educational institutions, the network paths that the packets 
traverse include research networks that may have different 
characteristics to commercial networks.  It is assumed that this 
does not adversely affect the study.  The network paths to these 
hosts are shown below:                                                         
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Adelaide, Australia:  
12ms round trip time (RTT), 11 hops. 
01  136.186.229.3 
02  136.186.254.213 
03  203.21.130.33 (vic-gw-atm2-0-5.vrn.edu.au) 
04  202.158.200.1 (ge-1-0-3.bb1.a.mel.aarnet.net.au) 
05  202.158.194.17 (so-2-0-0.bb1.a.adl.aarnet.net.au) 
06  202.158.199.170  
      (gigabitethernet0.er1.unisa.cpe.aarnet.net.au) 
07  202.158.199.122 (unisa-er1.gw.aarnet.net.au) 
08  130.220.200.48 (gi5-1.core-b.ce.unisa.edu.au) 
09  130.220.201.52 (po15.core-b.ml.unisa.edu.au) 
10  130.220.166.1 (dist-e1-16.ml.unisa.edu.au) 
11  130.220.166.65 (docker.levels.unisa.edu.au) 

Beijing, China: 170ms RTT, 22 hops. 
01  136.186.229.3 
02  136.186.254.213 
03  202.0.98.161  
      (ATM8-0-0-1.edge1.vic.grangenet.net) 
04  202.0.98.41 (Vlan52.edge1.nsw.grangenet.net) 
05  202.0.98.98 
06  202.158.194.118 (ge-1-0-7.bb1.b.syd.aarnet.net.au) 
07  202.158.194.33 (so-2-0-0.bb1.a.mel.aarnet.net.au) 
08  202.158.194.17 (so-2-0-0.bb1.a.adl.aarnet.net.au) 
09  202.158.194.5 (so-0-1-0.bb1.a.per.aarnet.net.au) 
10  202.158.194.138 (so-0-0-2.bb1.a.sin.aarnet.net.au) 
11  202.179.249.25 (sg-ge-02-1g.bb-v4.noc.tein2.net) 
12  202.179.241.13  
       (hk-so-02-622m.bb-v4.noc.tein2.net) 
13  202.179.241.9 (bj-so-01-622m.bb-v4.noc.tein2.net) 
14  202.179.241.26 (cn.pr-v4.noc.tein2.net) 
15  202.112.53.17 
16  202.112.53.181 
17  202.112.53.178 
18  202.112.61.254 
19  219.243.208.2 
20  219.243.208.6 
21  219.243.215.253 
22  219.243.215.196 

Miami, USA: 230ms RTT, 18 hops. 
01  136.186.229.3 
02  136.186.254.213 
03  202.0.98.161  
      (ATM8-0-0-1.edge1.vic.grangenet.net) 
04  202.0.98.41 (Vlan52.edge1.nsw.grangenet.net) 
05  202.0.98.98 
06  202.158.194.82 (pos2-0.bb1.a.suv.aarnet.net.au) 
07  202.158.194.86 (pos1-0.bb1.b.hnl.aarnet.net.au) 
08  202.158.194.90 (pos2-0.bb1.b.sea.aarnet.net.au) 
09  207.231.242.8  
      (abilene-1-lo-std-707.sttlwa.pacificwave.net) 
10  198.32.8.50 (dnvrng-sttlng.abilene.ucaid.edu) 
11  198.32.8.14 (kscyng-dnvrng.abilene.ucaid.edu) 
12  198.32.8.80 (iplsng-kscyng.abilene.ucaid.edu) 
13  198.32.8.78 (atlang-iplsng.abilene.ucaid.edu) 
14  198.32.252.237 (abilene-i2-flr-10g.ampath.net) 
15  198.32.252.250 (fiu-wr2-v103.ampath.net) 
16  131.94.192.25 (fastgate.cs.fiu.edu) 
17  131.94.134.129 (sagwa.cs.fiu.edu) 
18  131.94.130.45 (hpc.cs.fiu.edu) 

Berlin, Germany: 340ms RTT, 23 hops. 
01  136.186.229.3 
02  136.186.254.213 
03  202.0.98.161  
      (ATM8-0-0-1.edge1.vic.grangenet.net) 
04  202.0.98.41 (Vlan52.edge1.nsw.grangenet.net) 
05  202.0.98.98 
06  202.158.194.82 (pos2-0.bb1.a.suv.aarnet.net.au) 
07  202.158.194.86 (pos1-0.bb1.b.hnl.aarnet.net.au) 
08  202.158.194.90 (pos2-0.bb1.b.sea.aarnet.net.au) 
09  207.231.242.8  
      (abilene-1-lo-std-707.sttlwa.pacificwave.net) 
10  198.32.8.50 (dnvrng-sttlng.abilene.ucaid.edu) 
11  198.32.8.14 (kscyng-dnvrng.abilene.ucaid.edu) 
12  198.32.8.80 (iplsng-kscyng.abilene.ucaid.edu) 
13  198.32.8.76 (chinng-iplsng.abilene.ucaid.edu) 
14  198.32.8.83 (nycmng-chinng.abilene.ucaid.edu) 
15  198.32.11.51 
16  62.40.112.133 (so-7-0-0.rt1.ams.nl.geant2.net) 
17  62.40.112.57 (so-6-2-0.rt1.fra.de.geant2.net) 
18  62.40.124.34 (dfn-gw.rt1.fra.de.geant2.net) 
19  188.1.18.53 (cr-berlin1-po1-0.x-win.dfn.de) 
20  188.1.20.85 (ar-tuberlin2-po6-0.x-win.dfn.de) 
21  195.37.76.33 (funnel.fokus.fraunhofer.de) 
22  193.175.134.17 
23  193.175.134.50 

The local host is located at the Centre for Advanced 
Internet Architectures (CAIA), Swinburne University of 
Technology (SUT), Melbourne, Australia.  Connection to the 
SUT network is provided over 100 megabit per second (Mb/s) 
Ethernet.  SUT has a 155Mb/s connection to its upstream 
provider.  The connection to GrangeNet [10] is allocated 
55Mb/s of this upstream, whereas the connection to AARNet 
[11] is allocated 100Mb/s. 

B. Software 

To generate concurrent TCP flows the OpenSSH [12] based 
utility scp [13] was utilised.  scp was used to transfer a 10 
megabyte file from CAIA to the remote hosts.  Between 2 and 
64 instances of scp were run concurrently.  scp encrypts the 
data payload during transfers.  AES encryption is the scp
default, and is more processor intensive than Blowfish 
encryption [14][15].  To ensure the lightest possible load on the 
CPUs of the hosts Blowfish encryption was used.  tcpdump
[16] was used to capture the TCP/IP headers of the packets 
generated by these data transfers.  Each test was coordinated by 
a UNIX shell script.  Scheduling the tests to occur at regular 
intervals was performed using the UNIX cron [17] utility. 

The TCP stack of the FreeBSD [18] host at CAIA used in 
the study was modified to insert the TCP stack’s current RTT 
estimate into the header of outgoing TCP packets.  We used an 
unallocated TCP option number, 30, [19] to insert the RTT 
estimate.  FreeBSD stores the RTT estimate in the t_srtt kernel 
variable.  Outputting the RTT estimate in the TCP headers 
allows the RTT estimate to be captured by tcpdump.  An 
assumption of this study is that inserting a custom option into 
the TCP header will not materially affect the behaviour of the 
TCP flow.  (Routers do not process TCP options, but the 
receiving TCP stack will expend a few extra clock cycles 
deciding if the option is understood and needs processing.) 
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All hosts used a TCP-SACK [20] compatible variant of 
TCP with timestamps [21] enabled and the default maximum 
window size (64kb).  TCP-SACK allows selective 
acknowledgement of lost packets to reduce spurious 
retransmissions and avoid unnecessary timeouts.  This is useful 
to the study since it allows accurate detection of lost packets.  
Only lost packets will be retransmitted. 

C. Trials 

Each trial lasted a week and consisted of a number of tests 
with constant intervals.  During each test, a number of 
concurrent TCP flows were established and each of the flows 
transferred a 10 megabyte file from CAIA to the remote hosts.  
During the week-long trial, the intervals between the tests were 
either one or two hours.  Table I summaries the trials in the 
study. 

The UNIX shell script that launched each test staggered the 
scp transfers at one second intervals if there were to be 32 or 
less TCP flows.  In the case of a 64 flow test the shell script 
would launch two scp transfers at each one second interval.  
Due to this staggering the data is only considered valid 
between the start of the last scp transfer (last flow) to begin, 
and the end of the first scp transfer (first flow) to finish.  This 
can be easily detected by finding the last synchronise (SYN) 
flagged packet, and the first finish (FIN) flagged packet of the 
concurrent TCP flows.  The 64 flow test to the Miami remote 
host produced no valid data.  This is because the CPU in the 
local host is not powerful enough to perform the encryption 
required, when connecting with more than approximately 50 
flows.  The consequence of this is that no more than 
approximately 50 scp transfers start until the CPU load goes 
below 100%.  Hence the last SYN packet is after the first FIN 
packet.

III. DEFINITION AND ANALYSIS METHOD

A. Custom Software 

A custom Java [22] program was written to analyse the 
tcpdump trace files.  It utilises the 3rd party Java library jpcap
[23] to interface to libpcap [16] which can read the pcap format 
files created by tcpdump.

B. Definition 

When analysing the data we needed to define a loss event.  
The loss event start time is the time at which the first lost 
packet of any number of subsequent lost packets is sent.  The 
event finish time is the time at which the first duplicate 
acknowledgement (ACK) arrives back at the sender.  The ACK 
will subsequently be duplicated, and therefore signal a loss 

event.  Since all hosts are using TCP-SACK we consider all the 
retransmitted packets to be lost. 

If a lost packet sending time is not during the current loss 
event time, then it must signal a new loss event.  This definition 
of loss events is verified by multiplying the length (in time) of 
a loss event by 2, and by 3.  In both cases the number of loss 
events detected in trace files does not change by more than 
10%.  This indicates that the time-based definition of loss 
events is accurate for our purposes. 

A correlated loss event is signalled if there is any overlap 
(in time) of loss events between two or more flows and all the 
involved flows are considered correlated with each other.  For 
instance, if a loss event in flow 1 is correlated with a loss event 
in flow 2 and there are no loss events from the other concurrent 
flows which are correlated with these two correlated loss 
events in flow 1 and 2, then we will regard that only flow 1 and 
flow 2 are correlated with each other, that is, this is a two-flow 
based correlation.  However, if a loss event in flow 3 is 
correlated with the loss event in flow 2 but not the loss event in 
flow 1 (that is, by the definition above flow 1 is not correlated 
with flow 3), we will still regard that flow 1, 2 and 3 are 
correlated with each other (three-flow based correlation) 
because of the mutual correlation with flow 2. 

C. Method 

Synchronisation levels between the concurrent TCP flows 
are calculated by inspecting the loss events in the order that 
they occurred.  If there are correlated loss events in other flows 
then a counter is incremented.  This counter indicates how 
many flows are synchronised with the loss event. 

When there are no more loss events to inspect, an array 
containing a counter for each loss event is available for 
analysis.  Loss event synchronisation is calculated as the 
number of loss events that had x number of flows or more 
divided by the total number of loss events.  Synchronisation is 
expressed as a percentage. 

IV. MEASUREMENT ANALYSIS

In this section, we focus on the measurement analysis of 
loss synchronisation between concurrent TCP flows.  Fig. 1 ~ 4 
shows the results of the data traces to the remote hosts in 
Adelaide, Beijing, Miami and Berlin, respectively.  In the 
figures, the y-axis represents the correlation percentage 
between the concurrent TCP flows while the x-axis represents 
the least number of flows that are correlated with each other.  
For instance, when x=2, y=92.97% in Fig. 1 it means that 
92.97% of the total loss events involves at least 2 correlated 
flows within the total 32 concurrent flows.  For another 
example, when x=2, y=44.17% in Fig. 1 it means that 44.17% 
of the total loss events involves at least 2 correlated flows 
within the total 4 concurrent flows, that is, it includes the cases 
of 2-flow, 3-flow and 4-flow based correlation. 

Overall, the figures show that loss synchronisation between 
the concurrent TCP flows appears to exist.  For the same 
remote host, different numbers of concurrent TCP flows have 
the similar loss synchronisation pattern (Fig. 1, 2 and 4).  For 
instance, in Fig. 1 and 2 the pattern for 32 concurrent flows is 
similar to the pattern for 16 concurrent flows.  The level of 
synchronisation varies depending on the network path.  TCP 

TABLE I. TRIALS CONDUCTED IN THE STUDY

Remote host location 

Adelaide,

Australia

Beijing,

China

Miami, 

USA

Berlin,

Germany

No. of concurrent 

TCP flows 
8

2, 4, 

16, 32 
16

2, 4, 

8, 32 
32 64 32 64 

Interval between 

tests (hours) 
1 2 1 2 1 2 1 2 
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flows to Beijing exhibited the highest level of synchronisation 
(Fig. 2), whereas TCP flows to Berlin had the lowest (Fig. 4).  
The Miami host and the Berlin host shared network paths until 
somewhere inside the USA, and TCP flows to these hosts 
exhibited a similar loss synchronisation pattern (Fig. 3 and 4).  
Levels of loss synchronisation were stronger in the Miami trials 
(Fig. 3), compared to the Berlin trials.  This indicates that the 
traffic between USA and Germany makes packet losses less 
synchronised.  Trials involving the Adelaide host exhibited 
stronger synchronisation than trials involving either the Miami 
or Berlin host, but not as strong as the Beijing host. 

The RTT to the Adelaide host is 12ms while the RTT to the 
Miami host is 230ms and to the Berlin host is 340ms, and 
correspondingly the number of hops is 11, 18 and 23.  It seems 
that the level of loss synchronisation is correlated with RTT as 
well as number of hops: longer RTT and more hops all 
contribute to less loss synchronisation.  More hops could mean 
more random background traffic and thus make packet losses 
between concurrent TCP flows appear to be more random.  
Longer RTT would mean larger bandwidth-delay product 
(BDP) and thus require a bigger TCP congestion window to 
fully utilise available bandwidth or cause packet losses.  As 
mentioned earlier, the maximum TCP window size is set to the 
default value (64kb).  This would indicate that in the presence 
of congestion longer RTT would have more flows than shorter 

RTT which have reached their maximum window size.  As a 
result, shorter RTT would have more flows that increase their 
window size during the congestion and have more chance to 
face synchronised packet losses between these flows.  Further 
investigation is needed to determine the correlation between 
RTT, number of hops and loss synchronisation. 

Interestingly the loss synchronisation pattern for the Beijing 
host is distinct from the others (exponential decrease for the 
others).  The front part of the pattern is not similar to the others 
having a logarithmic decrease curve.  However its rear part 
curve is similar to the others (exponential decrease).  This 
indicates stronger loss synchronisation than the other hosts.  
The Beijing host has longer RTT and more hops than the 
Adelaide host and more hops than the Miami host.  However, it 
has the strongest loss synchronisation.  Again, this is an area 
that will require further investigation.  At this stage we 
consider that a couple of factors might contribute to this 
observation. 

One factor could be the distinct local traffic in China.  
Asian countries such as China, Korea and Japan usually have a 
substantial quantity of local content which is only available in 
local language.  The content is usually retrieved by the local 
users rather than the users overseas and the local users 
generally request local content.  On the other hand, the rapid 
deployment of broadband Internet access in households and the 
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Fig 3. Percentage of synchronisation between concurrent TCP flows 
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rapid increase of Internet users in China could also contribute 
the uniqueness of its local traffic. 

Another factor could be the use of queue management such 
as Random Early Detection (RED).  RED causes packet losses 
between concurrent flows not to be synchronised due to its 
stochastic nature of dropping packets.  The work in [1] presents 
a brief analysis of loss synchronisation in a simple simulation 
environment.  It shows that in the simulation with RED turned 
on the loss synchronisation pattern is exponential decrease 
while with RED turned off the pattern is logarithmic decrease.  
(Note that our study is very different from [1] because of 
different analysis method and environment.) Since the turnoff 
of RED in [1] has a partially similar pattern to the Beijing host 
and the use of RED in [1] has a similar pattern to the other 
three remote hosts.  RED could be a reason to cause the 
difference.  However, it has been suggested that RED is usually 
turned off in practice. 

V. CONLUSIONS AND FUTURE WORK

In this paper, we have tentatively studied the correlation of 
loss events (loss synchronisation) between concurrent TCP 
flows over three international routing paths from Australia to 
Asia, Europe and North America and a domestic routing path 
from Melbourne to Adelaide.  The measurement results we 
have presented in this paper suggest that loss synchronisation 
between concurrent TCP flows does exist but the level varies 
from path to path.  The local internet traffic might also have 
unique impact on loss synchronisation.  For instance, the path 
to China exhibits a loss synchronisation pattern distinct from 
the others.  It could be due to the frequent local traffic caused 
by accessing local internet content and the behaviour of local 
Internet users.  The existence of loss synchronisation indicates 
that the design of networking mechanisms such as TCP should 
take this issue into account.  Some designs would prefer 
eliminate the effects of loss synchronisation while some might 
be able to utilise it.  The presented results are preliminary and 
further analysis is certainly required for better interpretation 
and understanding. 

We plan to study the relationship between the number of 
lost packets and the level of synchronisation.  Through the 
analysis we would like to find out how the average number of 
lost packets is related to the synchronised loss events.  It is also 
interesting to increase the maximum window size in TCP to 
study loss synchronization.  The maximum window size in the 
study was set to its default value (64kb).  For a long haul link 
such as the one to Germany, the window size could not be 
sufficient to fully utilise available bandwidth or to cause packet 
losses.  On the other hand, it is worthwhile to do the study with 
recently developed high-performance TCP variants such as 
HSTCP to compare loss synchronisation between standard 
TCP and high-performance TCP variants.  It is conjectured that 
high-performance TCP variants would cause large and 
synchronised packet losses.  The future work would also be 
able to give some insights into this issue. 
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