
ISBN/ISSN 0977586103

Copyright (c) Australian Telecommunication Networks & Applications Conference (ATNAC), Australia, December 2006

A Preliminary Analysis of Loss Synchronisation

between Concurrent TCP Flows

Philip Jay, Qiang Fu*, Grenville Armitage

Centre for Advanced Internet Architectures

Swinburne University of Technology

Melbourne, Australia

{pjay, qfu, garmitage}@swin.edu.au

Abstract— This paper introduces a preliminary study of

synchronisation between packet loss events across concurrent

TCP flows. Loss synchronisation is explored over four routing

paths – one inside Australia and three international paths

(Australia to Asia, Europe and North America respectively). We

confirm that loss synchronisation does exist but the level varies

from path to path. We outline further work that is required to

improve our understanding of loss synchronisation.

I. INTRODUCTION

Understanding Internet traffic could give significant insight
into networking mechanism design. Most of the current
Internet measurements are focused on the traffic characteristics
within a single flow, such as revealing the relationship between
packet losses, Round-Trip Times (RTTs) and congestion
window sizes. As a result, they are not able to explicitly reveal
how the traffic characteristics within a given flow are related to
the ones within other competing (concurrent) flows.

This paper is an effort to reveal the correlation level of
traffic characteristics between concurrent TCP flows. In
particular, we focus on the level of loss synchronisation
between concurrent TCP flows. Perfect loss synchronisation
(global synchronisation) assumes that in the presence of
congestion all the competing flows experience packet losses at
the same time (thus, packet losses are ‘synchronised’ between
competing flows). The synchronised loss model has been used
in related work in [1] and [2] and observed by some early work
[3]. Unpublished sources from SLAC [4] and other researchers
also show the signs of loss synchronisation.

The recent development on high-performance TCP variants
has resulted in TCP variants such as Scalable TCP [5], HSTCP
[6], HTCP [7], BIC [1], CUBIC [8], etc. These variants
increase their congestion window more aggressively in a
round-trip time (RTT), release a smaller portion of bandwidth
in response to loss events than standard TCP and thus improve
overall bandwidth utilisation in high bandwidth-delay-product
(BDP) networks. It is conjectured that in the presence of
congestion the increased aggressiveness of high-performance
TCP variants would cause large synchronised packet losses.
The work in [2] shows the long convergence time between a
newly established high-performance TCP flow and an already
established flow to achieve the fair bandwidth share. Ideally
the two flows are expected to achieve the fair bandwidth share
as soon as possible.

The long convergence time observed in [2] is obviously a
negative effect of loss synchronisation and needs to be tackled.
On the other hand, loss synchronisation could be utilised. The
work in [9] proposed a “blind” method to improve the
performance of high-performance TCP with random losses,
based on the idea that serious congestion tends to create loss
synchronisation while packet losses tend to be random between
concurrent TCP flows in the presence of transit congestion or
random packet losses (such as wireless losses). The double
sides of loss synchronisation (negative and positive effects)
motivate us to explore its nature and its potential impact on
networking mechanism design.

In this paper, we report some of the early findings from this
loss synchronisation study: a glance at loss synchronisation
between concurrent TCP flows. Four paths were studied,
namely, Melbourne to Adelaide (Australia), Beijing (China),
Miami (USA) and Berlin (Germany). We found that loss
synchronisation between concurrent TCP flows does exist but
the level varies from path to path. More detailed analysis is
being carried out and will be available for future report.

This paper is organised as follows. First, we describe data
collection procedure in Section II. Then in Section III, we
present definition and analysis method used in this paper. The
measurement analysis is presented in Section IV. Section V
concludes this paper and presents a discussion of future work.

II. DATA COLLECTION

Data collected for this study was generated in week-long
trials comprising of tests at regular intervals. The data was
collected at the bulk-sending side of the TCP flow. It is easier
to detect loss events at the sending end and thus the local host
collected the data. A number of TCP flows were initiated
concurrently in each test.

A. Remote Hosts

During the study, four remote hosts at educational
institutions were used to receive the data generated by the
concurrent TCP flows. Given that these hosts are at
educational institutions, the network paths that the packets
traverse include research networks that may have different
characteristics to commercial networks. It is assumed that this
does not adversely affect the study. The network paths to these
hosts are shown below:

* Corresponding author

ISBN/ISSN 0977586103

Copyright (c) Australian Telecommunication Networks & Applications Conference (ATNAC), Australia, December 2006

Adelaide, Australia:
12ms round trip time (RTT), 11 hops.
01 136.186.229.3
02 136.186.254.213
03 203.21.130.33 (vic-gw-atm2-0-5.vrn.edu.au)
04 202.158.200.1 (ge-1-0-3.bb1.a.mel.aarnet.net.au)
05 202.158.194.17 (so-2-0-0.bb1.a.adl.aarnet.net.au)
06 202.158.199.170
 (gigabitethernet0.er1.unisa.cpe.aarnet.net.au)
07 202.158.199.122 (unisa-er1.gw.aarnet.net.au)
08 130.220.200.48 (gi5-1.core-b.ce.unisa.edu.au)
09 130.220.201.52 (po15.core-b.ml.unisa.edu.au)
10 130.220.166.1 (dist-e1-16.ml.unisa.edu.au)
11 130.220.166.65 (docker.levels.unisa.edu.au)

Beijing, China: 170ms RTT, 22 hops.
01 136.186.229.3
02 136.186.254.213
03 202.0.98.161
 (ATM8-0-0-1.edge1.vic.grangenet.net)
04 202.0.98.41 (Vlan52.edge1.nsw.grangenet.net)
05 202.0.98.98
06 202.158.194.118 (ge-1-0-7.bb1.b.syd.aarnet.net.au)
07 202.158.194.33 (so-2-0-0.bb1.a.mel.aarnet.net.au)
08 202.158.194.17 (so-2-0-0.bb1.a.adl.aarnet.net.au)
09 202.158.194.5 (so-0-1-0.bb1.a.per.aarnet.net.au)
10 202.158.194.138 (so-0-0-2.bb1.a.sin.aarnet.net.au)
11 202.179.249.25 (sg-ge-02-1g.bb-v4.noc.tein2.net)
12 202.179.241.13
 (hk-so-02-622m.bb-v4.noc.tein2.net)
13 202.179.241.9 (bj-so-01-622m.bb-v4.noc.tein2.net)
14 202.179.241.26 (cn.pr-v4.noc.tein2.net)
15 202.112.53.17
16 202.112.53.181
17 202.112.53.178
18 202.112.61.254
19 219.243.208.2
20 219.243.208.6
21 219.243.215.253
22 219.243.215.196

Miami, USA: 230ms RTT, 18 hops.
01 136.186.229.3
02 136.186.254.213
03 202.0.98.161
 (ATM8-0-0-1.edge1.vic.grangenet.net)
04 202.0.98.41 (Vlan52.edge1.nsw.grangenet.net)
05 202.0.98.98
06 202.158.194.82 (pos2-0.bb1.a.suv.aarnet.net.au)
07 202.158.194.86 (pos1-0.bb1.b.hnl.aarnet.net.au)
08 202.158.194.90 (pos2-0.bb1.b.sea.aarnet.net.au)
09 207.231.242.8
 (abilene-1-lo-std-707.sttlwa.pacificwave.net)
10 198.32.8.50 (dnvrng-sttlng.abilene.ucaid.edu)
11 198.32.8.14 (kscyng-dnvrng.abilene.ucaid.edu)
12 198.32.8.80 (iplsng-kscyng.abilene.ucaid.edu)
13 198.32.8.78 (atlang-iplsng.abilene.ucaid.edu)
14 198.32.252.237 (abilene-i2-flr-10g.ampath.net)
15 198.32.252.250 (fiu-wr2-v103.ampath.net)
16 131.94.192.25 (fastgate.cs.fiu.edu)
17 131.94.134.129 (sagwa.cs.fiu.edu)
18 131.94.130.45 (hpc.cs.fiu.edu)

Berlin, Germany: 340ms RTT, 23 hops.
01 136.186.229.3
02 136.186.254.213
03 202.0.98.161
 (ATM8-0-0-1.edge1.vic.grangenet.net)
04 202.0.98.41 (Vlan52.edge1.nsw.grangenet.net)
05 202.0.98.98
06 202.158.194.82 (pos2-0.bb1.a.suv.aarnet.net.au)
07 202.158.194.86 (pos1-0.bb1.b.hnl.aarnet.net.au)
08 202.158.194.90 (pos2-0.bb1.b.sea.aarnet.net.au)
09 207.231.242.8
 (abilene-1-lo-std-707.sttlwa.pacificwave.net)
10 198.32.8.50 (dnvrng-sttlng.abilene.ucaid.edu)
11 198.32.8.14 (kscyng-dnvrng.abilene.ucaid.edu)
12 198.32.8.80 (iplsng-kscyng.abilene.ucaid.edu)
13 198.32.8.76 (chinng-iplsng.abilene.ucaid.edu)
14 198.32.8.83 (nycmng-chinng.abilene.ucaid.edu)
15 198.32.11.51
16 62.40.112.133 (so-7-0-0.rt1.ams.nl.geant2.net)
17 62.40.112.57 (so-6-2-0.rt1.fra.de.geant2.net)
18 62.40.124.34 (dfn-gw.rt1.fra.de.geant2.net)
19 188.1.18.53 (cr-berlin1-po1-0.x-win.dfn.de)
20 188.1.20.85 (ar-tuberlin2-po6-0.x-win.dfn.de)
21 195.37.76.33 (funnel.fokus.fraunhofer.de)
22 193.175.134.17
23 193.175.134.50

The local host is located at the Centre for Advanced
Internet Architectures (CAIA), Swinburne University of
Technology (SUT), Melbourne, Australia. Connection to the
SUT network is provided over 100 megabit per second (Mb/s)
Ethernet. SUT has a 155Mb/s connection to its upstream
provider. The connection to GrangeNet [10] is allocated
55Mb/s of this upstream, whereas the connection to AARNet
[11] is allocated 100Mb/s.

B. Software

To generate concurrent TCP flows the OpenSSH [12] based
utility scp [13] was utilised. scp was used to transfer a 10
megabyte file from CAIA to the remote hosts. Between 2 and
64 instances of scp were run concurrently. scp encrypts the
data payload during transfers. AES encryption is the scp
default, and is more processor intensive than Blowfish
encryption [14][15]. To ensure the lightest possible load on the
CPUs of the hosts Blowfish encryption was used. tcpdump
[16] was used to capture the TCP/IP headers of the packets
generated by these data transfers. Each test was coordinated by
a UNIX shell script. Scheduling the tests to occur at regular
intervals was performed using the UNIX cron [17] utility.

The TCP stack of the FreeBSD [18] host at CAIA used in
the study was modified to insert the TCP stack’s current RTT
estimate into the header of outgoing TCP packets. We used an
unallocated TCP option number, 30, [19] to insert the RTT
estimate. FreeBSD stores the RTT estimate in the t_srtt kernel
variable. Outputting the RTT estimate in the TCP headers
allows the RTT estimate to be captured by tcpdump. An
assumption of this study is that inserting a custom option into
the TCP header will not materially affect the behaviour of the
TCP flow. (Routers do not process TCP options, but the
receiving TCP stack will expend a few extra clock cycles
deciding if the option is understood and needs processing.)

ISBN/ISSN 0977586103

Copyright (c) Australian Telecommunication Networks & Applications Conference (ATNAC), Australia, December 2006

All hosts used a TCP-SACK [20] compatible variant of
TCP with timestamps [21] enabled and the default maximum
window size (64kb). TCP-SACK allows selective
acknowledgement of lost packets to reduce spurious
retransmissions and avoid unnecessary timeouts. This is useful
to the study since it allows accurate detection of lost packets.
Only lost packets will be retransmitted.

C. Trials

Each trial lasted a week and consisted of a number of tests
with constant intervals. During each test, a number of
concurrent TCP flows were established and each of the flows
transferred a 10 megabyte file from CAIA to the remote hosts.
During the week-long trial, the intervals between the tests were
either one or two hours. Table I summaries the trials in the
study.

The UNIX shell script that launched each test staggered the
scp transfers at one second intervals if there were to be 32 or
less TCP flows. In the case of a 64 flow test the shell script
would launch two scp transfers at each one second interval.
Due to this staggering the data is only considered valid
between the start of the last scp transfer (last flow) to begin,
and the end of the first scp transfer (first flow) to finish. This
can be easily detected by finding the last synchronise (SYN)
flagged packet, and the first finish (FIN) flagged packet of the
concurrent TCP flows. The 64 flow test to the Miami remote
host produced no valid data. This is because the CPU in the
local host is not powerful enough to perform the encryption
required, when connecting with more than approximately 50
flows. The consequence of this is that no more than
approximately 50 scp transfers start until the CPU load goes
below 100%. Hence the last SYN packet is after the first FIN
packet.

III. DEFINITION AND ANALYSIS METHOD

A. Custom Software

A custom Java [22] program was written to analyse the
tcpdump trace files. It utilises the 3rd party Java library jpcap
[23] to interface to libpcap [16] which can read the pcap format
files created by tcpdump.

B. Definition

When analysing the data we needed to define a loss event.
The loss event start time is the time at which the first lost
packet of any number of subsequent lost packets is sent. The
event finish time is the time at which the first duplicate
acknowledgement (ACK) arrives back at the sender. The ACK
will subsequently be duplicated, and therefore signal a loss

event. Since all hosts are using TCP-SACK we consider all the
retransmitted packets to be lost.

If a lost packet sending time is not during the current loss
event time, then it must signal a new loss event. This definition
of loss events is verified by multiplying the length (in time) of
a loss event by 2, and by 3. In both cases the number of loss
events detected in trace files does not change by more than
10%. This indicates that the time-based definition of loss
events is accurate for our purposes.

A correlated loss event is signalled if there is any overlap
(in time) of loss events between two or more flows and all the
involved flows are considered correlated with each other. For
instance, if a loss event in flow 1 is correlated with a loss event
in flow 2 and there are no loss events from the other concurrent
flows which are correlated with these two correlated loss
events in flow 1 and 2, then we will regard that only flow 1 and
flow 2 are correlated with each other, that is, this is a two-flow
based correlation. However, if a loss event in flow 3 is
correlated with the loss event in flow 2 but not the loss event in
flow 1 (that is, by the definition above flow 1 is not correlated
with flow 3), we will still regard that flow 1, 2 and 3 are
correlated with each other (three-flow based correlation)
because of the mutual correlation with flow 2.

C. Method

Synchronisation levels between the concurrent TCP flows
are calculated by inspecting the loss events in the order that
they occurred. If there are correlated loss events in other flows
then a counter is incremented. This counter indicates how
many flows are synchronised with the loss event.

When there are no more loss events to inspect, an array
containing a counter for each loss event is available for
analysis. Loss event synchronisation is calculated as the
number of loss events that had x number of flows or more
divided by the total number of loss events. Synchronisation is
expressed as a percentage.

IV. MEASUREMENT ANALYSIS

In this section, we focus on the measurement analysis of
loss synchronisation between concurrent TCP flows. Fig. 1 ~ 4
shows the results of the data traces to the remote hosts in
Adelaide, Beijing, Miami and Berlin, respectively. In the
figures, the y-axis represents the correlation percentage
between the concurrent TCP flows while the x-axis represents
the least number of flows that are correlated with each other.
For instance, when x=2, y=92.97% in Fig. 1 it means that
92.97% of the total loss events involves at least 2 correlated
flows within the total 32 concurrent flows. For another
example, when x=2, y=44.17% in Fig. 1 it means that 44.17%
of the total loss events involves at least 2 correlated flows
within the total 4 concurrent flows, that is, it includes the cases
of 2-flow, 3-flow and 4-flow based correlation.

Overall, the figures show that loss synchronisation between
the concurrent TCP flows appears to exist. For the same
remote host, different numbers of concurrent TCP flows have
the similar loss synchronisation pattern (Fig. 1, 2 and 4). For
instance, in Fig. 1 and 2 the pattern for 32 concurrent flows is
similar to the pattern for 16 concurrent flows. The level of
synchronisation varies depending on the network path. TCP

TABLE I. TRIALS CONDUCTED IN THE STUDY

Remote host location

Adelaide,

Australia

Beijing,

China

Miami,

USA

Berlin,

Germany

No. of concurrent

TCP flows
8

2, 4,

16, 32
16

2, 4,

8, 32
32 64 32 64

Interval between

tests (hours)
1 2 1 2 1 2 1 2

ISBN/ISSN 0977586103

Copyright (c) Australian Telecommunication Networks & Applications Conference (ATNAC), Australia, December 2006

flows to Beijing exhibited the highest level of synchronisation
(Fig. 2), whereas TCP flows to Berlin had the lowest (Fig. 4).
The Miami host and the Berlin host shared network paths until
somewhere inside the USA, and TCP flows to these hosts
exhibited a similar loss synchronisation pattern (Fig. 3 and 4).
Levels of loss synchronisation were stronger in the Miami trials
(Fig. 3), compared to the Berlin trials. This indicates that the
traffic between USA and Germany makes packet losses less
synchronised. Trials involving the Adelaide host exhibited
stronger synchronisation than trials involving either the Miami
or Berlin host, but not as strong as the Beijing host.

The RTT to the Adelaide host is 12ms while the RTT to the
Miami host is 230ms and to the Berlin host is 340ms, and
correspondingly the number of hops is 11, 18 and 23. It seems
that the level of loss synchronisation is correlated with RTT as
well as number of hops: longer RTT and more hops all
contribute to less loss synchronisation. More hops could mean
more random background traffic and thus make packet losses
between concurrent TCP flows appear to be more random.
Longer RTT would mean larger bandwidth-delay product
(BDP) and thus require a bigger TCP congestion window to
fully utilise available bandwidth or cause packet losses. As
mentioned earlier, the maximum TCP window size is set to the
default value (64kb). This would indicate that in the presence
of congestion longer RTT would have more flows than shorter

RTT which have reached their maximum window size. As a
result, shorter RTT would have more flows that increase their
window size during the congestion and have more chance to
face synchronised packet losses between these flows. Further
investigation is needed to determine the correlation between
RTT, number of hops and loss synchronisation.

Interestingly the loss synchronisation pattern for the Beijing
host is distinct from the others (exponential decrease for the
others). The front part of the pattern is not similar to the others
having a logarithmic decrease curve. However its rear part
curve is similar to the others (exponential decrease). This
indicates stronger loss synchronisation than the other hosts.
The Beijing host has longer RTT and more hops than the
Adelaide host and more hops than the Miami host. However, it
has the strongest loss synchronisation. Again, this is an area
that will require further investigation. At this stage we
consider that a couple of factors might contribute to this
observation.

One factor could be the distinct local traffic in China.
Asian countries such as China, Korea and Japan usually have a
substantial quantity of local content which is only available in
local language. The content is usually retrieved by the local
users rather than the users overseas and the local users
generally request local content. On the other hand, the rapid
deployment of broadband Internet access in households and the

Fig 1. Percentage of synchronisation between concurrent TCP flows

to Adelaide, Australia

TCP Flows to South Australia

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

of Connections

C
D

F

32 Flows 16 Flows 8 Flows 4 Flows 2 Flows

Fig 2. Percentage of synchronisation between concurrent TCP flows

to Beijing, China

TCP Flows to China

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

of Connections

C
D

F

32 Flows 16 Flows 8 Flows 4 Flows 2 Flows

Fig 3. Percentage of synchronisation between concurrent TCP flows

to Miami, USA

TCP Flows to the USA

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

of Connections

C
D

F

32 Flows

Fig 4. Percentage of synchronisation between concurrent TCP flows

to Berlin, Germany

TCP Flows to Germany

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

of Connections

C
D

F

64 Flows 32 Flows

ISBN/ISSN 0977586103

Copyright (c) Australian Telecommunication Networks & Applications Conference (ATNAC), Australia, December 2006

rapid increase of Internet users in China could also contribute
the uniqueness of its local traffic.

Another factor could be the use of queue management such
as Random Early Detection (RED). RED causes packet losses
between concurrent flows not to be synchronised due to its
stochastic nature of dropping packets. The work in [1] presents
a brief analysis of loss synchronisation in a simple simulation
environment. It shows that in the simulation with RED turned
on the loss synchronisation pattern is exponential decrease
while with RED turned off the pattern is logarithmic decrease.
(Note that our study is very different from [1] because of
different analysis method and environment.) Since the turnoff
of RED in [1] has a partially similar pattern to the Beijing host
and the use of RED in [1] has a similar pattern to the other
three remote hosts. RED could be a reason to cause the
difference. However, it has been suggested that RED is usually
turned off in practice.

V. CONLUSIONS AND FUTURE WORK

In this paper, we have tentatively studied the correlation of
loss events (loss synchronisation) between concurrent TCP
flows over three international routing paths from Australia to
Asia, Europe and North America and a domestic routing path
from Melbourne to Adelaide. The measurement results we
have presented in this paper suggest that loss synchronisation
between concurrent TCP flows does exist but the level varies
from path to path. The local internet traffic might also have
unique impact on loss synchronisation. For instance, the path
to China exhibits a loss synchronisation pattern distinct from
the others. It could be due to the frequent local traffic caused
by accessing local internet content and the behaviour of local
Internet users. The existence of loss synchronisation indicates
that the design of networking mechanisms such as TCP should
take this issue into account. Some designs would prefer
eliminate the effects of loss synchronisation while some might
be able to utilise it. The presented results are preliminary and
further analysis is certainly required for better interpretation
and understanding.

We plan to study the relationship between the number of
lost packets and the level of synchronisation. Through the
analysis we would like to find out how the average number of
lost packets is related to the synchronised loss events. It is also
interesting to increase the maximum window size in TCP to
study loss synchronization. The maximum window size in the
study was set to its default value (64kb). For a long haul link
such as the one to Germany, the window size could not be
sufficient to fully utilise available bandwidth or to cause packet
losses. On the other hand, it is worthwhile to do the study with
recently developed high-performance TCP variants such as
HSTCP to compare loss synchronisation between standard
TCP and high-performance TCP variants. It is conjectured that
high-performance TCP variants would cause large and
synchronised packet losses. The future work would also be
able to give some insights into this issue.

ACKNOWLEDGEMENT

We are grateful to the following people for providing
computer accounts at the remote sites: Dr. Steven Gordon
(ITR, University of South Australia), Ke Xu (Tsinghua
University, China), (Chi Zhang, Florida International
University) and Frank Burkhardt (FOKUS, Germany).

REFERENCES

[1] L. Xu, K. Harfoush and I. Rhee, “Binary Increase Congestion Control
for Fast Long-Distance Networks”, INFOCOM 2004, Hong Kong,
China, Mar. 2004.

[2] Y. Li, D. Leith and R. Shorten, “Experimental Evaluation of TCP
Protocols for High-Speed Networks”, IEEE/ACM Trans. on Networking
(to appear).

[3] S. Shenker, L. Zhang, and D. Clark, “Some observations on the
dynamics of a congestion control algorithm”, SIGCOMM 1990,
Philadelphia, USA, Sep. 1990.

[4] “FAST TCP for Multi-Gbps WAN: Experiments and Applications”,
http://www.slac.stanford.edu/grp/scs/net/talk/fast-i2-apr03.ppt, viewed
9th August, 2006.

[5] T. Kelly, “Scalable TCP: Improving performance in highspeed wide area
networks”, Computer Communication Review 32(2), April 2003.

[6] S. Floyd, “HighSpeed TCP for Large Congestion Windows”, IETF RFC
3649, Dec. 2003.

[7] R. Shorten and D. Leith, “H-TCP: TCP for high-speed and long-distance
networks”, PFLDnet 2004, Argonne, USA, Feb. 2004.

[8] I. Rhee and L. Xu, “CUBIC: A New TCP-Friendly High-Speed TCP
Variant”, PFLDnet 2005, Lyon, France, Feb. 2005.

[9] Q.Fu, G.Armitage “A Blind Method towards Performance Improvement
of High Performance TCP with Random Losses”, WWIC 2006, Berne,
Switzerland, May 2006

[10] “GrangeNet”, http://www.grangenet.net/, viewed 3rd August, 2006.

[11] “AARNet home”, http://www.aarnet.edu.au/, viewed 3rd August, 2006.

[12] “OpenSSH”, http://www.openssh.com/, viewed 3rd August, 2006.

[13] “UNIX man pages: scp (1)”, http://unixhelp.ed.ac.uk/CGI/man-
cgi?scp+1, viewed 3rd August, 2006.

[14] H. Xie, L. Zhou, and L. Bhuyan, “Architectural Analysis of
Cryptographic Applications for Network Processors”, 8th International
Symposium on High-Performance Computer Architecture, Cambridge,
USA, Feb. 2002.

[15] “Setting up SSH”, http://pierre.mit.edu/compfac/ssh.html, viewed 7th

August, 2006.

[16] “TCPDUMP public repository”, http://www.tcpdump.org/, viewed 3rd

August, 2006.

[17] “Newbie: intro to cron”, http://www.unixgeeks.org/security/newbie/,
viewed 3rd August, 2006.

[18] “The FreeBSD project”, http://www.freebsd.org/, viewed 3rd August,
2006.

[19] “TCP option numbers”, Internet Assigned Numbers Authority,
California, USA, Jul. 2006.

[20] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, “TCP Selective
Acknowledgment Options”, IETF RFC 2018, Oct. 1996.

[21] V. Jacobson, R. Braden and D. Bormanm, “TCP Extensions for High
Performance”, IETF RFC 1323, May 1992.

[22] “Java technology”, http://java.sun.com/, viewed 3rd August, 2006.

[23] “Jpcap – Java package for packet capture”,
http://netresearch.ics.uci.edu/kfujii/jpcap/doc/, viewed 3rd August, 2006.

