
ISBN/ISSN 0977586103

Copyright (c) Australian Telecommunication Networks & Applications Conference (ATNAC), Australia, December 2006

Topological Optimisation for Online First Person
Shooter Game Server Discovery

Grenville Armitage, Carl Javier, Sebastian Zander
Centre for Advanced Internet Architectures

Swinburne University of Technology
Melbourne, Australia

{garmitage,cjavier,szander}@swin.edu.au

Abstract- Most online first person shooter (FPS) games
require clients to discover game servers through a two-step
process. The client initially queries a well-known master server
for a list of currently registered game servers. Each game server
is then probed in the order they were returned by the master
server. It may take quite some time to discover playable game
servers (within a tolerable round trip time of the client). We
investigate the need for, and benefits of, explicitly re-ordering a
master server’s reply list so the client is more likely to probe
closer servers before more distant servers. We use data gathered
from the Wolfenstein Enemy Territory (ET) master server
gathered in late 2005 and early 2006 to assess such optimisation.
We conclude that such re-ordering will reduce unwanted probe
traffic on game servers and improve player experience.

Keywords- Game Master Server, Game Server List, Network
Overhead, Playable Server, First Person Shooter, Optimisation

I. INTRODUCTION AND RELATED WORK

Internet-based multiplayer First Person Shooter (FPS)
games have become significantly popular in the past 5+ years.
Game servers are hosted by internet service providers (ISPs),
dedicated game hosting companies and individual enthusiasts.
Examples of FPS games include Quake III Arena, Half-Life
Counterstrike, Wolfenstein Enemy Territory, and Half-Life 2.
FPS game servers typically host from less than 10 to around
30+ players and there may be hundreds and thousands of
individually operated game servers active on the Internet at
any given time [1]. Locating a playable game server is a key
challenge for would-be players.

The notion of a ‘playable’ multiplayer FPS games is
influenced by the number of players already on the game
server, the particular map being played, the specific game
rules, and the round trip time (RTT) between game server and
client. Most FPS games use a similar two-step process to
gather this information [1]. First, a game client queries a
master server unique to the particular game (pre-configured
into the game client’s software). The master server returns a
list of hundreds or thousands of IP addresses and port numbers
representing game servers registered as currently active. The
client then steps through this list, probing each listed game
server for information about map type, game type and number
of players (typically a brief UDP packet exchange). This probe
process also estimates the client to server RTT at the time of
the probe. All this information is presented to the player as it
is gathered, who then selects a game server to join.

Previous work has shown a constant ‘background noise’ of
probe traffic to active game servers as clients from all around
the planet start and stop every hour of the day [2]. Registered
game servers experience a non-negligible base level of traffic
regardless of their actual popularity, traffic for which the
server operator ultimately pays. (For example, in [2] two
Australian-based FPS game servers each experienced 8
gigabytes of public Internet probe traffic over a 20-week
period, even though one server was vastly more popular with
game players than the other. Over 80% of the probe traffic
came from overseas countries whose players were unlikely to
find the latency satisfying for game play.)

From a player’s perspective this technique can lead to
tedious waiting periods (tens of seconds or minutes) as the
client probes each IP address returned by the master server. If
a playable server appears early in the master server’s list, the
player may instruct the client to terminate the probe process
and begin playing immediately. If not, the client may need to
probe all available game servers before the player finds a
server with acceptable RTT and game-play conditions.

FPS players tend not to spend much time on game servers
that are topologically distant (tolerance tends to drop off
noticeably as RTT heads over 180-200ms [3][4][5][6][7][8]).
Thus we hypothesise that the process of discovering playable
servers would be improved if clients probed ‘closer’ game
servers before more ‘distant’ game servers. This would enable
quicker identification of game servers within a tolerable RTT,
expediting the player’s decision to terminate the probe process
and begin playing on a chosen game server. We further
hypothesise that earlier termination of the probe process by
clients around the world would reduce probe traffic loads on
game servers who are distant from most clients.

Our work differs from previously published work on
redirecting players from one game server to a ‘closer’ game
server based on inferring geographic locality from client IP
addresses [9]. We aim for the client itself to expeditiously find
closer (and more playable) servers.

We use data gathered from the Wolfenstein Enemy
Territory (ET) [10] master server in late 2005 and early 2006
to illustrate the need for, and likely benefits of, our hypothesis.
Our paper is organized as follows: section II describes our
characterisation of the ET master server’s ranking process,
section III presents the characterisation results, section IV
explains our proposed optimisation in light of these results and
section V concludes with comments about future work.

ISBN/ISSN 0977586103

Copyright (c) Australian Telecommunication Networks & Applications Conference (ATNAC), Australia, December 2006

II. CHARACTERISING THE ENEMY TERRITORY SERVER’S
RANKING OF REGISTERED GAME SERVERS

We created an artificial ET game client based in
Melbourne, Australia, and issued repeated queries over time to
the ET master server in order to track the ranking of game
servers in consecutive replies.

A. Enemy Territory Game Server Discovery Process

Figure 1 illustrates the two main stages of game server
discovery. An ET game client first contacts the master server
(etmaster.idsoftware.com) by sending a UDP request to port
27950 for information about currently registered game servers
(step 1). The master server responds (step 2) with a sequence
of one or more UDP packets listing the currently registered
game servers (6 bytes each for the IPv4 address and UDP port
number). (Different UDP ports are used when multiple game
servers exist at the same IP address.)

As the list is retrieved (step 3), the game client begins
probing each game server in sequence (step 4). The game
client populates its on-screen server browser (step 5) as game
servers respond with their current game information (for
example, round trip time to game server, number of current
players and current map). The player then choses a game
server to play on from the information presented in the on-
screen server browser (step 6).

We observed in step 2 that the response was a back-to-
back burst of UDP packets roughly 2 seconds after we issue
each query in step 1. (Approximately 220ms of that delay was
the RTT between our measurement point and the master
server.) All but the last UDP response packet would have a
payload of 810 bytes and contain 112 servers. The final UDP
response packet would be of variable length and contain the
identities of up to 112 servers. We typically saw between 26 to
28 packets in any given response, returning a list of roughly
3000 registered game servers at any given time.

As a modest optimisation actual ET clients issue the first
16 queries almost immediately in step 4, without waiting for
replies. It then issues new queries as replies come back for
previous queries, with no more than 16 queries outstanding
(unanswered) at any one time. This speeds up the discovery
process while minimising load on the client’s access link
(minimising degradation of each query’s RTT estimate).

At any time during step 5 the player may choose to
terminate their client’s probe process and connect to a game
server, even though the in-game server browser is still being
populated. This introduces a slight bias against eligible game
servers who are listed near the bottom of the master server’s
list.

B. Ranking servers within query responses

For our purposes each game server is assigned a numeric
rank based on where their IP address and port number
appeared in the sequence of response packets. A game server
whose IP address and port number appeared first in the UDP
payload of the first response packet is given a rank of one. A
game server whose IP address and port number appeared 10th

in the UDP payload of the 3rd response packet is given a rank
of 234, and so on.

We ran a local ET game server to provided us with at least
one IP address:port that we knew should appear in all master
server responses. By tracking the rank of this server over time
we could ascertain any trends or bias in the ET master server’s
behaviour.

C. Periodic querying over different time scales

In order to evaluate possible periodicity in the master
server’s behaviour we ran three separate trials with three
different query intervals. Our ‘Long trial’ involved querying
the master server every 30 minutes over roughly 22 days
(from October 20th to November 10th 2005). Our ‘Short10’
trial involved queries every 10 seconds over 2 days (5th and 6th

of December 2005) and our ‘Short60’ trial involved queries
every 60 seconds over 4 days (between 13th and 17th of
January 2006). During the Long trial we also used Qstat [12]
every 6 hours to find the current round trip time (RTT) to, and
number of active players on, each responding game server
from the most recent master server query. The 6-hour
sampling interval allowed us to observe daily trends reported
in other literature (e.g. [2][6]). We did not probe the individual
game servers during the short10 and short60 trials.

III. I NTERIM RESULTS

In brief: Any given client query is as likely to see a
particular server at the top, middle or bottom of the list. The
master server’s rankings appear unaffected by the relative
distance between each game server and the querying client.

A. Review of the raw results

Table 1 summarises our results for the Long, Short60 and
Short10 trials, including the number of unique game servers
and unique IP addresses seen during each trial. On first glance
it may seem odd that, for example, the 1100 samples in the
Long trial would see 50245 unique game servers and yet only

� � � � � � � � � � � 	 �

 � �
 �
 � � � � � �

� � � � � � � � � � � � � � � � � �

� ! " # $ % & # ' (

) * + , - . / - . 0 - .
1 2 3 � � � � � � � 4 � � � � � 	� � 5 1 2 3 � 6 � � 7 � � 	8

9 � � � � � � : 5 ; ; 	 � 	 	 � � 7 � �� ; < ; � � = � ; 3 1 2 3 � > � ; ? 	 � �
� � � � � � � � � � �

@ � 	 A ; � 	 � � 	 � B � ; : � � 2 � � 1 2 3 � 6 � � 7 � � � � 	 �C

� � � � � � � � � � D

� � � � � � � � � � �

� � � � � � � � � � EF G H I J I K L I K M N O P P P Q R I K S I T

U V W X V W Y V Z [\] Z V

1 2 3 � > � ; ? 	 � � A ; A � � 2 � � 	? � � 5 6 � 7 � � � � = ; � 3 2 � � ; �= � ; 3 � 5 � = � � 	 � 	 � � 7 � �� � 	 A ; � 	 � � � : � � 7 � B

^

_ 2 	 � � � 6 � � 7 � �@ � 	 A ; � 	 � 6 � � � � � : �`

U V W X V W Y V Z [\] Z V

U V W X V W Y V Z [\] Z V

U V W X V W Y V Z [\] Z V

a b c d e d c f b c g h
a b c d e d c f b c g h

a b c d e d c f b c g h

Figure 1 – The ET game server discovery process

ISBN/ISSN 0977586103

Copyright (c) Australian Telecommunication Networks & Applications Conference (ATNAC), Australia, December 2006

6877 unique IP addresses. In fact, the raw data revealed a core
of 2185 game servers present over 90% of the entire 22-day
trial period and a transient pool of additional game servers
appearing and disappearing from one query to the next.

Table 1 - Summary of Long, Short60 and Short10 trials

Sample
Interval

30 min
(Long trial)

60 sec
(Short60 trial)

10 sec
(Short10 trial)

Duration 22 days 4 days 2 days
Dates 20/10/05-10/11/05 13/1/06-17/1/06 5/12/05-6/12/05

Samples 1,100 6,000 10,000
Unique

game servers
50,245 15,789 6,798

Servers in
90% of all
samples

2,185 2,656 2,758

Unique IP
addresses 6,877 3,734 2,624

The set of transient game servers was dominated by a
small pool of IP addresses (less than 50) that kept re-
registering as new game servers over hundreds (and in some
cases, thousands) of different UDP ports. We also saw low
level ‘noise’ due to transient game servers appearing once or
twice from unique IP address and port combinations and never
seen again. We chose to ignore the transient servers in our
subsequent analysis.

For all three trials most master-server responses returned
around 3000 registered game servers, with 90% of all
responses returning between 2800 and 3100 game servers.
(Approximately 3.1%, 3.9% and 1.4% of the Long, Short60
and Short10 trial responses were discarded for returning less
than 2500 game servers – presumed to be evidence of
substantial packet loss.)

Our six-hourly Qstat probes of every registered game
server revealed two things. The reply packet from each game
server ranged from 258 to 403 bytes long, with median and
mean both ~300 bytes. At any one time roughly 90 registered
game servers were inactive. A regular game client would try
but be unable to fully populate its in-game server browser with
information on these inactive game servers.

Slow responses impact an ET client’s ability to benefit
from parallel queries. Experiments using a real ET client
showed that on average the ET client probed 8 game servers at
a time, even though it begins with a burst of 16 queries. It took
roughly a minute to probe the 3000 game servers provided by
the master server.

B. Geographic distribution of game servers

The GeoIP database [11] is a useful tool for mapping IP
addresses to their approximate geographic origins (the free
‘GeoCountry Lite’ version provides country-level resolution).
Using GeoLite Country, Table 2 shows the coarse
geographical distribution of game servers reported during a
single Qstat query in the Long trial. Significant numbers of ET
game servers are located in Europe, with a modest 554 servers
in the USA and only 51 in Australia. 45 other countries make

up the rest of the list. (A similar distribution of ET clients is
reported in [2].)

Table 2 Top 10 Countries in a single six-hourly Qstat probe ranked by number
of registered game servers

Germany
(943)

United
States
(554)

Netherlands
(312)

United
Kingdom
(209)

France
(147)

Poland
(83)

Finland
(60)

Czech
Republic (58)

Australia
(51)

Japan
(50)

C. Distribution of Game Servers versus RTT

Figure 2 is a scatter plot of each game server’s RTT
(measured using Qstat) versus its rank in a single master
server response during the Long trial. There is no particular
relationship between a game server’s RTT (to the client) and
the game server’s rank in the master server’s response. The
master server is not ordering its responses based on the
querying client’s probable location on the Internet. Similar
RTT vs. rank distributions were found in all the 6-hourly
probes during the Long trial.

Figure 2 also clearly illustrates the problem facing ET
players in Australia. Of 2981 actual servers seen in this 6-hour
sample, 2296 servers are over 300+ms away (largely
European, and completely unplayable). The 33 servers sitting
between 160ms-179ms or the 597 servers clustered between
180ms-299ms would provide marginal game play. Only 55
game servers (51 Australian, 4 New Zealand) are less than
120ms away from our client. Yet an Australian player must
probe all 2981 game servers before their server-browser
covers all potentially playable servers.

D. Distribution of game server rankings over time

Figure 3 is a CDF of the rank assigned to three different
game servers over the Long trial. We tracked our own game
server (‘CAIA’) and two other long-lived game servers
located in America and Germany respectively. Over long

0 100 200 300 400 500

0
0

0
5

0
0

0
1

0
0

5
1

0
0

0
2

0
0

5
2

0
0

0
3

Round Trip Time (ms)

tsil
ni ss

er
d

d
a

PI r
evr

e
S

e
m

a
G f

o
n

oitis
o

P

Figure 2 – RTT vs. Game server rank from one query during the Long trial

ISBN/ISSN 0977586103

Copyright (c) Australian Telecommunication Networks & Applications Conference (ATNAC), Australia, December 2006

periods of time (and multiple queries) each game server’s
likely rank in any given query response list appears almost
uniformly distributed across all possible rankings.

Closer inspection of the Short60 and Short10 trial results
revealed that the ET master server cycled every game server’s
rank from first to last in the response list approximately once
every 36 minutes. A newly registered game server would be
injected at the top of the list (rank of 1) and then begin
migrating to the bottom of the list over the next 36 minutes
before reappearing at the top of the list again.

IV. A PROPOSED OPTIMISATION

Client-side game-server discovery will occur faster if the
client probes ‘closer’ game servers first.

A. Theoretical improvements

First consider an idealised scenario (scenario A.1):

• All N available game servers are uniformly distributed
between 20ms and 350ms from the querying client
(based on typical client access links adding 10-20ms).

• Every game server’s rank (from one query to the next)
is uniformly distributed between 1 and N (Figure 3)

• Game servers are probed sequentially, the median
response is 300 bytes long and game servers over
~180ms away are ‘unplayable’

Only 48.5% (160/330) of N are playable servers. Given the
master server ordering a client must query all N game servers
to discover these playable servers. Each query takes at least
(20+350)/2 = 185ms (considering only the RTT) for a total of
N*0.185 seconds. Probing 3000 game servers sequentially
would take 555 seconds. 16 queries in parallel (section II.A)
would take ~35 seconds under ideal conditions and trigger
~878Kbytes of inbound traffic to the client.

Search time would improve if the master server presented
game servers in order of distance from the querying client
(scenario A.2). Knowing this, the player can terminate their
search upon seeing a game server over 180ms – thus probing
only the first 48.5% of the returned game servers at an average
of (20+180)/2 = 100ms per query. Over 3000 servers there

would be 1455 playable game servers probed in just 145.5
seconds (or 9 seconds if 16 queries are issued at a time under
ideal conditions). This optimised server discovery process
would result in only ~426Kbytes of inbound traffic.

Actual Australian game clients do not see a uniform
distribution of available servers. Only 2.95% of all servers are
less than 180ms away (and plausibly playable). Let us assume
our client sends 16 queries in parallel and playable servers are
distributed uniformly between 20ms and 180ms (scenario
A.3). The 89 playable servers would be probed within half a
second and trigger only ~26Kbytes of inbound traffic. There
are clear benefits to be had from optimising the search for
playable game servers.

B. An address-independent client-side technique

Our proposal is for a client-side algorithm that samples the
master server’s list to construct an estimate of likely RTTs to
different countries, and then re-orders the game servers along
country lines (scenario B.1). This technique works wherever
the client is located on the Internet, and does not require any
local configuration of location or IP address information - an
advantage given the prevalence of NAT (network address
translation) [14] on consumer home gateways.

First the client takes the existing master server response
list and groups game servers together by country (e.g. using a
GeoLite Country list embedded in the game client [11]). One
game server is selected at random from each represented
country, and each of these selected game servers is probed in a
random order. The RTT to each of these initial game servers is
then used to rank the countries they represent (and by
implication the other game servers ‘within’ each country). The
game client then begins probing all game servers in order of
their country’s new rank. In the absence of any additional
hints, game servers within a given country would be probed in
random order.

This approach works well for Australian ET clients.
Ranking the 55 countries represented in Figure 2 requires 55
initial probes and 55 replies (~16Kbytes of inbound traffic).
Australia and New Zealand will be ranked first and second,
and the client will proceed to issue 53 more probes (to cover
all 55 Australian and New Zealand game servers). Further
assume the probe process is terminated once the client begins
displaying RTT values that the player considers to be ‘too
high’. The whole process requires only 110 probes and
~32Kbytes of inbound traffic. Even if we pessimistically allow
~185ms for all 110 probes, this would take only 1.3 seconds
(assuming 16 probes in parallel).

Clients in countries with high concentrations of local
servers will see proportionally less benefit, since they see
proportionally more ‘playable’ servers (based on RTT) when
using the master-server’s lists as-is. At worst such clients will
see performance converging to the un-optimised case.

Game servers also stand to benefit by a reduction in probe
traffic from clients who are unlikely to ever play on them. For
example, European ET clients would place Australia (and
hence all Australian game servers) at the end of their search
after probing one Australian server at random. This could
eliminate up to 80% of the probe traffic seen in [2] from

0 500 1000 1500 2000 2500 3000

Position of Game Server IP address in List

egatnecre
P

CAIA server

American server

German server
0

20

40

60

80

100

Figure 3 – CDF of game server rank during the Long trial

ISBN/ISSN 0977586103

Copyright (c) Australian Telecommunication Networks & Applications Conference (ATNAC), Australia, December 2006

overseas clients (reducing 8Gbytes of probe traffic over 20
weeks to just 1.6Gbytes).

Table 3 summarises the results of our ideal optimisations
(scenario A) and proposed optimisation (scenario B).

Table 3 Summary of ideal (A) and proposed (B) optimisations

V. FUTURE POSSIBILITIES

There are a number of future refinements.

Probing a single, randomly selected game server to rank
each country may be quite misleading for larger countries with
hundreds of servers and diverse internal topology. A practical
refinement would be to cluster game servers inside each
country using an indirect indication of possible topological
locality. Within each country, subdivide the game servers into
groups based on sharing e.g. /8 or /16 IPv4 routing prefixes.
Randomly pick and probe one game server from each
<country,prefix> group, and then rank all game servers
according to the nominal RTT of their group. Order game
servers randomly within their group and proceed with the
client probe sequence as before.

Even using a /8 prefix leads to a lot of initial probes. For
example, there are 15, 33 and 17 unique /8 prefixes seen under
Germany, United States and Netherlands respectively. There
are 316 <country,prefix> groups using /8 prefixes across all 55
countries seen in Figure 2 (hence 316 initial probes before the
client can begin re-ordering the master server’s response list).

There are two underlying assumptions: topological locality
implies shorter path lengths (and hence RTT), and geographic
indicators and routing prefixes correlate with topological
locality. The latter becomes weaker for shorter prefixes,
particularly as disjoint regions of the planet may share a /8.
Thus we do not advise grouping purely on <prefix>. Even
though grouping game servers by shared /8 would give us only
81 groups to initially probe, the choice of random server
within each /8 group is likely to be even less representative of
the entire group’s RTT than grouping on country alone.

In principle the master servers themselves (or a transparent
proxy) can also optimise the response lists. Since they know
the querying client’s IP address they can pre-order the
returned game server list in order of likely locality to the client
(either using country lists like GeoLite Country, or making
assumptions based on shared routing prefixes). However, the
master server would be performing per-client/per-query
optimisations on the fly for thousands of clients per hour. This
may be an unacceptable processor load. Thus we prefer to
consider client-side techniques (where the load is distributed
and localised).

VI. CONCLUSION

Existing FPS game server discovery can be a slow process
generating hundreds of kilobytes of mostly useless network
traffic. In particular, clients located over 180ms from the
majority of registered game servers incur a substantial penalty
during the discovery process. Using statistics gathered from a
Wolfenstein Enemy Territory master server we illustrate the
benefits of novel client-side technique for re-ordering the
game server lists provide by the master server. A typical
discovery sequence causing ~878Kbytes of inbound traffic
over 35 seconds could be reduced to less ~32Kbytes of
inbound traffic in under two seconds for Australian-based
players. In addition, game servers will see noticeably reduced
probe traffic from clients. The server-discovery process is
similar for most popular FPS games [1], so we believe our
proposed client-side optimisation is similar applicable and
beneficial to other FPS-style online games.

REFERENCES

[1] G.Armitage, M.Claypool, P.Branch, “Networking and Online Games -
Undertanding and Engineering Multiplayer Internet Games,” John
Wiley & Sons, UK, April 2006 (ISBN: 0470018577)

[2] S.Zander, D.Kennedy, G.Armitage, “Dissecting Server-Discovery
Traffic Patterns Generated By Multiplayer First Person Shooter
games”, ACM NetGames 2005, NY, USA, 10-11 October, 2005

[3] G. Armitage, “Sensitivity of Quake3 Players To Network Latency,”
Poster session, SIGCOMM Internet Measurement Workshop, San
Francisco, November 2001

[4] T. Henderson, “Latency and user behaviour on a multiplayer game
server” Proceedings of the 3rd International Workshop on Networked
Group Communications (NGC), London, UK, November 2001

[5] M. Oliveira and T. Henderson, “What online gamers really think of the
Internet,” Proceedings of the 2nd Workshop on Network and System
Support for Games (NetGames 2003), Redwood City, CA, USA, May
2003

[6] G.Armitage, “An Experimental Estimation of Latency Sensitivity In
Multiplayer Quake 3”, 11th IEEE International Conference on
Networks (ICON 2003), Sydney, Australia, September, 2003

[7] T. Beigbeder, R. Coughlan, C. Lusher, J.Plunkett, E. Agu, M. Claypool,
“The Effects of Loss and Latency on User Performance in Unreal
Tournament 2003,” ACM SIGCOMM 2004 workshop Netgames'04:
Network and system support for games, Portland, USA, August 2004

[8] S.Zander, G.Armitage. “Empirically Measuring the QoS Sensitivity of
Interactive Online Game Players,” Australian Telecommunications
Networks & Applications Conference 2004, (ATNAC2004), Sydney,
Australia, December 8-10, 2004

[9] Chris Chambers, Wu-chang Feng, Wu-chi Feng, Debanjan Saha, “A
Geographic, Redirection Service for On-line Games,” in Proc. ACM
Multimedia 2003 (short paper), November 2003

[10] “Wolfenstein Enemy Territory”,
http://games.activision.com/games/wolfenstein , (viewed on 6 August
2006)

[11] “GeoLite Country,” http://www.maxmind.com/ app/geoip_country
(viewed 6 August 2006)

[12] “Qstat Real-time Game Server Status”, http://www.qstat.org (viewed 6
August 2006)

[13] G.Armitage, C.Javier, S.Zander, “Client RTT and Hop Count
Distributions viewed from an Australian ‘Enemy Territory’ Server”,
CAIA Technical Report 060223A, 6th February, 2006
(http://caia.swin.edu.au/reports/060223A/CAIA-TR-060223A.pdf)

[14] P. Srisuresh, M. Holdrege, “IP Network Address Translator (NAT)
Terminology and Considerations,” RFC 2663, Internet Engineering
Task Force, August 1999

Scenario A.1 A.2 A.3 B.1

Time to
probe

(16 at a time)

35 sec 9 sec 0.5 sec 1.3

Inbound
traffic

878KB 426KB 26KB 32KB

