Measuring the auto-correlation of server to client
traffic in First Person Shooter games

Philip Branch

Centre for Advanced Internet Architecture
Swinburne University of Technology
Melbourne, Australia
pbranch@swin.edu.au

Abstract— Modelling traffic generated by Internet based
multiplayer computer games has attracted a great deal of
attention in the past few years. In part this has been driven i a
desire to properly simulate the network impact of highly
interactive online game genres such as the first person shimw
(FPS). Past work has dealt with packet size and packet
interarrival times without consideration of packet size
autocorrelations. Packet size auto-correlation is an impdant
element in the creation of plausible traffic generators fornetwork
simulators such as ns-2 and omnet++. In this paper we presean
analysis of the auto-correlation of packet size for Half-Lfe, Half-
Life Counterstrike, Half-Life 2, Half-Life 2 Counterstrik e, Quake
Il Arena and Wolfenstein Enemy Territory. We show that
packet sizes appear to be autocorrelated.

Keywords- Network applications,
Teletraffic Analysis, Traffic Engineering

games and services,

l. INTRODUCTION

Grenville Armitage

Centre for Advanced Internet Architecture
Swinburne University of Technology
Melbourne, Australia
garmitage@swin.edu.au

positive where long packets tend to be followed by long
packets and short packets tend to be followed by short pscket
or is it negative where long packets tend to be followed by
short packets and vice-versa? FPS traffic models develsped
far have implicitly assumed that there is no correlatiomieen
packet lengths. Understanding correlation between packet
lengths is important in the construction of realistic made\
succession of long packets followed by a succession of short
packets will have a different impact on the network than a
succession of long and short packets randomly interspersed
Long range traffic dependence has been a significant area of
research for more than a decade [13] and has been shown to be
present in many different forms of traffic. Consequently it
seems reasonable to assume game traffic is also not entirely
random.

Understanding correlation between packet lengths all@vs u
to predict what happens to delay and delay variation when the
traffic is multiplexed with other types of traffic and whéatk

Modeling traffic generated by Internet based multiplayerand server capacities are necessary to meet a given grade of
computer games has attracted a great deal of attention in ti§€rvice. In the same way that web and other traffic has been
past few years [2, 4-7, 10-12, 15]. Highly interactive genre analyzed and modeled to predict the consequences for the

such as the first person shooter (FPS) are of particulareistte

Internet, it is necessary to analyze game traffic and preduc

to network engineers. Like voice over IP (VolP) and othermodels that can also be used in the same way [3].
interactive conference-style applications, FPS games are Traffic in the client to server direction usually consisfs o

generally sensitive to packet loss, jitter and high latedyS

small IP packets whose size distribution varies within aaar

games commonly use UDP rather than TCP, and transmissiqfy g On the other hand, traffic in the server to client dioec

rates reflect in-game activity without any particular nebto

consists of much larger packets that show great variation in

network congestion. FPS games are typically based on @-<cliengize [1]. In this paper we investigate the autocorrelatién o
server model for network traffic, with thousands or tens ofgerer to client packet lengths from FPS games with between 2
thousands of FPS servers active on the Internet at any givefhy 9 players. We use the public game traffic trace archives
time [1]. This has motivated research community interest ingontained in Swinburne University of Technology's SONG
predicting the traffic load imposed on network links by yatanase [14]. We investigate the autocorrelations fram si
multiplayer FPS games. Since it is usually impractical tdcou ppg games released between 1998 and 2005: Half-Life
and measure a full-size network, such analyses are usualiysaihmatch (HLDM), Half-Life Counterstrike (HLCS), Quake

investigated through simulation using statistical mode¢sited

from the answers to the first question. Good traffic modets a

needed to ensure the simulations are useful [8].

Il Arena (Q3A), Wolfenstein Enemy Territory (ET), Half4d
2 Deathmatch (HL2DM) and Half-Life 2 Counterstrike
(HL2CS).

Consequently, there has been a great deal of work in \ye show that packet lengths appear to be auto-correlated

understanding traffic for the purpose of constructing sation

for all six games and for any number of players. We show that

models of FPS games [1, 2, 5, 7, 10-12]. However, arsimple Markov chain models may satisfactorily capture the
important question so far neglected in these models retates cqrejation but that some games exhibit more complex, long-

whether the sizes of successive packets are correlated pinge correlations that may require more sophisticateictra
entirely random. If there is some form of correlation, is it jogels.

The rest of our paper is structured as follows. Section llexpectations of smooth interactivity (shorter Y for more
reviews the basic network architecture and traffic pattesh frequent updates).
modern FPS games. Section Ill discusses Server to Client
packet length autocorrelation. Section IV presents a nummbe
autocorrelation plots from the six FPS games we teste
Section V shows how autocorrelation of a Markov process ca
be captured in a Markov chain transition matrix and Section V
concludes the paper.

Clients send their own updates to the game server at less

OIr)recisely defined intervals, often influenced by the dlien
&rocessor speed, graphics card settings and player gctivit
ypical intervals vary from 10ms to over 40ms [1].

C. Traffic Compression

Modern FPS games actively compress server to client data
)))) to maximize playability over a wide range of network

In this section we review underlying reasons for thecongitions and consumer access technologies. Simple
network traffic generated by modern FPS games. Readetpmpression involves the use of smallest possible bitidiéd

Il. FIRSTPERSONSHOOTERGAMES

familiar with FPS games may skip to section 3. carry variable data. More complex compression involves the
)) server only sending information to a client about regionthef
A. Client-server Architecture virtual world currently visible to the client. Since everljent

Multiplayer online games have an underlying requiremenhas a different perspective on the virtual world the server
that game-state information is shared amongst all players ieffectively customizes every client update packet for tient
something close to real-time. Each game client acts as &® Whichitis sent.
interface between the local human player and the virtualegam pacyets from server to client exhibit substantial varietio
world within which the player interacts with other playens. , jongth as in-game activity surrounding a given clientiegr
pr_lnmple cllents_ might be designed to communicate divect! it time. For example, during active play of Q3A for a 9-
with each other in a peer-to-peer fashion. In practice, BBS 1 ver game, packets from server to client range between 32
games utilize a client-server model (including the six egkas and 960 bytes with 90% being between 98 and 460 bytes. For

presented in this paper). Every client's actions are seshant) 5/ packet lengths during active play are between 16 and
messages to the server, and every client is regularly uﬁdate_moo bytes with 90% between 95 and 501 bytes
with the actions taken by other players. The server impleésnen '

the game-world's state machine, regulating client actions A typical human can trigger only a limited number of
order to maintain the game’s internal rules and minimizeevents in any given 10ms to 40ms window. Consequently
opportunities for cheating. packets from client to server are typically much smallemtha
the packets from server to client, and exhibit very limited
B. Game-state Updates variation in size. For example, client to server IP payload

A typical FPS game involves an ISP or game enthusiasltengths range between 25 and 45 bytes for Q3A during active
hosting a game server on the Internet, and players joiniag thlgame play, with 90% of all packets between 28 and 38 by_tes
game using client software running on a home PC or IP_onog. For HL2DM, pac_;ket lengths vary between 36 and 99 with
enabled game console. (In reality the game could also be ru%O/O of all packets being between 57 and 75 bytes long.
on a private, local IP network — commonly referred to as ‘LAN :
parties’. For the purpose of this paper we focus on the casB: _Phasesof game-play and game traffic . .

where both the game server and clients are all on the public There are roughly three different phases of interaction

Internet.) The game client updates and renders the game$tween clientand server thatimpact on network traffic.

virtual world on screen based on regular messages received A client initially connects to the server, and receives data
from the game server. User inputs to the game client (actions from the server to update the client’s local virtual world
such as walking, looking around or shooting weapons) are jnformation (map definitions, avatar ‘skins’, etc)

passed to the game server to be verified and propagated to
other players. * The client is connected to the server and game is in

. . rogress (players running around shooting and interactin
Game-state updates must occur in a timely and prompt \F/)vitr?each(gthgr) g ¢ g

manner, with minimal bias or favor towards any particular

player. Timeliness is achieved by sending a unicast IP packe The client is connected to the server, and the game has

to each client every Y milliseconds (ms). Y is typically ireth been paused as the server changes maps or restarts a

range of 30 to 60ms — for example, the default update interval previous map (after someone wins the previous ‘round’)

is 60ms for HLDM, 50ms for Q3A and 33ms for HL2DM. To Tight control over network iitter and ket | i< reall

minimize bias, update packets to different clients are gent ght control over NEtwork JIter and packet 1oss 1S reafly
only required during active game-play. During periods of

back-to-back bursts (for example, a four-player Q3A game ; TR X X)
server would default to sending bursts of four back-to-baclplayer inactivity (initial client connection and serveractying

update packets every 50ms, one IP packet to each acti\}gaps) the ne_twork can e_xhibit fluctuating Iatency,_ ji_ttle'rdta
client). Each client will receive an update packet every Y m acket loss without upsetting the player. Our analysis

regardless of how much in-game activity is occurring. TheObtame‘j during active game-play.

choice of Y for a given game depends on the available network
capacity (longer Y for lower bandwidth demand) versus playe

Ill. SERVER TOCLIENT PACKET LENGTH the empirically derived autocorrelation function and at#its
AUTOCORRELATION exponential function. If the autocorrelation function dge
more quickly than the exponential function then that is some

. : :) evidence of randomness. If the autocorrelation function is
experiments to model basic server to client packet trafi) - : -]
introduce the autocorrelation plot as a way of measuringfpprox'mately exponential, then that is evidence that #uxet

: ' ength autocorrelation can be captured with a Markov mdélel.
correlation between successive packet lengths. the autocorrelation function decays much more slowly then t
exponential function then that is evidence of a more complex
long rang dependence.

In this section we discuss the need for empirical

A. Modeling server to client traffic fromempirical data

A primary motive for modeling FPS network traffic is to . .
assist in provisioning the network to provide a quality game_ All plots suggest that the games exhibit autocorrelation.
playing experience. Therefore we simplify the modeling'Vhether or not Markov models are adequate will depend on
process by focusing on traffic patterns that exist duriniyac the Purpose of the simulation but from the plots it appeaas th
game play. We further focus on server to client packet siz&3A ET, HL2DM and HL2CS can be adequately modeled by

distributions, as client to server packet length distitng are Markov methods. HLDM and HLCS appear to exhibit longer-
usually quite simple. range dependence that may require more complex models.

In principle one could estimate the correlation of server toa. Half-Life
client packet sizes by applying models of player mobilitglan 1

behavior onto a given map. Simulated interactions would lea ost [= et |
to simulated in-game events and hence simulated server to 7l 1
client packets. However, such an approach is likely to deerat i
complex, and begs the question of where to find realistiggrla £ os ¢
mobility models applicable to each map. g o0
0.3

In practice it is easier to simply gather server to client 02
packet statistics while observing actual games in progress 01
Trials can be run and monitored for specific maps, and sipecif % o 150 260 750

10
Lag (packets)

numbers of players. The resulting server to client packas si
distributions will reflect each player’s natural movensand

the player-player interactions induced by the particulapm Figure 1. Half-Life Deathmatch empirical and exponential 2

player autocorrelation functions

B. Measuring packet length autocorrelation 0s |

A purely random sequence of packet lengths will exhibit
near zero correlation with successive packet lengths vaksdfe
the traffic is not random the correlation between successiv
packet lengths will be significantly greater than zero.

Autocorrelation plots are commonly used for investigating
the randomness or otherwise of a data set. An autocornelatio

plot shows the autocorrelations between the data for varyin o S o — - .
packet shifts (often referred to as ‘lag’). Lag (packets)
The simplest autocorrelation models (apart from purely Figure 2. Half-Life Deathmatch empirical and exponential 9
random) are Markov models. In Markov models prediction of player autocorrelation functions
the next value (in this case packet length) is based solethi®n
current value. An indication of whether or not traffic extsb B. Half-Life Counterstrike
Markov characteristics is the rate at which correlatiormieen * — Empirical
two samples decreases as the distance between the samples ol E—
increases [13]. For a Markov process, the correlation betwe ﬁoﬁ, }
two samples decreases exponentially as the distance (or lag E 06
time between the samples increases. For a Process showing § os
longer range dependence the correlation decreases more 3 oa
slowly. g o2
0.2
0.1
IV. AUTOCORRELATIONPLOTS % o 100 50 200 750

1
Lag (packets)

In this section we show autocorrelation plots for HLDM,
HLCS, Q3A, ET, HL2DM, and HL2CS. The plots show Figure 3. Half-Life Counterstrike empirical and exponential 2-
autocorrelation spanning 250 packets, corresponding to player autocorrelation functions
approximately 5 seconds of game play. For reasons of space
we show only 2- and 9- player games. Each plot contains both

— Empirical
----_Exponential

(] 50 10 50
Lag (packets)

Figure 4. Half-Life Counterstrike empirical and exponential 9-

200 250

player autocorrelation functions

C. Quakelll Arena

— Empirical
----_Exponential

o 50 100 150
Lag (packets)

200 250

Figure 5. Quake Il Arena empirical and exponential 2-playe
autocorrelation functions

Atocorrelation (nomrlisec)

—— Empirical
----_Exponential

Lag (packets)

Figure 6. Quake Il Arena empirical and exponential 9-playe
autocorrelation functions

D. Wolfenstein Enemy Territory

0.9} ™,
08
z 0.7
E 0.6
£ os
8 04
E 03
202
01

— Empirical
----_Exponential

% 50

100 50
Lag (packets)

200 250

Figure 7. Wolfenstein Enemy Territory empirical and
exponential 2-player autocorrelation functions

— Empirical
0.9t ----_Exponential L
0.8 q
0.7 1
0.6 R
0.5 R
0.4 h 1

03 1

Autocarmelation (nomralised)

0.2 T 1

» ~--vr.,‘h,-.,~-—— |

100 150 200 250
Lag (Packets)

Figure 8. Wolfenstein Enemy Territory empirical and
exponential 9-player autocorrelation functions

E. Half-Life2
o = e |

(] 50 200 250

100 150
Lag (packets)

Figure 9. Half-Life 2 Deathmatch empirical and exponential2-
player autocorrelation functions

—— Empirical
0.9 ----_Exponential

Autocorrelation (nomrlised)

100 150 200 250
Lag (packets)

Figure 10. Half-Life 2 Deathmatch empirical and exponenti& 9-
player autocorrelation functions

F. Half-Life 2 Counterstrike

— Empirical
----_Exponential

.
100 150 200 250
Lag (packets)

50

Figure 11. Half-Life 2 Counterstrike empirical and exponertial 2-
player autocorrelation functions

o — Epprea VI. CONCLUSION

1 Previous work modeling server to client FPS traffic has
typically made a simplifying implicit assumption that patk
lengths are uncorrelated. We have shown this assumptioa to b
of doubtful validity. Empirical evidence from six modern &P

Atocorrelation (nomralisec)

(] 50

100 50 200
Lag (packets)

games, with varying numbers of players, reveals packetheng
autocorrelation. We have shown how this autocorrelatian ca
be captured in a Markov Chain model.

Future work will involve investigating the effectiveness o

otherwise of Markov process models in capturing the natfire o

Figure 12. Half-Life 2 Counterstrike empirical and exponertial 9-
player autocorrelation functions

V. MARKOV CHAIN REPRESENTATION OF
AUTOCORRELATION

In the previous section we have shown that there is
evidence of autocorrelation in packet lengths generatedrby
FPS game. We now give a brief outline of how such
autocorrelation can be implemented in a simulation. We will1]
illustrate this using the HL2CS 9-player game whose
autocorrelation function is shown in Figure 12. From the
autocorrelation function we can see that the autocoroglati [2]
function is approximately exponential and so can reasgrizdbl
modeled with a Markov process. Because it is easy td3!
implement in a simulation we will illustrate how this datanca

be implemented with a discrete time Markov Chain [9]. [4]

A Markov chain is a sequence of random variabhks X,
Xa,... With the property that the future state is dependent only®!
on the current state. That is: 6]

Pr(Xn+l =Xj | Xn= % Xpog = ka---): PI'(Xnﬂ = Xj | Xn= X1)

Where the number of states is finite, the conditional
probabilities can be represented by a transition matri¥ the
process is in state the probability of the next state being state
j is given by the elemert; ;

[7]

(8]
From the data used to construct the autocorrelation plot for
HL2CS, we can construct the transition maffibof conditional
probabilities. The transition matrix for the 9-player Halfe 2 [
Counterstrike game is shown in the following matrix.

L

[10]
000]
000
000
000
000
000
000
007
008

In this matrix we have ‘binned’ packet lengths into 0 to 50
bytes, 51 to 100, 101 to 150 and so on. The matrix can be used
to generate correlated output by going from bito binj with [15]
probability T; ; and randomly choosing a packet length in the
range represented by that bin. By binning the data we avoid
over-fitting the data set and keep the transition matrix to a
manageable size.

[0.82
0.04
0.00
001
0.00
0.06
0.00
0.00

| 0.00

017
0.85
0.35
0.22
0.18
0.16
0.16
0.13
0.15

0.01
0.09
0.57
043
0.38
0.19
0.25
011
0.08

0.00
0.01
0.06
0.29
0.16
0.10
0.06
0.18
0.08

0.00
0.00
0.01
0.03
0.20
011
0.05
0.09
0.08

0.00
0.00
0.00
0.01
0.05
0.34
0.09
0.20
0.19

0.00
0.00
0.00
0.00
0.01
0.01
0.35
0.07
0.27

0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.16
0.08

(11]

[12]

[13]

[14]

this autocorrelation.

ACKNOWLEDGMENT

This work was partly supported by the Smart Internet
. Cooperative Research Cenlrigp://www.smartinternet.com.au

REFERENCES

Armitage, G., Claypoole, M. and Branch, PNetworking and Online
Games : Understanding and Engineering Multiplayer Internet Games,"
John Wiley and Sons Ltd, Chichester, England, 2006.

Borella, M., "Source models of network game traffi€omputer
Communications, 23 (4). 403-410.

Cunha, C., Bestavros, A. and Crovella, M., "Charact&ssef WWW
Client-based TracesBoston University Technical Report, 19951995
Farber, J., "Network game traffic modelling," Rroc of the first ACM
workshop on network and system support for games, (Braunschweig,
Germany, April 2002).

Farber, J., "Traffic Modelling for Fast Action Networka®nes,"
Multimedia Tools and Applications, 23 (1). 31-46.

Feng, W., Chang, F., Feng, W. and Walpole, J., "Provisigion-line
games: a traffic analysis of a busy Counter-Strike servei?toc. of
SIGCOMM Internet Measurement Workshop, (Marseille, France,
November 2002).

Feng, W.-C., Chang, F., Feng, W.-C. and Walpole, J., &fic
characterization of popular on-line game&EE/ACM Transactions on
Networking, 13 (3).

Floyd, S. and Kohler, E., "Internet Research Needs Bafiedels," in
First Workshop on Hot Topicsin Networks, (Princeton, New Jersey, 28-
29 October).

Kemeny, J., Knapp, A. and Snell, JDénumerable Markov Chains,"
von-Nostrand, Princetone, N. J., 1976.

Lang, T. and Armitage, G., "A ns2 model for the Xbox systink game
HALO," in Proc. Australian Telecommunications Networ ks and
Applications Conference, (Melbourne, Australia, December 2003).
Lang, T., Armitage, G., Branch, P. and Choo, H., "A siittraffic
model for Half-Life," in Proc. of the Australian Telecommunications
Networ k and Applications Conference, (Melbourne, December 2003).
Lang, T., Branch, P. and Armitage, G., "A synthetic midde Quake 11l
traffic," in Proc. ACM SIGCHI Advancesin Computer Entertainment
(ACE2004), (Singapore, June 2004).

Paxson, V., "Empirically derived analytic models ofdeiarea TCP
connections,TEEE/ACM Transactions on Networking, 2 (4). 316-336.
Swinburne University of Technology, "Simulating Oméi Network
Games (SONG) database," 20@p://caia.swin.edu.au/sitGr27
July2006

Zander, S. and Armitage, G., "A traffic model for the XB@ame Halo
2,"in 15th ACM International Workshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV 2005),
(Washington, June 2005).

